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See “Results formulated”, Sect. 2b, 2c.

1 Stirling’s formula

The well-known Stirling’s formula
n! ~n"e "V2rn asn — o

has several proofs. Before giving a (purely analytic) proof I want to show a
possible probabilistic intuition behind it.

The standard exponential distribution has the density fi(z) = e ® for
x > 0 (and 0 for z < 0), expectation 1 and variance 1. The sum of n
independent random variables, distributed as above, has the so-called gamma
distribution with the density

fn<x> = !

n—1"

nflefm

for z > 0 (and 0 for = < 0), expectation n and variance n (thus, the mean
square deviation y/n). For large n this density should be close to the normal
density with expectation n and variance n,

gula) = ﬂlﬂ_nexp (— wnly,

1 n—l,-n 1 .
T~ e IS equivalent

The special case f,(n) ~ g,(n), that is,
to Stirling’s formula (check it).
Alternatively, the linear transformation y = (z — n)/y/n leads to the

density .
faly) = Vnfalyvn+mn),

which should be close to the standard normal density

9(y) = Vngn(yvn +n) =

2
eV /2,

1
V2T
A straightforward calculation gives f,, — §, provided that Stirling’s formula

is used. Otherwise it gives rather (see Exercise [l below) ¢, fu — §, where

¢, are defined by
1
n—1

n e, = )
(n—1)! V2mn
Taking into account that [ fuly)dy = 1 and [ g(y)dy = 1 (Exercises [,

[[3)) we conclude (Exercises [, [CH) that ¢, — 1, which proves Stirling’s
formula.
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In fact,
1 n! 1

<1 <
12n+1 = prenamm = 12n°
but I do not prove it.

1.1 Exercise. Prove that

cnfuly) = \é—ﬂexp (— (n— 1)(% —In (1 + %)) - %) — g(y)

as n — oo, for all y € R.

Hint: In(1 + %) =4 - y_z +o(d).

1.2 Exercise. Prove that

[hwa= [ fuwae =1

for all n.
Hint: induction in n; integration by parts.

1.3 Exercise. Prove that

Jatar= [a@ar=1
for all n.

Hint: calculate [[ §(y1)g(y2) dyidys in polar coordinates.

However, the poinwise convergence does not ensure convergence of inte-
grals.

1.4 Exercise. Prove that

Vi
cn/ foly)dy — 1 asn — oo.
-vn

Hint: take € > 0 such that a —In(1+a) > ea?® for all a € (—1,1); apply it to
a = y/y/n; use Exercises [[LT] and the dominated convergence theorem.

1.5 Exercise. Prove that

cn/ fu(y)dy =0 asn— oco.
N
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2 Asymptotic normality

Let n € {1,2,...} and k € {—n,—n +2,...,n}. We have

P(Sn=k) = 2_"%
(IR
and
n! = n"e""V2rn B(n) = n" % "V2r 3(n), B(n) — 1.
Thus,

kN —(n—k+1)/2 ke —(ntk+1)/2
P (S, = k) = 2703 (E5) (") :

2 2
n—k +n+k) 1 B(n)
2 2/ V2m BB

— 9=t (n—k+1)/24(n+k+1)/2 | nt0.5—(n—k+1)/2—(n+k+1)/2 |

=2 —1/vm
( k)(nk+1)/2 (1 k;)(n+k+1)/2 1 B(n)
’ k

~exp(—n+

12
n

n

The following relations hold as n — oo uniformly in k as long as k?/n is

bounded:

n+k ' B(n) ok
2 k

n  2n? n?
2 2

(nik+1)1n(1i5> _aer PR ).
n n 2n

%Z(nikﬂ)ln(li%) :§+0(1);
+

P(S, =k) ~ \/227T_neXp (— %)

which proves Prop. 2bl of “Results formulated”.
It follows that

Z P(S,=k)=(1+0(1)) Z \/227T_nexp(—§—n) as n — 0o

av/n<k<b\/n av/n<k<by/n
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whenever —oo < a < b < 0o (all k are such that k + n is even). However,

2 kQ b 2/9
n Z eXp<—2—>—>/e_“/du as n — 00.
n n a

a/n<k<by/n

Theorem 2b2 of “Results formulated” follows easily.

3 Large deviations

It was shown in Sect. B that

B(S, = k) =

2 (1 k)(nk+1)/2(1 k;)(n+k+1)/2 (TL)
V2rn

where 3(n) — 1 as n — co. However,

7n_§+11n<1—ﬁ)+7n+§+1ln(l+ﬁ):

n n

n n
_ g<(1_§) In (1—%)+(1+%) In (1+§))+% <1n (1—%) +1n (H%)) ,
that is,
() e (0 (),
where

v(e) = %(1 +c)In(l+¢) + %(1 —¢)In(1 —¢)

(and 0In0 = 0, of course). We see that

(3.1) P(S,=k) ~ \/227T—n l_k_gexp <—n7(§>)

as n — |k| — oo. That is, for every £ > 0 there exists M < oo such that

P(S,=k)

€El—e,1+¢]

Apmew (-m(®)

whenever n — |k| > M.
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An explicit dependence between ¢ and M may be found via the inequality
Inf(n) € [1/(12n+ 1),1/(12n)].
It follow that

P(S, = k) = exp <—m(k) +0(n)) :

n

(3.2) %lnIP’(Sn =k) = —’y(%) +o(1)

as n — |k| — oo. In fact, this relation holds as n — oo, uniformly in k €
{—n,—n+2,...,n} (but I do not prove it).

It is possible to continue toward ]P’(Sn > k;) However, all that works
only for the binomial distribution. Other distributions can be investigated
via a more general approach, shown below (on the binomial case, still).

The inequality

E e)\Sn
e)\k

(3.3) P(S,>k) < for A >0

is a special case of Markov’s inequality, but anyway, is rather evident:

B = T B(5, = 5) 2 3B (S, =) >

J Jjzk
> MP(S, =) =eMP(S, > k).
Jjzk
It holds for all A > 0, thus,
. EeMn
P(S02 k) < il =5
However,
e M e\
EeM =E (M1 .. M) = (EeM)" = <72 ) = cosh” A,
thus,
.. cosh™ A
]P(S" 2 k) = irelﬂf& ek
The function A — e*¥ cosh™ A has a single minimum at
1 k
(3.4) A=

2 n-—k



Adv. Prob. ASYMP. COMBINATORICS OF SIMPLE RANDOM WALK 2007 6

(check it); it appears that

inf cosh™ \ _ (1 _ E) (nk)/2(1 E)(n+k)/2 —— |
A>0  erk n n
therefore
P(S, > k) <e™tE/m,
We see that

}JnP(&lzk)§§—7<E>.
n n
Is it exact? Is there another function 4 > = such that %lnIP’(Sn > k;) <
—9(k/n) for large n? No, 7 is optimal. Indeed, [B2) tells us that L InP (.S, >
k) > LInP (S, =k) =—y(k/n)+o(1) as n — |k| — oo, therefore
3.5 ! InP (S, >k i 1
(35) TP (S, > k) = () +o()
as n — |k| — oo. (In fact, as n — oo0.) This is mysterious! The exponential
inequality (B3)) is only one among many similar inequalities (for instance,
P(S, > k) < (ES2™)/k* for all m), however, it gives the exact rate func-
tion 7. Can we understand this fact within the general framework (without
B2))? Yes, we can; see below.

The question is, why the inequality ([B3) is (roughly) tight for some .
We have

e)\k
1_Ee)\S P(Sn>k) =
= c P(S, = G-y — )
= P (S =)+ Y (1= e ) P (S, = )
j<k i>k

the question is, why some A makes both summands small.
The numbers EZ%IP’ (Sn = j) for j € {—n,—n+2,...,n} may be thought

of as another probability distribution. Moreover, it is basically binomial!

Indeed,

\j : Nig—n n!
NP (S, =j) = V2 (nk)|(ntky) —
2 : 2

n!

if p is chosen so that p?/2(1 — p)™7/2 = M, that is,

= const(n) - P2 (1 — )i

2
1
. = p © A==In P

T1rex CT oM,
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Therefore (since the sum must be 1...),

e

[ oAn

n! - o ,
mp( +])/2(1 —p)( /2 — P(Sflp) = j) ’
2 J\T2 )

where S = X{p) +o o+ X and Xl(p), o ,XV(LP) are independent identically
distributed random variables,

P(S,=j) =

P(XP =1)=p, P(XP=-1)=1-p.

We get
ok
, 1 —p\U—F)/2 ,
=> P(SP=j)+ (1— — )P(Sf{’)zj)zEf(Sép)),
> > (- (57)

where f: {—n,—n+2,...,n} — R is defined by

() = 1 for j < k,
D= ()92 for j > k.
The question is, why some p makes E f (ST(LP )) small.

The function f vanishes at k and can be small only in a right-side neigh-

borhood of k. On the other hand, %Sr(f) ) is usually close to
0 ®)
EgSn =EX;" =2p—-1

by the weak low of large numbers. Choosing p such that

k n+k 1. n+k
2p—1—g, p= on )\_alnn—k‘

(compare it with ([B4)...), we give to f(Sr(Lp)) a good chance to be small.
However, we should not expect too nuch. According to (B), P(Sn =
k) < e ®/Mm " And do not think that P(S, > k) > P(S, = k). You

see, P(Sn =k+ 2) = %P(Sn = k) ~ %IP’(S” = k); assuming that

% € (0,1) is not close to 0 and 1 we observe that also IP’(Sn =k+ 4) =
%P(Sn =k + 2) and so on, thus, IP’(Sn > k) ~ ﬁP(Sn = k) is not
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much larger than P (S, = k). It means that the inequality (B3) (for the
optimal \) is not really tight; rather,

e)\Sn

efo(n) 7

P(S,>k) >

e)\k

(s 2 ) 2 e,
Ef(g(p)) <1—e o™,

The expectation need not be really small, it only needs to be a bit less than
1 in order to explain (B3).

Now we have (at least) three ways to proceed (assuming still that £ €
(0,1) is not close to 0 and 1). The first way:

const

PSP =k) > 7

by the local limit theorem; therefore
E(1-f(SP) >P(SP =k) =e M.
The second way:
IP’(k: < SP) <k + const - \/ﬁ) > const > 0

by the central limit theorem; therefore

1 — const-y/n
E (1 — f(Spr))) > IP’(k < Sr(f’) < k + const - \/ﬁ) . (—p) = e
p
The third way: for every ¢ > 0,
]P’(k < S,(Lp“) < k+4€n) —1 asn— oo
by the weak law of large numbers; therefore
E(1- f(S%*))) > (1—o(1)) - (ﬁ)‘““.
n - p+€ )
et etk p+e
Ee/\SnP(S" > k) > WP(S" > /{:) > exp <— n- 4glnm — 0(n)> :

it holds for all &, and we get e~
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