See "Results formulated", Sect. 2b, 2c.

1 Stirling's formula

The well-known Stirling's formula

$$
n!\sim n^{n} \mathrm{e}^{-n} \sqrt{2 \pi n} \quad \text { as } n \rightarrow \infty
$$

has several proofs. Before giving a (purely analytic) proof I want to show a possible probabilistic intuition behind it.

The standard exponential distribution has the density $f_{1}(x)=\mathrm{e}^{-x}$ for $x>0$ (and 0 for $x<0$), expectation 1 and variance 1 . The sum of n independent random variables, distributed as above, has the so-called gamma distribution with the density

$$
f_{n}(x)=\frac{1}{(n-1)!} x^{n-1} \mathrm{e}^{-x}
$$

for $x>0$ (and 0 for $x<0$), expectation n and variance n (thus, the mean square deviation \sqrt{n}). For large n this density should be close to the normal density with expectation n and variance n,

$$
g_{n}(x)=\frac{1}{\sqrt{2 \pi n}} \exp \left(-\frac{(x-n)^{2}}{2 n}\right) .
$$

The special case $f_{n}(n) \sim g_{n}(n)$, that is, $\frac{1}{(n-1)!} n^{n-1} \mathrm{e}^{-n} \sim \frac{1}{\sqrt{2 \pi n}}$, is equivalent to Stirling's formula (check it).

Alternatively, the linear transformation $y=(x-n) / \sqrt{n}$ leads to the density

$$
\tilde{f}_{n}(y)=\sqrt{n} f_{n}(y \sqrt{n}+n),
$$

which should be close to the standard normal density

$$
\tilde{g}(y)=\sqrt{n} g_{n}(y \sqrt{n}+n)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-y^{2} / 2} .
$$

A straightforward calculation gives $\tilde{f}_{n} \rightarrow \tilde{g}$, provided that Stirling's formula is used. Otherwise it gives rather (see Exercise 1.1 below) $c_{n} \tilde{f}_{n} \rightarrow \tilde{g}$, where c_{n} are defined by

$$
\frac{1}{(n-1)!} n^{n-1} \mathrm{e}^{-n} c_{n}=\frac{1}{\sqrt{2 \pi n}} .
$$

Taking into account that $\int \tilde{f}_{n}(y) \mathrm{d} y=1$ and $\int \tilde{g}(y) \mathrm{d} y=1$ (Exercises 1.2, (1.3) we conclude (Exercises (1.4, (1.5) that $c_{n} \rightarrow 1$, which proves Stirling's formula.

In fact,

$$
\frac{1}{12 n+1} \leq \ln \frac{n!}{n^{n} \mathrm{e}^{-n} \sqrt{2 \pi n}} \leq \frac{1}{12 n}
$$

but I do not prove it.
1.1 Exercise. Prove that

$$
c_{n} \tilde{f}_{n}(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-(n-1)\left(\frac{y}{\sqrt{n}}-\ln \left(1+\frac{y}{\sqrt{n}}\right)\right)-\frac{y}{\sqrt{n}}\right) \rightarrow \tilde{g}(y)
$$

as $n \rightarrow \infty$, for all $y \in \mathbb{R}$.
Hint: $\ln \left(1+\frac{y}{\sqrt{n}}\right)=\frac{y}{\sqrt{n}}-\frac{y^{2}}{2 n}+o\left(\frac{1}{n}\right)$.
1.2 Exercise. Prove that

$$
\int \tilde{f}_{n}(y) \mathrm{d} y=\int f_{n}(x) \mathrm{d} x=1
$$

for all n.
Hint: induction in n; integration by parts.
1.3 Exercise. Prove that

$$
\int \tilde{g}(y) \mathrm{d} y=\int g_{n}(x) \mathrm{d} x=1
$$

for all n.
Hint: calculate $\iint \tilde{g}\left(y_{1}\right) \tilde{g}\left(y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}$ in polar coordinates.
However, the poinwise convergence does not ensure convergence of integrals.
1.4 Exercise. Prove that

$$
c_{n} \int_{-\sqrt{n}}^{\sqrt{n}} \tilde{f}_{n}(y) \mathrm{d} y \rightarrow 1 \quad \text { as } n \rightarrow \infty .
$$

Hint: take $\varepsilon>0$ such that $a-\ln (1+a) \geq \varepsilon a^{2}$ for all $a \in(-1,1)$; apply it to $a=y / \sqrt{n}$; use Exercises 1.1 1.3 and the dominated convergence theorem.
1.5 Exercise. Prove that

$$
c_{n} \int_{\sqrt{n}}^{\infty} \tilde{f}_{n}(y) \mathrm{d} y \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

2 Asymptotic normality

Let $n \in\{1,2, \ldots\}$ and $k \in\{-n,-n+2, \ldots, n\}$. We have

$$
\mathbb{P}\left(S_{n}=k\right)=2^{-n} \frac{n!}{\left(\frac{n-k}{2}\right)!\left(\frac{n+k}{2}\right)!}
$$

and

$$
n!=n^{n} \mathrm{e}^{-n} \sqrt{2 \pi n} \beta(n)=n^{n+0.5} \mathrm{e}^{-n} \sqrt{2 \pi} \beta(n), \quad \beta(n) \rightarrow 1
$$

Thus,

$$
\begin{aligned}
\mathbb{P}\left(S_{n}=k\right)= & 2^{-n} n^{n+0.5}\left(\frac{n-k}{2}\right)^{-(n-k+1) / 2}\left(\frac{n+k}{2}\right)^{-(n+k+1) / 2} . \\
& \cdot \exp \left(-n+\frac{n-k}{2}+\frac{n+k}{2}\right) \frac{1}{\sqrt{2 \pi}} \frac{\beta(n)}{\beta\left(\frac{n-k}{2}\right) \beta\left(\frac{n+k}{2}\right)}= \\
= & \underbrace{2^{-n+(n-k+1) / 2+(n+k+1) / 2}}_{=2} \cdot \underbrace{n^{n+0.5-(n-k+1) / 2-(n+k+1) / 2}}_{=1 / \sqrt{n}} . \\
& \cdot\left(1-\frac{k}{n}\right)^{-(n-k+1) / 2}\left(1+\frac{k}{n}\right)^{-(n+k+1) / 2} \frac{1}{\sqrt{2 \pi}} \frac{\beta(n)}{\beta\left(\frac{n-k}{2}\right) \beta\left(\frac{n+k}{2}\right)} .
\end{aligned}
$$

The following relations hold as $n \rightarrow \infty$ uniformly in k as long as k^{2} / n is bounded:

$$
\begin{gathered}
\frac{n \pm k}{2} \rightarrow \infty ; \quad \frac{\beta(n)}{\beta\left(\frac{n-k}{2}\right) \beta\left(\frac{n+k}{2}\right)} \rightarrow 1 ; \quad \frac{k}{n}=O(1 / \sqrt{n})=o(1) \\
\ln \left(1 \pm \frac{k}{n}\right)= \pm \frac{k}{n}-\frac{k^{2}}{2 n^{2}}+o\left(\frac{k^{2}}{n^{2}}\right) \\
(n \pm k+1) \ln \left(1 \pm \frac{k}{n}\right)= \pm k+\frac{k^{2}}{n}-\frac{k^{2}}{2 n}+o(1) \\
\frac{1}{2} \sum_{ \pm}(n \pm k+1) \ln \left(1 \pm \frac{k}{n}\right)=\frac{k^{2}}{2 n}+o(1) \\
\mathbb{P}\left(S_{n}=k\right) \sim \frac{2}{\sqrt{2 \pi n}} \exp \left(-\frac{k^{2}}{2 n}\right)
\end{gathered}
$$

which proves Prop. 2b1 of "Results formulated".
It follows that
$\sum_{a \sqrt{n}<k<b \sqrt{n}} \mathbb{P}\left(S_{n}=k\right)=(1+o(1)) \sum_{a \sqrt{n}<k<b \sqrt{n}} \frac{2}{\sqrt{2 \pi n}} \exp \left(-\frac{k^{2}}{2 n}\right) \quad$ as $n \rightarrow \infty$
whenever $-\infty<a<b<\infty$ (all k are such that $k+n$ is even). However,

$$
\frac{2}{\sqrt{n}} \sum_{a \sqrt{n}<k<b \sqrt{n}} \exp \left(-\frac{k^{2}}{2 n}\right) \rightarrow \int_{a}^{b} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u \quad \text { as } n \rightarrow \infty
$$

Theorem 2 b 2 of "Results formulated" follows easily.

3 Large deviations

It was shown in Sect. 22 that

$$
\mathbb{P}\left(S_{n}=k\right)=\frac{2}{\sqrt{2 \pi n}}\left(1-\frac{k}{n}\right)^{-(n-k+1) / 2}\left(1+\frac{k}{n}\right)^{-(n+k+1) / 2} \frac{\beta(n)}{\beta\left(\frac{n-k}{2}\right) \beta\left(\frac{n+k}{2}\right)},
$$

where $\beta(n) \rightarrow 1$ as $n \rightarrow \infty$. However,

$$
\begin{aligned}
& \frac{n-k+1}{2} \ln \left(1-\frac{k}{n}\right)+\frac{n+k+1}{2} \ln \left(1+\frac{k}{n}\right)= \\
= & \frac{n}{2}\left(\left(1-\frac{k}{n}\right) \ln \left(1-\frac{k}{n}\right)+\left(1+\frac{k}{n}\right) \ln \left(1+\frac{k}{n}\right)\right)+\frac{1}{2}\left(\ln \left(1-\frac{k}{n}\right)+\ln \left(1+\frac{k}{n}\right)\right),
\end{aligned}
$$

that is,

$$
\left(1-\frac{k}{n}\right)^{-(n-k+1) / 2}\left(1+\frac{k}{n}\right)^{-(n+k+1) / 2}=\frac{1}{\sqrt{1-\frac{k^{2}}{n^{2}}}} \exp \left(-n \gamma\left(\frac{k}{n}\right)\right)
$$

where

$$
\gamma(c)=\frac{1}{2}(1+c) \ln (1+c)+\frac{1}{2}(1-c) \ln (1-c)
$$

(and $0 \ln 0=0$, of course). We see that

$$
\begin{equation*}
\mathbb{P}\left(S_{n}=k\right) \sim \frac{2}{\sqrt{2 \pi n}} \frac{1}{\sqrt{1-\frac{k^{2}}{n^{2}}}} \exp \left(-n \gamma\left(\frac{k}{n}\right)\right) \tag{3.1}
\end{equation*}
$$

as $n-|k| \rightarrow \infty$. That is, for every $\varepsilon>0$ there exists $M<\infty$ such that

$$
\frac{\mathbb{P}\left(S_{n}=k\right)}{\frac{2}{\sqrt{2 \pi n}} \frac{1}{\sqrt{1-\frac{k^{2}}{n^{2}}}} \exp \left(-n \gamma\left(\frac{k}{n}\right)\right)} \in[1-\varepsilon, 1+\varepsilon]
$$

whenever $n-|k| \geq M$.

An explicit dependence between ε and M may be found via the inequality $\ln \beta(n) \in[1 /(12 n+1), 1 /(12 n)]$.

It follow that

$$
\begin{gather*}
\mathbb{P}\left(S_{n}=k\right)=\exp \left(-n \gamma\left(\frac{k}{n}\right)+o(n)\right), \\
\frac{1}{n} \ln \mathbb{P}\left(S_{n}=k\right)=-\gamma\left(\frac{k}{n}\right)+o(1) \tag{3.2}
\end{gather*}
$$

as $n-|k| \rightarrow \infty$. In fact, this relation holds as $n \rightarrow \infty$, uniformly in $k \in$ $\{-n,-n+2, \ldots, n\}$ (but I do not prove it).

It is possible to continue toward $\mathbb{P}\left(S_{n} \geq k\right)$. However, all that works only for the binomial distribution. Other distributions can be investigated via a more general approach, shown below (on the binomial case, still).

The inequality

$$
\begin{equation*}
\mathbb{P}\left(S_{n} \geq k\right) \leq \frac{\mathbb{E} \mathrm{e}^{\lambda S_{n}}}{\mathrm{e}^{\lambda k}} \quad \text { for } \lambda \geq 0 \tag{3.3}
\end{equation*}
$$

is a special case of Markov's inequality, but anyway, is rather evident:

$$
\begin{aligned}
& \mathbb{E} \mathrm{e}^{\lambda S_{n}}=\sum_{j} \mathrm{e}^{\lambda j} \mathbb{P}\left(S_{n}=j\right) \geq \sum_{j \geq k} \mathrm{e}^{\lambda j} \mathbb{P}\left(S_{n}=j\right) \geq \\
& \geq \sum_{j \geq k} \mathrm{e}^{\lambda k} \mathbb{P}\left(S_{n}=j\right)=\mathrm{e}^{\lambda k} \mathbb{P}\left(S_{n} \geq k\right) .
\end{aligned}
$$

It holds for all $\lambda \geq 0$, thus,

$$
\mathbb{P}\left(S_{n} \geq k\right) \leq \inf _{\lambda \geq 0} \frac{\mathbb{E} \mathrm{e}^{\lambda S_{n}}}{\mathrm{e}^{\lambda k}}
$$

However,

$$
\mathbb{E} \mathrm{e}^{\lambda S_{n}}=\mathbb{E}\left(\mathrm{e}^{\lambda X_{1}} \ldots \mathrm{e}^{\lambda X_{n}}\right)=\left(\mathbb{E} \mathrm{e}^{\lambda X_{1}}\right)^{n}=\left(\frac{\mathrm{e}^{-\lambda}+\mathrm{e}^{\lambda}}{2}\right)^{n}=\cosh ^{n} \lambda,
$$

thus,

$$
\mathbb{P}\left(S_{n} \geq k\right) \leq \inf _{\lambda \in \mathbb{R}} \frac{\cosh ^{n} \lambda}{\mathrm{e}^{\lambda k}}
$$

The function $\lambda \mapsto \mathrm{e}^{-\lambda k} \cosh ^{n} \lambda$ has a single minimum at

$$
\begin{equation*}
\lambda=\frac{1}{2} \ln \frac{n+k}{n-k} \tag{3.4}
\end{equation*}
$$

(check it); it appears that

$$
\inf _{\lambda \geq 0} \frac{\cosh ^{n} \lambda}{\mathrm{e}^{\lambda k}}=\left(1-\frac{k}{n}\right)^{-(n-k) / 2}\left(1+\frac{k}{n}\right)^{-(n+k) / 2}=\mathrm{e}^{-n \gamma(k / n)},
$$

therefore

$$
\mathbb{P}\left(S_{n} \geq k\right) \leq \mathrm{e}^{-n \gamma(k / n)}
$$

We see that

$$
\frac{1}{n} \ln \mathbb{P}\left(S_{n} \geq k\right) \leq-\gamma\left(\frac{k}{n}\right) .
$$

Is it exact? Is there another function $\tilde{\gamma}>\gamma$ such that $\frac{1}{n} \ln \mathbb{P}\left(S_{n} \geq k\right) \leq$ $-\tilde{\gamma}(k / n)$ for large n ? No, γ is optimal. Indeed, (3.2) tells us that $\frac{1}{n} \ln \mathbb{P}\left(S_{n} \geq\right.$ $k) \geq \frac{1}{n} \ln \mathbb{P}\left(S_{n}=k\right)=-\gamma(k / n)+o(1)$ as $n-|k| \rightarrow \infty$, therefore

$$
\begin{equation*}
\frac{1}{n} \ln \mathbb{P}\left(S_{n} \geq k\right)=-\gamma\left(\frac{k}{n}\right)+o(1) \tag{3.5}
\end{equation*}
$$

as $n-|k| \rightarrow \infty$. (In fact, as $n \rightarrow \infty$.) This is mysterious! The exponential inequality (3.3) is only one among many similar inequalities (for instance, $\mathbb{P}\left(S_{n} \geq k\right) \leq\left(\mathbb{E} S_{n}^{2 m}\right) / k^{2 m}$ for all $\left.m\right)$, however, it gives the exact rate function γ. Can we understand this fact within the general framework (without (3.2))? Yes, we can; see below.

The question is, why the inequality (3.3) is (roughly) tight for some λ. We have

$$
\begin{aligned}
& 1-\frac{\mathrm{e}^{\lambda k}}{\mathbb{E} \mathrm{e}^{\lambda S_{n}}} \mathbb{P}\left(S_{n} \geq k\right)= \\
& \quad=\sum_{j<k} \frac{\mathrm{e}^{\lambda j}}{\mathbb{E} \mathrm{e}^{\lambda S_{n}}} \mathbb{P}\left(S_{n}=j\right)+\sum_{j \geq k}\left(1-\mathrm{e}^{-\lambda(j-k)}\right) \frac{\mathrm{e}^{\lambda j}}{\mathbb{E} \mathrm{e}^{\lambda S_{n}}} \mathbb{P}\left(S_{n}=j\right) ;
\end{aligned}
$$

the question is, why some λ makes both summands small.
The numbers $\frac{\mathrm{e}^{\lambda j}}{\mathbb{E} \mathrm{e}^{\lambda S_{n}}} \mathbb{P}\left(S_{n}=j\right)$ for $j \in\{-n,-n+2, \ldots, n\}$ may be thought of as another probability distribution. Moreover, it is basically binomial! Indeed,

$$
\begin{aligned}
\mathrm{e}^{\lambda j} \mathbb{P}\left(S_{n}=j\right)=\mathrm{e}^{\lambda j} 2^{-n} & \frac{n!}{\left(\frac{n-k}{2}\right)!\left(\frac{n+k}{2}\right)!}= \\
& =\operatorname{const}(n) \cdot \frac{n!}{\left(\frac{n-k}{2}\right)!\left(\frac{n+k}{2}\right)!} p^{(n+j) / 2}(1-p)^{(n-j) / 2}
\end{aligned}
$$

if p is chosen so that $p^{j / 2}(1-p)^{-j / 2}=\mathrm{e}^{\lambda j}$, that is,

$$
\frac{p}{1-p}=\mathrm{e}^{2 \lambda} ; \quad p=\frac{\mathrm{e}^{2 \lambda}}{1+\mathrm{e}^{2 \lambda}} ; \quad \lambda=\frac{1}{2} \ln \frac{p}{1-p} .
$$

Therefore (since the sum must be $1 . .$.),

$$
\frac{\mathrm{e}^{\lambda j}}{\mathbb{E} \mathrm{e}^{\lambda S_{n}}} \mathbb{P}\left(S_{n}=j\right)=\frac{n!}{\left(\frac{n-j}{2}\right)!\left(\frac{n+j}{2}\right)!} p^{(n+j) / 2}(1-p)^{(n-j) / 2}=\mathbb{P}\left(S_{n}^{(p)}=j\right),
$$

where $S_{n}^{(p)}=X_{1}^{(p)}+\cdots+X_{n}^{(p)}$ and $X_{1}^{(p)}, \ldots, X_{n}^{(p)}$ are independent identically distributed random variables,

$$
\mathbb{P}\left(X_{1}^{(p)}=1\right)=p, \quad \mathbb{P}\left(X_{1}^{(p)}=-1\right)=1-p
$$

We get

$$
\begin{aligned}
& 1-\frac{\mathrm{e}^{\lambda k}}{\mathbb{E} \mathrm{e}^{\lambda S_{n}}} \mathbb{P}\left(S_{n} \geq k\right)= \\
& =\sum_{j<k} \mathbb{P}\left(S_{n}^{(p)}=j\right)+\sum_{j \geq k}\left(1-\left(\frac{1-p}{p}\right)^{(j-k) / 2}\right) \mathbb{P}\left(S_{n}^{(p)}=j\right)=\mathbb{E} f\left(S_{n}^{(p)}\right),
\end{aligned}
$$

where $f:\{-n,-n+2, \ldots, n\} \rightarrow \mathbb{R}$ is defined by

$$
f(j)= \begin{cases}1 & \text { for } j<k \\ 1-\left(\frac{1-p}{p}\right)^{(j-k) / 2} & \text { for } j \geq k\end{cases}
$$

The question is, why some p makes $\mathbb{E} f\left(S_{n}^{(p)}\right)$ small.
The function f vanishes at k and can be small only in a right-side neighborhood of k. On the other hand, $\frac{1}{n} S_{n}^{(p)}$ is usually close to

$$
\mathbb{E} \frac{1}{n} S_{n}^{(p)}=\mathbb{E} X_{1}^{(p)}=2 p-1
$$

by the weak low of large numbers. Choosing p such that

$$
2 p-1=\frac{k}{n}, \quad p=\frac{n+k}{2 n}, \quad \lambda=\frac{1}{2} \ln \frac{n+k}{n-k}
$$

(compare it with (3.4) \ldots), we give to $f\left(S_{n}^{(p)}\right)$ a good chance to be small.
However, we should not expect too nuch. According to (3.1), $\mathbb{P}\left(S_{n}=\right.$ $k) \ll \mathrm{e}^{-n \gamma(k / n)}$. And do not think that $\mathbb{P}\left(S_{n} \geq k\right) \gg \mathbb{P}\left(S_{n}=k\right)$. You see, $\mathbb{P}\left(S_{n}=k+2\right)=\frac{n-k}{n+k+1} \mathbb{P}\left(S_{n}=k\right) \approx \frac{1-p}{p} \mathbb{P}\left(S_{n}=k\right)$; assuming that $\frac{k}{n} \in(0,1)$ is not close to 0 and 1 we observe that also $\mathbb{P}\left(S_{n}=k+4\right) \approx$ $\frac{n-p}{p} \mathbb{P}\left(S_{n}=k+2\right)$ and so on, thus, $\mathbb{P}\left(S_{n} \geq k\right) \approx \frac{p}{2 p-1} \mathbb{P}\left(S_{n}=k\right)$ is not
much larger than $\mathbb{P}\left(S_{n}=k\right)$. It means that the inequality (3.3) (for the optimal λ) is not really tight; rather,

$$
\begin{aligned}
& \mathbb{P}\left(S_{n} \geq k\right) \geq \frac{\mathbb{E} \mathrm{e}^{\lambda S_{n}}}{\mathrm{e}^{\lambda k}} \mathrm{e}^{-o(n)} ; \\
& \frac{\mathrm{e}^{\lambda k}}{\mathbb{E} \mathrm{e}^{\lambda S_{n}}} \mathbb{P}\left(S_{n} \geq k\right) \geq \mathrm{e}^{-o(n)} ; \\
& \mathbb{E} f\left(S_{n}^{(p)}\right) \leq 1-\mathrm{e}^{-o(n)},
\end{aligned}
$$

The expectation need not be really small, it only needs to be a bit less than 1 in order to explain (3.5).

Now we have (at least) three ways to proceed (assuming still that $\frac{k}{n} \in$ $(0,1)$ is not close to 0 and 1). The first way:

$$
\mathbb{P}\left(S_{n}^{(p)}=k\right) \geq \frac{\text { const }}{\sqrt{n}}
$$

by the local limit theorem; therefore

$$
\mathbb{E}\left(1-f\left(S_{n}^{(p)}\right)\right) \geq \mathbb{P}\left(S_{n}^{(p)}=k\right)=\mathrm{e}^{-o(n)}
$$

The second way:

$$
\mathbb{P}\left(k \leq S_{n}^{(p)} \leq k+\text { const } \cdot \sqrt{n}\right) \geq \text { const }>0
$$

by the central limit theorem; therefore

$$
\mathbb{E}\left(1-f\left(S_{n}^{(p)}\right)\right) \geq \mathbb{P}\left(k \leq S_{n}^{(p)} \leq k+\text { const } \cdot \sqrt{n}\right) \cdot\left(\frac{1-p}{p}\right)^{\text {const } \cdot \sqrt{n}}=\mathrm{e}^{-o(n)}
$$

The third way: for every $\varepsilon>0$,

$$
\mathbb{P}\left(k \leq S_{n}^{(p+\varepsilon)} \leq k+4 \varepsilon n\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

by the weak law of large numbers; therefore

$$
\begin{gathered}
\mathbb{E}\left(1-f\left(S_{n}^{(p+\varepsilon)}\right)\right) \geq(1-o(1)) \cdot\left(\frac{1-p-\varepsilon}{p+\varepsilon}\right)^{4 \varepsilon n} ; \\
\frac{\mathrm{e}^{\lambda k}}{\mathbb{E} \mathrm{e}^{\lambda S_{n}}} \mathbb{P}\left(S_{n} \geq k\right) \geq \frac{\mathrm{e}^{\lambda_{\varepsilon} k}}{\mathbb{E} \mathrm{e}^{\lambda_{\varepsilon} S_{n}}} \mathbb{P}\left(S_{n} \geq k\right) \geq \exp \left(-n \cdot 4 \varepsilon \ln \frac{p+\varepsilon}{1-p-\varepsilon}-o(n)\right)
\end{gathered}
$$

it holds for all ε, and we get $\mathrm{e}^{-o(n)}$.

