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See “Results formulated”, Sect. 2b, 2c.

1 Stirling’s formula

The well-known Stirling’s formula

n! ∼ nne−n
√

2πn as n → ∞

has several proofs. Before giving a (purely analytic) proof I want to show a
possible probabilistic intuition behind it.

The standard exponential distribution has the density f1(x) = e−x for
x > 0 (and 0 for x < 0), expectation 1 and variance 1. The sum of n
independent random variables, distributed as above, has the so-called gamma
distribution with the density

fn(x) =
1

(n − 1)!
xn−1e−x

for x > 0 (and 0 for x < 0), expectation n and variance n (thus, the mean
square deviation

√
n). For large n this density should be close to the normal

density with expectation n and variance n,

gn(x) =
1√
2πn

exp
(

− (x − n)2

2n

)

.

The special case fn(n) ∼ gn(n), that is, 1
(n−1)!

nn−1e−n ∼ 1√
2πn

, is equivalent

to Stirling’s formula (check it).
Alternatively, the linear transformation y = (x − n)/

√
n leads to the

density
f̃n(y) =

√
nfn(y

√
n + n) ,

which should be close to the standard normal density

g̃(y) =
√

ngn(y
√

n + n) =
1√
2π

e−y2/2 .

A straightforward calculation gives f̃n → g̃, provided that Stirling’s formula
is used. Otherwise it gives rather (see Exercise 1.1 below) cnf̃n → g̃, where
cn are defined by

1

(n − 1)!
nn−1e−ncn =

1√
2πn

.

Taking into account that
∫

f̃n(y) dy = 1 and
∫

g̃(y) dy = 1 (Exercises 1.2,
1.3) we conclude (Exercises 1.4, 1.5) that cn → 1, which proves Stirling’s
formula.
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In fact,
1

12n + 1
≤ ln

n!

nne−n
√

2πn
≤ 1

12n
,

but I do not prove it.

1.1 Exercise. Prove that

cnf̃n(y) =
1√
2π

exp

(

− (n − 1)
( y√

n
− ln

(

1 +
y√
n

))

− y√
n

)

→ g̃(y)

as n → ∞, for all y ∈ R.
Hint: ln

(
1 + y√

n

)
= y√

n
− y2

2n
+ o( 1

n
).

1.2 Exercise. Prove that
∫

f̃n(y) dy =

∫

fn(x) dx = 1

for all n.
Hint: induction in n; integration by parts.

1.3 Exercise. Prove that
∫

g̃(y) dy =

∫

gn(x) dx = 1

for all n.
Hint: calculate

∫∫
g̃(y1)g̃(y2) dy1dy2 in polar coordinates.

However, the poinwise convergence does not ensure convergence of inte-
grals.

1.4 Exercise. Prove that

cn

∫ √
n

−
√

n

f̃n(y) dy → 1 as n → ∞ .

Hint: take ε > 0 such that a− ln(1 + a) ≥ εa2 for all a ∈ (−1, 1); apply it to
a = y/

√
n; use Exercises 1.1, 1.3 and the dominated convergence theorem.

1.5 Exercise. Prove that

cn

∫ ∞

√
n

f̃n(y) dy → 0 as n → ∞ .



Adv. Prob. ASYMP. COMBINATORICS OF SIMPLE RANDOM WALK 2007 3

2 Asymptotic normality

Let n ∈ {1, 2, . . .} and k ∈ {−n,−n + 2, . . . , n}. We have

P
(
Sn = k

)
= 2−n n!

(n−k
2

)!(n+k
2

)!

and
n! = nne−n

√
2πn β(n) = nn+0.5e−n

√
2π β(n) , β(n) → 1 .

Thus,

P
(
Sn = k

)
= 2−nnn+0.5

(n − k

2

)−(n−k+1)/2(n + k

2

)−(n+k+1)/2

·

· exp
(

− n +
n − k

2
+

n + k

2

) 1√
2π

β(n)

β(n−k
2

)β(n+k
2

)
=

= 2−n+(n−k+1)/2+(n+k+1)/2
︸ ︷︷ ︸

=2

·nn+0.5−(n−k+1)/2−(n+k+1)/2
︸ ︷︷ ︸

=1/
√

n

·

·
(

1 − k

n

)−(n−k+1)/2(

1 +
k

n

)−(n+k+1)/2 1√
2π

β(n)

β(n−k
2

)β(n+k
2

)
.

The following relations hold as n → ∞ uniformly in k as long as k2/n is
bounded:

n ± k

2
→ ∞ ;

β(n)

β(n−k
2

)β(n+k
2

)
→ 1 ;

k

n
= O(1/

√
n) = o(1) ;

ln
(

1 ± k

n

)

= ±k

n
− k2

2n2
+ o

(k2

n2

)

;

(n ± k + 1) ln
(

1 ± k

n

)

= ±k +
k2

n
− k2

2n
+ o(1) ;

1

2

∑

±
(n ± k + 1) ln

(

1 ± k

n

)

=
k2

2n
+ o(1) ;

P
(
Sn = k

)
∼ 2√

2πn
exp

(

− k2

2n

)

,

which proves Prop. 2b1 of “Results formulated”.
It follows that

∑

a
√

n<k<b
√

n

P
(
Sn = k

)
=

(
1 + o(1)

) ∑

a
√

n<k<b
√

n

2√
2πn

exp
(

− k2

2n

)

as n → ∞
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whenever −∞ < a < b < ∞ (all k are such that k + n is even). However,

2√
n

∑

a
√

n<k<b
√

n

exp
(

− k2

2n

)

→
∫ b

a

e−u2/2 du as n → ∞ .

Theorem 2b2 of “Results formulated” follows easily.

3 Large deviations

It was shown in Sect. 2 that

P
(
Sn = k

)
=

2√
2πn

(

1 − k

n

)−(n−k+1)/2(

1 +
k

n

)−(n+k+1)/2 β(n)

β(n−k
2

)β(n+k
2

)
,

where β(n) → 1 as n → ∞. However,

n − k + 1

2
ln

(

1 − k

n

)

+
n + k + 1

2
ln

(

1 +
k

n

)

=

=
n

2

((

1−k

n

)

ln
(

1−k

n

)

+
(

1+
k

n

)

ln
(

1+
k

n

))

+
1

2

(

ln
(

1−k

n

)

+ln
(

1+
k

n

))

,

that is,

(

1 − k

n

)−(n−k+1)/2(

1 +
k

n

)−(n+k+1)/2

=
1

√

1 − k2

n2

exp

(

− nγ
(k

n

))

,

where

γ(c) =
1

2
(1 + c) ln(1 + c) +

1

2
(1 − c) ln(1 − c)

(and 0 ln 0 = 0, of course). We see that

(3.1) P
(
Sn = k

)
∼ 2√

2πn

1
√

1 − k2

n2

exp

(

− nγ
(k

n

))

as n − |k| → ∞. That is, for every ε > 0 there exists M < ∞ such that

P
(
Sn = k

)

2√
2πn

1
q

1− k2

n2

exp
(

− nγ
(

k
n

)) ∈ [1 − ε, 1 + ε]

whenever n − |k| ≥ M .
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An explicit dependence between ε and M may be found via the inequality
ln β(n) ∈ [1/(12n + 1), 1/(12n)].

It follow that

P
(
Sn = k

)
= exp

(

− nγ
(k

n

)

+ o(n)

)

,

1

n
ln P

(
Sn = k

)
= −γ

(k

n

)

+ o(1)(3.2)

as n − |k| → ∞. In fact, this relation holds as n → ∞, uniformly in k ∈
{−n,−n + 2, . . . , n} (but I do not prove it).

It is possible to continue toward P
(
Sn ≥ k

)
. However, all that works

only for the binomial distribution. Other distributions can be investigated
via a more general approach, shown below (on the binomial case, still).

The inequality

(3.3) P
(
Sn ≥ k

)
≤ E eλSn

eλk
for λ ≥ 0

is a special case of Markov’s inequality, but anyway, is rather evident:

E eλSn =
∑

j

eλj
P

(
Sn = j

)
≥

∑

j≥k

eλj
P

(
Sn = j

)
≥

≥
∑

j≥k

eλk
P

(
Sn = j

)
= eλk

P
(
Sn ≥ k

)
.

It holds for all λ ≥ 0, thus,

P
(
Sn ≥ k

)
≤ inf

λ≥0

E eλSn

eλk
.

However,

E eλSn = E
(
eλX1 . . . eλXn

)
=

(
E eλX1

)
n =

(e−λ + eλ

2

)n

= coshn λ ,

thus,

P
(
Sn ≥ k

)
≤ inf

λ∈R

coshn λ

eλk
.

The function λ 7→ e−λk coshn λ has a single minimum at

(3.4) λ =
1

2
ln

n + k

n − k
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(check it); it appears that

inf
λ≥0

coshn λ

eλk
=

(

1 − k

n

)−(n−k)/2(

1 +
k

n

)−(n+k)/2

= e−nγ(k/n) ,

therefore
P

(
Sn ≥ k

)
≤ e−nγ(k/n) .

We see that
1

n
ln P

(
Sn ≥ k

)
≤ −γ

(k

n

)

.

Is it exact? Is there another function γ̃ > γ such that 1
n

ln P
(
Sn ≥ k

)
≤

−γ̃(k/n) for large n? No, γ is optimal. Indeed, (3.2) tells us that 1
n

ln P
(
Sn ≥

k
)
≥ 1

n
ln P

(
Sn = k

)
= −γ(k/n) + o(1) as n − |k| → ∞, therefore

(3.5)
1

n
ln P

(
Sn ≥ k

)
= −γ

(k

n

)

+ o(1)

as n − |k| → ∞. (In fact, as n → ∞.) This is mysterious! The exponential
inequality (3.3) is only one among many similar inequalities (for instance,
P

(
Sn ≥ k

)
≤ (E S2m

n )/k2m for all m), however, it gives the exact rate func-
tion γ. Can we understand this fact within the general framework (without
(3.2))? Yes, we can; see below.

The question is, why the inequality (3.3) is (roughly) tight for some λ.
We have

1 − eλk

E eλSn
P

(
Sn ≥ k

)
=

=
∑

j<k

eλj

E eλSn
P

(
Sn = j

)
+

∑

j≥k

(
1 − e−λ(j−k)

) eλj

E eλSn
P

(
Sn = j

)
;

the question is, why some λ makes both summands small.
The numbers eλj

E eλSn
P

(
Sn = j

)
for j ∈ {−n,−n+2, . . . , n} may be thought

of as another probability distribution. Moreover, it is basically binomial!
Indeed,

eλj
P

(
Sn = j

)
= eλj2−n n!

(n−k
2

)!(n+k
2

)!
=

= const(n) · n!

(n−k
2

)!(n+k
2

)!
p(n+j)/2(1 − p)(n−j)/2 ,

if p is chosen so that pj/2(1 − p)−j/2 = eλj , that is,

p

1 − p
= e2λ ; p =

e2λ

1 + e2λ
; λ =

1

2
ln

p

1 − p
.
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Therefore (since the sum must be 1. . . ),

eλj

E eλSn
P

(
Sn = j

)
=

n!

(n−j
2

)!(n+j
2

)!
p(n+j)/2(1 − p)(n−j)/2 = P

(
S(p)

n = j
)
,

where S
(p)
n = X

(p)
1 + · · ·+X

(p)
n and X

(p)
1 , . . . , X

(p)
n are independent identically

distributed random variables,

P
(
X

(p)
1 = 1

)
= p , P

(
X

(p)
1 = −1

)
= 1 − p .

We get

1 − eλk

E eλSn
P

(
Sn ≥ k

)
=

=
∑

j<k

P
(
S(p)

n = j
)

+
∑

j≥k

(

1 −
(1 − p

p

)(j−k)/2
)

P
(
S(p)

n = j
)

= E f(S(p)
n ) ,

where f : {−n,−n + 2, . . . , n} → R is defined by

f(j) =

{

1 for j < k,

1 −
(

1−p
p

)
(j−k)/2 for j ≥ k.

The question is, why some p makes E f(S
(p)
n ) small.

The function f vanishes at k and can be small only in a right-side neigh-
borhood of k. On the other hand, 1

n
S

(p)
n is usually close to

E
1

n
S(p)

n = E X
(p)
1 = 2p − 1

by the weak low of large numbers. Choosing p such that

2p − 1 =
k

n
, p =

n + k

2n
, λ =

1

2
ln

n + k

n − k

(compare it with (3.4). . . ), we give to f(S
(p)
n ) a good chance to be small.

However, we should not expect too nuch. According to (3.1), P
(
Sn =

k
)
≪ e−nγ(k/n). And do not think that P

(
Sn ≥ k

)
≫ P

(
Sn = k

)
. You

see, P
(
Sn = k + 2

)
= n−k

n+k+1
P

(
Sn = k

)
≈ 1−p

p
P

(
Sn = k

)
; assuming that

k
n
∈ (0, 1) is not close to 0 and 1 we observe that also P

(
Sn = k + 4

)
≈

1−p
p

P
(
Sn = k + 2

)
and so on, thus, P

(
Sn ≥ k

)
≈ p

2p−1
P

(
Sn = k

)
is not
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much larger than P
(
Sn = k

)
. It means that the inequality (3.3) (for the

optimal λ) is not really tight; rather,

P
(
Sn ≥ k

)
≥ E eλSn

eλk
e−o(n) ;

eλk

E eλSn
P

(
Sn ≥ k

)
≥ e−o(n) ;

E f(S(p)
n ) ≤ 1 − e−o(n) .

The expectation need not be really small, it only needs to be a bit less than
1 in order to explain (3.5).

Now we have (at least) three ways to proceed (assuming still that k
n
∈

(0, 1) is not close to 0 and 1). The first way:

P
(
S(p)

n = k
)
≥ const√

n

by the local limit theorem; therefore

E
(
1 − f(S(p)

n )
)
≥ P

(
S(p)

n = k
)

= e−o(n) .

The second way:

P
(
k ≤ S(p)

n ≤ k + const ·
√

n
)
≥ const > 0

by the central limit theorem; therefore

E
(
1 − f(S(p)

n )
)
≥ P

(
k ≤ S(p)

n ≤ k + const ·
√

n
)
·
(1 − p

p

)const·
√

n

= e−o(n) .

The third way: for every ε > 0,

P
(
k ≤ S(p+ε)

n ≤ k + 4εn
)
→ 1 as n → ∞

by the weak law of large numbers; therefore

E
(
1 − f(S(p+ε)

n )
)
≥

(
1 − o(1)

)
·
(1 − p − ε

p + ε

)4εn

;

eλk

E eλSn
P

(
Sn ≥ k

)
≥ eλεk

E eλεSn
P

(
Sn ≥ k

)
≥ exp

(

− n · 4ε ln
p + ε

1 − p − ε
− o(n)

)

;

it holds for all ε, and we get e−o(n).
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