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1 Five ways toward CLT

I mean the central limit theorem (CLT) for independent identically dis-
tributed (i.i.d.) random variables with second moments. See ‘Results formu-
lated’, Th. 3b1.

Many generalizations and sharpenings are well-known. Various proofs
sketched below differ in their suitability for generalizations and sharpenings.

We denote Sn = X1 + · · ·+ Xn.

1a Moment method

(a) The limit

lim
n→∞

E

( Sn√
n

)m

exists for each m = 1, 2, 3, . . . and does not depend on the distribution of X1

(provided that X1 has all moments).
(b) Convergence of moments implies convergence of distributions (pro-

vided that moments do not grow too fast).
(c) A distribution of X1 without higher moments is approximated by

distributions with all moments (just bounded).

1b Fourier transform (characteristic functions)

(a) For λ ∈ R,

E exp
(

iλ
Sn√
n

)

→ exp
(

− λ2

2

)

as n → ∞

uniformly on bounded intervals.
(b) Convergence of distributions follows.

1c Smooth test functions

(a)

E f
( Sn√

n

)

− E f
( S̃n√

n

)

→ 0 as n → ∞

for every function f : R → R having continuous bounded derivatives f, f ′, f ′′, f ′′′.
Here S̃n = X̃1 + · · · + X̃n where X̃1, X̃2, . . . satisfy the same conditions as
X1, X2, . . . (and are arbitrary otherwise).

(b) Convergence of distributions follows easily.
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1d Using Poisson distributions

(a) Sn is close to SNn where Nn is a Poisson random variable with E Nn = n
(independent of X1, X2, . . . ).

(b) Assuming that the distribution of X1 is concentrated on a finite set,
one represents SNn as a linear combination of independent Poisson random
variables.

(c) Convergence of distributions follows.
(d) A distribution of X1 is approximated by distributions concentrated

on finite sets.

1e Using multinomial distributions

(a) Assuming that the distribution of X1 is concentrated on a finite set, one
represents Sn as a linear function of a multinomial random vector.

(b) The multinomial distribution converges to a multinormal distribution.
(c) A distribution of X1 is approximated by distributions concentrated

on finite sets.

2 A proof of CLT

Given a probability measure ν on R and a bounded continuous function
f : R → R, their convolution ν ∗ f is a function R → R defined by

(ν ∗ f)(x) =

∫

f(x + y) ν(dy) .

Note that (ν ∗ f)(x) = E f(x + X) if X ∼ ν, and

(2.1) E f
( Sn√

n

)

= (µn ∗ · · · ∗ µn ∗ f)(0) = (µ∗n
n ∗ f)(0)

where µn is the distribution of X1/
√

n.

2.2 Exercise. ν ∗ f is bounded and continuous.
Prove it.

2.3 Exercise. Let f have a continuous derivative f ′, and f, f ′ be bounded.
Then ν ∗ f has a continuous derivative, and

(ν ∗ f)′ = ν ∗ f ′ .

Prove it.
Hint: (ν ∗ f)(x + h) − (ν ∗ f)(x) =

∫ x+h

x
(ν ∗ f ′)(u) du.
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We have
∫

xµ(dx) = 0,
∫

x2 µ(dx) = 1. Let µ̃ be another probability
measure on R satisfying

∫

x µ̃(dx) = 0,
∫

x2 µ̃(dx) = 1. Taking into ac-
count that

∫

f(x) µn(dx) =
∫

f(x/
√

n) µ(dx) for any f , we introduce µ̃n by
∫

f(x) µ̃n(dx) =
∫

f(x/
√

n) µ̃(dx). Note that
∫

(a+bx+cx2) (µ− µ̃)(dx) = 0
for all a, b, c; also

∫

(a + bx + cx2) (µn − µ̃n)(dx) = 0.
Let f : R → R have continuous derivatives f ′, f ′′, f ′′′; assume that

f, f ′, f ′′, f ′′′ are bounded. We define g by

f(x) = f(0) + f ′(0)x +
1

2
f ′′(0)x2 + g(x) ,

then
∫

f dµn −
∫

f dµ̃n =

∫

g dµn −
∫

g dµ̃n .

However,

|g(x)| ≤ ‖f ′′′‖ · 1

6
|x|3

(‖ · ‖ stands for the supremum norm). If X1 is bounded, that is, µ is concen-
trated on some [−M, M ], then

∣

∣

∣

∣

∫

g dµn

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ M

−M

g
( x√

n

)

µ(dx)

∣

∣

∣

∣

≤ 2M · ‖f ′′′‖ · 1

6
·
( M√

n

)3

= o
( 1

n

)

.

For unbounded X1 an additional argument is needed:

|g(x)| ≤ ‖f ′′‖ · |x|2 ,

thus,

∣

∣

∣

∣

∫

g dµn

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

g
( x√

n

)

µ(dx)

∣

∣

∣

∣

≤
∫

|x|<n1/12

· · ·+
∫

|x|>n1/12

· · · ≤

≤ 1

6
‖f ′′′‖n−5/4 + ‖f ′′‖ 1

n

∫

|x|>n1/12

x2 µ(dx) = o
( 1

n

)

.

The same holds for
∫

g dµ̃n, and we get

∣

∣

∣

∣

∫

f dµn−
∫

f dµ̃n

∣

∣

∣

∣

≤ 1

3
‖f ′′′‖n−5/4+‖f ′′‖ 1

n

∫

|x|>n1/12

x2 (µ(dx)+µ̃(dx)) = o
(1

n

)

.

In other words, (µn ∗ f − µ̃n ∗ f)(0) ≤ · · · = o(1/n). Similarly, (µn ∗ f − µ̃n ∗
f)(x) ≤ · · · = o(1/n) uniformly in x, therefore

(2.4) ‖µn ∗ f − µ̃n ∗ f‖ = o
(1

n

)

.
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The right-hand side depends on f only via ‖f ′′‖ and ‖f ′′′‖. Thus,

(2.5) sup
‖f ′′‖≤C2,‖f ′′′‖≤C3

‖µn ∗ f − µ̃n ∗ f‖ = o
(1

n

)

for all C2, C3.
We use the sum

µ∗n
n ∗ f − µ̃∗n

n ∗ f =
n−1
∑

k=0

(

µ∗(n−k)
n ∗ µ̃∗k

n ∗ f − µ∗(n−k−1)
n ∗ µ̃∗(k+1)

n ∗ f
)

=

=
n−1
∑

k=0

µ∗(n−k−1)
n ∗ (µn − µ̃n) ∗ µ̃∗k

n ∗ f ,

note that ‖(µ̃∗k
n ∗ f)′′‖ ≤ ‖f ′′‖, ‖(µ̃∗k

n ∗ f)′′′‖ ≤ ‖f ′′′‖ and conclude that
‖(µn − µ̃n) ∗ µ̃∗k

n ∗ f‖ = o(1/n) uniformly in k. Taking into account that

‖µ∗(n−k−1)
n ∗ (. . . )‖ ≤ ‖(. . . )‖ we get

‖µ∗n
n ∗ f − µ̃∗n

n ∗ f‖ → 0 as n → ∞ .

By (2.1),

E f
( Sn√

n

)

− E f
( S̃n√

n

)

→ 0 as n → ∞ ,

which completes the first part of the proof (part (a) of 1c).

2.6 Exercise. The following two conditions are equivalent for every sequence
of probability measures ν1, ν2, . . . on R:

(a) νn

(

(−∞, x]
)

→ 1√
2π

∫ x

−∞ e−u2/2 du (as n → ∞) for all x ∈ R;

(b)
∫

f dν → 1√
2π

∫

f(u)e−u2/2 du (as n → ∞) for every function f : R →
R having continuous bounded derivatives f, f ′, f ′′, f ′′′ and the limits f(−∞),
f(+∞).

Prove it.
Hint: (a) =⇒(b): approximate f uniformly by step functions; (b) =⇒(a):

construct smooth f : R → [0, 1] that vanishes on [x + ε,∞) and equals 1 on
(−∞, x − ε].

Choosing X̃1 as in the De Moivre-Laplace theorem (‘Results formulated’,
Th. 2b2) and using that theorem we see that µ̃n satisfy 2.6(a), therefore
2.6(b), too. Using the result of the first part we see that µn satisfy 2.6(b),
therefore 2.6(a).
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