Advanced Probability CENTRAL LIMIT THEOREM 2007, Tel Aviv Univ. 1

1 Five ways toward CLT

I mean the central limit theorem (CLT) for independent identically distributed (i.i.d.) random variables with second moments. See 'Results formulated', Th. 3b1.

Many generalizations and sharpenings are well-known. Various proofs sketched below differ in their suitability for generalizations and sharpenings.

We denote $S_n = X_1 + \cdots + X_n$.

1a Moment method

(a) The limit

$$\lim_{n \to \infty} \mathbb{E} \left(\frac{S_n}{\sqrt{n}} \right)^m$$

exists for each m = 1, 2, 3, ... and does not depend on the distribution of X_1 (provided that X_1 has all moments).

(b) Convergence of moments implies convergence of distributions (provided that moments do not grow too fast).

(c) A distribution of X_1 without higher moments is approximated by distributions with all moments (just bounded).

1b Fourier transform (characteristic functions)

(a) For $\lambda \in \mathbb{R}$,

$$\mathbb{E} \exp\left(i\lambda \frac{S_n}{\sqrt{n}}\right) \to \exp\left(-\frac{\lambda^2}{2}\right) \text{ as } n \to \infty$$

uniformly on bounded intervals.

(b) Convergence of distributions follows.

1c Smooth test functions

(a)

$$\mathbb{E}f\left(\frac{S_n}{\sqrt{n}}\right) - \mathbb{E}f\left(\frac{\tilde{S}_n}{\sqrt{n}}\right) \to 0 \text{ as } n \to \infty$$

for every function $f : \mathbb{R} \to \mathbb{R}$ having continuous bounded derivatives f, f', f'', f'''. Here $\tilde{S}_n = \tilde{X}_1 + \cdots + \tilde{X}_n$ where $\tilde{X}_1, \tilde{X}_2, \ldots$ satisfy the same conditions as X_1, X_2, \ldots (and are arbitrary otherwise).

(b) Convergence of distributions follows easily.

1d Using Poisson distributions

(a) S_n is close to S_{N_n} where N_n is a Poisson random variable with $\mathbb{E} N_n = n$ (independent of X_1, X_2, \ldots).

(b) Assuming that the distribution of X_1 is concentrated on a finite set, one represents S_{N_n} as a linear combination of *independent* Poisson random variables.

(c) Convergence of distributions follows.

(d) A distribution of X_1 is approximated by distributions concentrated on finite sets.

1e Using multinomial distributions

(a) Assuming that the distribution of X_1 is concentrated on a finite set, one represents S_n as a linear function of a multinomial random vector.

(b) The multinomial distribution converges to a multinormal distribution.

(c) A distribution of X_1 is approximated by distributions concentrated on finite sets.

2 A proof of CLT

Given a probability measure ν on \mathbb{R} and a bounded continuous function $f: \mathbb{R} \to \mathbb{R}$, their convolution $\nu * f$ is a function $\mathbb{R} \to \mathbb{R}$ defined by

$$(\nu * f)(x) = \int f(x+y) \,\nu(\mathrm{d}y) \,.$$

Note that $(\nu * f)(x) = \mathbb{E} f(x + X)$ if $X \sim \nu$, and

(2.1)
$$\mathbb{E} f\left(\frac{S_n}{\sqrt{n}}\right) = (\mu_n * \dots * \mu_n * f)(0) = (\mu_n^{*n} * f)(0)$$

where μ_n is the distribution of X_1/\sqrt{n} .

2.2 Exercise. $\nu * f$ is bounded and continuous. Prove it.

2.3 Exercise. Let f have a continuous derivative f', and f, f' be bounded. Then $\nu * f$ has a continuous derivative, and

$$(\nu * f)' = \nu * f'.$$

Prove it.

Hint:
$$(\nu * f)(x + h) - (\nu * f)(x) = \int_x^{x+h} (\nu * f')(u) \, \mathrm{d}u.$$

We have $\int x \,\mu(\mathrm{d}x) = 0$, $\int x^2 \,\mu(\mathrm{d}x) = 1$. Let $\tilde{\mu}$ be another probability measure on \mathbb{R} satisfying $\int x \,\tilde{\mu}(\mathrm{d}x) = 0$, $\int x^2 \,\tilde{\mu}(\mathrm{d}x) = 1$. Taking into account that $\int f(x) \,\mu_n(\mathrm{d}x) = \int f(x/\sqrt{n}) \,\mu(\mathrm{d}x)$ for any f, we introduce $\tilde{\mu}_n$ by $\int f(x) \,\tilde{\mu}_n(\mathrm{d}x) = \int f(x/\sqrt{n}) \,\tilde{\mu}(\mathrm{d}x)$. Note that $\int (a+bx+cx^2) \,(\mu-\tilde{\mu})(\mathrm{d}x) = 0$ for all a, b, c; also $\int (a+bx+cx^2) \,(\mu_n-\tilde{\mu}_n)(\mathrm{d}x) = 0$.

Let $f : \mathbb{R} \to \mathbb{R}$ have continuous derivatives f', f'', f'''; assume that f, f', f'', f''' are bounded. We define g by

$$f(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + g(x),$$

then

$$\int f \,\mathrm{d}\mu_n - \int f \,\mathrm{d}\tilde{\mu}_n = \int g \,\mathrm{d}\mu_n - \int g \,\mathrm{d}\tilde{\mu}_n \,.$$

However,

$$|g(x)| \le ||f'''|| \cdot \frac{1}{6} |x|^3$$

 $(\|\cdot\| \text{ stands for the supremum norm})$. If X_1 is bounded, that is, μ is concentrated on some [-M, M], then

$$\left|\int g \,\mathrm{d}\mu_n\right| = \left|\int_{-M}^{M} g\left(\frac{x}{\sqrt{n}}\right)\mu(\mathrm{d}x)\right| \le 2M \cdot \|f'''\| \cdot \frac{1}{6} \cdot \left(\frac{M}{\sqrt{n}}\right)^3 = o\left(\frac{1}{n}\right).$$

For unbounded X_1 an additional argument is needed:

$$|g(x)| \le ||f''|| \cdot |x|^2$$
,

thus,

$$\left| \int g \, \mathrm{d}\mu_n \right| = \left| \int g\left(\frac{x}{\sqrt{n}}\right) \mu(\mathrm{d}x) \right| \le \int_{|x| < n^{1/12}} \dots + \int_{|x| > n^{1/12}} \dots \le \frac{1}{6} \|f'''\| \|n^{-5/4} + \|f''\| \frac{1}{n} \int_{|x| > n^{1/12}} x^2 \,\mu(\mathrm{d}x) = o\left(\frac{1}{n}\right).$$

The same holds for $\int g \, \mathrm{d}\tilde{\mu}_n$, and we get

$$\left| \int f \, \mathrm{d}\mu_n - \int f \, \mathrm{d}\tilde{\mu}_n \right| \le \frac{1}{3} \|f'''\| n^{-5/4} + \|f''\| \frac{1}{n} \int_{|x| > n^{1/12}} x^2 \left(\mu(\mathrm{d}x) + \tilde{\mu}(\mathrm{d}x)\right) = o\left(\frac{1}{n}\right).$$

In other words, $(\mu_n * f - \tilde{\mu}_n * f)(0) \leq \cdots = o(1/n)$. Similarly, $(\mu_n * f - \tilde{\mu}_n * f)(x) \leq \cdots = o(1/n)$ uniformly in x, therefore

(2.4)
$$\|\mu_n * f - \tilde{\mu}_n * f\| = o\left(\frac{1}{n}\right)$$

Advanced Probability

The right-hand side depends on f only via ||f''|| and ||f'''||. Thus,

(2.5)
$$\sup_{\|f''\| \le C_2, \|f'''\| \le C_3} \|\mu_n * f - \tilde{\mu}_n * f\| = o\left(\frac{1}{n}\right)$$

for all C_2, C_3 .

We use the sum

$$\mu_n^{*n} * f - \tilde{\mu}_n^{*n} * f = \sum_{k=0}^{n-1} \left(\mu_n^{*(n-k)} * \tilde{\mu}_n^{*k} * f - \mu_n^{*(n-k-1)} * \tilde{\mu}_n^{*(k+1)} * f \right) =$$
$$= \sum_{k=0}^{n-1} \mu_n^{*(n-k-1)} * \left(\mu_n - \tilde{\mu}_n \right) * \tilde{\mu}_n^{*k} * f,$$

note that $\|(\tilde{\mu}_n^{*k} * f)''\| \leq \|f''\|$, $\|(\tilde{\mu}_n^{*k} * f)'''\| \leq \|f'''\|$ and conclude that $\|(\mu_n - \tilde{\mu}_n) * \tilde{\mu}_n^{*k} * f\| = o(1/n)$ uniformly in k. Taking into account that $\|\mu_n^{*(n-k-1)} * (\dots)\| \leq \|(\dots)\|$ we get

$$\|\mu_n^{*n} * f - \tilde{\mu}_n^{*n} * f\| \to 0 \text{ as } n \to \infty.$$

By (2.1),

$$\mathbb{E} f\left(\frac{S_n}{\sqrt{n}}\right) - \mathbb{E} f\left(\frac{\tilde{S}_n}{\sqrt{n}}\right) \to 0 \quad \text{as } n \to \infty,$$

which completes the first part of the proof (part (a) of 1c).

2.6 Exercise. The following two conditions are equivalent for every sequence

of probability measures ν_1, ν_2, \dots on \mathbb{R} : (a) $\nu_n((-\infty, x]) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-u^2/2} du$ (as $n \to \infty$) for all $x \in \mathbb{R}$; (b) $\int f d\nu \to \frac{1}{\sqrt{2\pi}} \int f(u) e^{-u^2/2} du$ (as $n \to \infty$) for every function $f : \mathbb{R} \to \mathbb{R}$ \mathbb{R} having continuous bounded derivatives f, f', f'', f''' and the limits $f(-\infty)$, $f(+\infty)$.

Prove it.

Hint: (a) \Longrightarrow (b): approximate f uniformly by step functions; (b) \Longrightarrow (a): construct smooth $f: \mathbb{R} \to [0,1]$ that vanishes on $[x + \varepsilon, \infty)$ and equals 1 on $(-\infty, x-\varepsilon].$

Choosing \tilde{X}_1 as in the De Moivre-Laplace theorem ('Results formulated', Th. 2b2) and using that theorem we see that $\tilde{\mu}_n$ satisfy 2.6(a), therefore 2.6(b), too. Using the result of the first part we see that μ_n satisfy 2.6(b), therefore 2.6(a).