## 1 Five ways toward CLT

I mean the central limit theorem (CLT) for independent identically distributed (i.i.d.) random variables with second moments. See 'Results formulated', Th. 3b1.

Many generalizations and sharpenings are well-known. Various proofs sketched below differ in their suitability for generalizations and sharpenings.

We denote $S_{n}=X_{1}+\cdots+X_{n}$.

## 1a Moment method

(a) The limit

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\frac{S_{n}}{\sqrt{n}}\right)^{m}
$$

exists for each $m=1,2,3, \ldots$ and does not depend on the distribution of $X_{1}$ (provided that $X_{1}$ has all moments).
(b) Convergence of moments implies convergence of distributions (provided that moments do not grow too fast).
(c) A distribution of $X_{1}$ without higher moments is approximated by distributions with all moments (just bounded).

## 1b Fourier transform (characteristic functions)

(a) For $\lambda \in \mathbb{R}$,

$$
\mathbb{E} \exp \left(\mathrm{i} \lambda \frac{S_{n}}{\sqrt{n}}\right) \rightarrow \exp \left(-\frac{\lambda^{2}}{2}\right) \quad \text { as } n \rightarrow \infty
$$

uniformly on bounded intervals.
(b) Convergence of distributions follows.

## 1c Smooth test functions

(a)

$$
\mathbb{E} f\left(\frac{S_{n}}{\sqrt{n}}\right)-\mathbb{E} f\left(\frac{\tilde{S}_{n}}{\sqrt{n}}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for every function $f: \mathbb{R} \rightarrow \mathbb{R}$ having continuous bounded derivatives $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$. Here $\tilde{S}_{n}=\tilde{X}_{1}+\cdots+\tilde{X}_{n}$ where $\tilde{X}_{1}, \tilde{X}_{2}, \ldots$ satisfy the same conditions as $X_{1}, X_{2}, \ldots$ (and are arbitrary otherwise).
(b) Convergence of distributions follows easily.

## 1d Using Poisson distributions

(a) $S_{n}$ is close to $S_{N_{n}}$ where $N_{n}$ is a Poisson random variable with $\mathbb{E} N_{n}=n$ (independent of $X_{1}, X_{2}, \ldots$ ).
(b) Assuming that the distribution of $X_{1}$ is concentrated on a finite set, one represents $S_{N_{n}}$ as a linear combination of independent Poisson random variables.
(c) Convergence of distributions follows.
(d) A distribution of $X_{1}$ is approximated by distributions concentrated on finite sets.

## 1e Using multinomial distributions

(a) Assuming that the distribution of $X_{1}$ is concentrated on a finite set, one represents $S_{n}$ as a linear function of a multinomial random vector.
(b) The multinomial distribution converges to a multinormal distribution.
(c) A distribution of $X_{1}$ is approximated by distributions concentrated on finite sets.

## 2 A proof of CLT

Given a probability measure $\nu$ on $\mathbb{R}$ and a bounded continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$, their convolution $\nu * f$ is a function $\mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
(\nu * f)(x)=\int f(x+y) \nu(\mathrm{d} y)
$$

Note that $(\nu * f)(x)=\mathbb{E} f(x+X)$ if $X \sim \nu$, and

$$
\begin{equation*}
\mathbb{E} f\left(\frac{S_{n}}{\sqrt{n}}\right)=\left(\mu_{n} * \cdots * \mu_{n} * f\right)(0)=\left(\mu_{n}^{* n} * f\right)(0) \tag{2.1}
\end{equation*}
$$

where $\mu_{n}$ is the distribution of $X_{1} / \sqrt{n}$.
2.2 Exercise. $\nu * f$ is bounded and continuous.

Prove it.
2.3 Exercise. Let $f$ have a continuous derivative $f^{\prime}$, and $f, f^{\prime}$ be bounded. Then $\nu * f$ has a continuous derivative, and

$$
(\nu * f)^{\prime}=\nu * f^{\prime}
$$

Prove it.
Hint: $(\nu * f)(x+h)-(\nu * f)(x)=\int_{x}^{x+h}\left(\nu * f^{\prime}\right)(u) \mathrm{d} u$.

We have $\int x \mu(\mathrm{~d} x)=0, \int x^{2} \mu(\mathrm{~d} x)=1$. Let $\tilde{\mu}$ be another probability measure on $\mathbb{R}$ satisfying $\int x \tilde{\mu}(\mathrm{~d} x)=0, \int x^{2} \tilde{\mu}(\mathrm{~d} x)=1$. Taking into account that $\int f(x) \mu_{n}(\mathrm{~d} x)=\int f(x / \sqrt{n}) \mu(\mathrm{d} x)$ for any $f$, we introduce $\tilde{\mu}_{n}$ by $\int f(x) \tilde{\mu}_{n}(\mathrm{~d} x)=\int f(x / \sqrt{n}) \tilde{\mu}(\mathrm{d} x)$. Note that $\int\left(a+b x+c x^{2}\right)(\mu-\tilde{\mu})(\mathrm{d} x)=0$ for all $a, b, c$; also $\int\left(a+b x+c x^{2}\right)\left(\mu_{n}-\tilde{\mu}_{n}\right)(\mathrm{d} x)=0$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ have continuous derivatives $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime} ;$ assume that $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ are bounded. We define $g$ by

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}+g(x),
$$

then

$$
\int f \mathrm{~d} \mu_{n}-\int f \mathrm{~d} \tilde{\mu}_{n}=\int g \mathrm{~d} \mu_{n}-\int g \mathrm{~d} \tilde{\mu}_{n}
$$

However,

$$
|g(x)| \leq\left\|f^{\prime \prime \prime}\right\| \cdot \frac{1}{6}|x|^{3}
$$

$\left(\|\cdot\|\right.$ stands for the supremum norm). If $X_{1}$ is bounded, that is, $\mu$ is concentrated on some $[-M, M]$, then

$$
\left|\int g \mathrm{~d} \mu_{n}\right|=\left|\int_{-M}^{M} g\left(\frac{x}{\sqrt{n}}\right) \mu(\mathrm{d} x)\right| \leq 2 M \cdot\left\|f^{\prime \prime \prime}\right\| \cdot \frac{1}{6} \cdot\left(\frac{M}{\sqrt{n}}\right)^{3}=o\left(\frac{1}{n}\right) .
$$

For unbounded $X_{1}$ an additional argument is needed:

$$
|g(x)| \leq\left\|f^{\prime \prime}\right\| \cdot|x|^{2}
$$

thus,

$$
\begin{aligned}
&\left|\int g \mathrm{~d} \mu_{n}\right|=\left|\int g\left(\frac{x}{\sqrt{n}}\right) \mu(\mathrm{d} x)\right| \leq \int_{|x|<n^{1 / 12}} \cdots+\int_{|x|>n^{1 / 12}} \cdots \leq \\
& \leq \frac{1}{6}\left\|f^{\prime \prime \prime}\right\| n^{-5 / 4}+\left\|f^{\prime \prime}\right\| \frac{1}{n} \int_{|x|>n^{1 / 12}} x^{2} \mu(\mathrm{~d} x)=o\left(\frac{1}{n}\right) .
\end{aligned}
$$

The same holds for $\int g \mathrm{~d} \tilde{\mu}_{n}$, and we get

$$
\left|\int f \mathrm{~d} \mu_{n}-\int f \mathrm{~d} \tilde{\mu}_{n}\right| \leq \frac{1}{3}\left\|f^{\prime \prime \prime}\right\| n^{-5 / 4}+\left\|f^{\prime \prime}\right\| \frac{1}{n} \int_{|x|>n^{1 / 12}} x^{2}(\mu(\mathrm{~d} x)+\tilde{\mu}(\mathrm{d} x))=o\left(\frac{1}{n}\right) .
$$

In other words, $\left(\mu_{n} * f-\tilde{\mu}_{n} * f\right)(0) \leq \cdots=o(1 / n)$. Similarly, $\left(\mu_{n} * f-\tilde{\mu}_{n} *\right.$ $f)(x) \leq \cdots=o(1 / n)$ uniformly in $x$, therefore

$$
\begin{equation*}
\left\|\mu_{n} * f-\tilde{\mu}_{n} * f\right\|=o\left(\frac{1}{n}\right) \tag{2.4}
\end{equation*}
$$

The right-hand side depends on $f$ only via $\left\|f^{\prime \prime}\right\|$ and $\left\|f^{\prime \prime \prime}\right\|$. Thus,

$$
\begin{equation*}
\sup _{\left\|f^{\prime \prime}\right\| \leq C_{2},\left\|f^{\prime \prime \prime}\right\| \leq C_{3}}\left\|\mu_{n} * f-\tilde{\mu}_{n} * f\right\|=o\left(\frac{1}{n}\right) \tag{2.5}
\end{equation*}
$$

for all $C_{2}, C_{3}$.
We use the sum

$$
\begin{aligned}
& \mu_{n}^{* n} * f-\tilde{\mu}_{n}^{* n} * f=\sum_{k=0}^{n-1}\left(\mu_{n}^{*(n-k)} * \tilde{\mu}_{n}^{* k} * f-\mu_{n}^{*(n-k-1)} * \tilde{\mu}_{n}^{*(k+1)} * f\right)= \\
&=\sum_{k=0}^{n-1} \mu_{n}^{*(n-k-1)} *\left(\mu_{n}-\tilde{\mu}_{n}\right) * \tilde{\mu}_{n}^{* k} * f,
\end{aligned}
$$

note that $\left\|\left(\tilde{\mu}_{n}^{* k} * f\right)^{\prime \prime}\right\| \leq\left\|f^{\prime \prime}\right\|,\left\|\left(\tilde{\mu}_{n}^{* k} * f\right)^{\prime \prime \prime}\right\| \leq\left\|f^{\prime \prime \prime}\right\|$ and conclude that $\left\|\left(\mu_{n}-\tilde{\mu}_{n}\right) * \tilde{\mu}_{n}^{* k} * f\right\|=o(1 / n)$ uniformly in $k$. Taking into account that $\left\|\mu_{n}^{*(n-k-1)} *(\ldots)\right\| \leq\|(\ldots)\|$ we get

$$
\left\|\mu_{n}^{* n} * f-\tilde{\mu}_{n}^{* n} * f\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

By (2.1),

$$
\mathbb{E} f\left(\frac{S_{n}}{\sqrt{n}}\right)-\mathbb{E} f\left(\frac{\tilde{S}_{n}}{\sqrt{n}}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

which completes the first part of the proof (part (a) of ICl).
2.6 Exercise. The following two conditions are equivalent for every sequence of probability measures $\nu_{1}, \nu_{2}, \ldots$ on $\mathbb{R}$ :
(a) $\nu_{n}((-\infty, x]) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u($ as $n \rightarrow \infty)$ for all $x \in \mathbb{R}$;
(b) $\int f \mathrm{~d} \nu \rightarrow \frac{1}{\sqrt{2 \pi}} \int f(u) \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u($ as $n \rightarrow \infty)$ for every function $f: \mathbb{R} \rightarrow$ $\mathbb{R}$ having continuous bounded derivatives $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ and the limits $f(-\infty)$, $f(+\infty)$.

Prove it.
Hint: $(\mathrm{a}) \Longrightarrow(\mathrm{b})$ : approximate $f$ uniformly by step functions; $(\mathrm{b}) \Longrightarrow(\mathrm{a})$ : construct smooth $f: \mathbb{R} \rightarrow[0,1]$ that vanishes on $[x+\varepsilon, \infty)$ and equals 1 on $(-\infty, x-\varepsilon]$.

Choosing $\tilde{X}_{1}$ as in the De Moivre-Laplace theorem ('Results formulated', Th. 2b2) and using that theorem we see that $\tilde{\mu}_{n}$ satisfy [2.6(a), therefore [2.6(b), too. Using the result of the first part we see that $\mu_{n}$ satisfy [2.6(b), therefore [2.6(a).

