Adv. Prob.

CONDITIONING

1 Informal discussion

1a Conditional expectation: probabilistic intuition

Let X, Y and Z = f(X, Y) be random variables, μ the joint distribution of X, Y, ν the marginal distribution of X, and μ_x the conditional distribution of Y given X = x. The conditional expectation is

$$\mathbb{E}(Z \,|\, X) = g(X) \,,$$

where the regression function g,

$$g(x) = \mathbb{E}\left(f(X,Y) \,\middle| \, X = x\right) = \int f(x,y) \,\mu_x(\mathrm{d}y) \,,$$

is optimal in the following sense:

$$\min_{q} \mathbb{E} |g(X) - f(X, Y)|^2.$$

It is easy to see that $\mathbb{E} f(X, Y) = \mathbb{E} g(X)$, which is the formula of total (or iterated) expectation: $\mathbb{E} (\mathbb{E} (Z | X)) = \mathbb{E} Z$.

1b Conditional expectation: geometric intuition

g = Qf, where $Q: L_2(\mu) \to L_2(\nu)$

is the orthogonal projection, and $L_2(\nu)$ is embedded into $L_2(\mu)$ by $g \mapsto ((x, y) \mapsto g(x))$. Thus, $\langle f, \mathbf{1} \rangle = \langle g, \mathbf{1} \rangle$, which means $\mathbb{E} f(X, Y) = \mathbb{E} g(X)$.

1c Conditional distribution: naive idea

$$\mathbb{P}(Y \in A | X = x) = g_A(x)$$
, where $g_A = Q \mathbf{1}_{\mathbb{R} \times A}$.

1d Conditional distribution: a difficulty

However, g_A is not a function but an equivalence class. We may choose a function, but the necessary conditions, such as additivity

$$g_{A \uplus B} = g_A + g_B \,,$$

may be violated on a negligible set (of x) that depends on A, B. (The more so for countable additivity.) The union of a continuum of negligible sets need not be negligible!

Adv. Prob.

2 Conditional expectation

We have a probability measure μ on \mathbb{R}^2 , and define ν by $\nu(A) = \mu(A \times \mathbb{R})$ for Borel sets $A \subset \mathbb{R}$.

2.1 Exercise. Prove that ν is a probability measure on \mathbb{R} .

We embed $L_2(\nu)$ into $L_2(\mu)$ by $g \mapsto f$, f(x, y) = g(x).

2.2 Exercise. Prove that we get a linear isometric embedding, and its image is a closed linear subspace.

We introduce the orthogonal projection $Q: L_2(\mu) \to L_2(\nu)$ and define

(2.3)
$$\mathbb{E}(f(X,Y)|X) = g(X) \text{ where } g = Qf$$

2.4 Exercise. Prove that (2.3) conforms with the elementary definition

$$\mathbb{E}\left(f(X,Y) \,\middle| \, X=x\right) = \sum_{y} f(x,y) \frac{\mathbb{P}\left(X=x, Y=y\right)}{\mathbb{P}\left(X=x\right)}$$

whenever μ is discrete.

2.5 Exercise. Prove that (2.3) conforms with the usual definition

$$\mathbb{E}\left(f(X,Y) \,\middle| \, X = x\right) = \int f(x,y) \frac{f_{X,Y}(x,y)}{f_X(x)} \,\mathrm{d}y$$

whenever μ has a density (that is, is absolutely continuous).

In these two cases (discrete and absolutely continuous),

$$\mathbb{E}(f(X,Y) | X = x) = \int f(x,y) \,\mu_x(\mathrm{d}y)$$

for some family $(\mu_x)_{x \in \mathbb{R}}$ of probability measures on \mathbb{R} . If such a family exists, μ_x is called the conditional distribution of Y given X = x.

We may change μ_x at will on a ν -negligible set (of x). That is, $(\mu_x)_x$ should be treated as an equivalence class rather than a function. This equivalence class is unique.

2.6 Exercise. Prove that $f \ge 0$ implies $Qf \ge 0$ (pointwise inequalities)

(a) assuming existence of conditional distributions, (b) in general.

Hint: (b): otherwise $(Qf)^+$ is closer to f than Qf.

2.7 Exercise. Prove that $f_1 \leq f_2$ implies $Qf_1 \leq Qf_2$.

2.8 Exercise. Prove that $f_n \uparrow f$ implies $Qf_n \uparrow Qf$ and $f_n \downarrow f$ implies $Qf_n \downarrow Qf$ (convergence ν -almost everywhere)

(a) assuming existence of conditional distributions, (b) in general.

Hint: (b): $f_n \uparrow f$ implies $||f_n - f|| \to 0$.

Adv. Prob.

3 Conditional distribution

See 'Results formulated', Sect. 5a.

We consider $f_y = \mathbf{1}_{\mathbb{R}\times(-\infty,y]}$ and $g_y = Qf_y$. (These are a continuum of equivalence classes.)

3.1 Exercise. Prove that

(a) $y_1 \leq y_2$ implies $g_{y_1} \leq g_{y_2}$; (b) $y_n \downarrow -\infty$ implies $g_{y_n} \downarrow 0$; (c) $y_n \uparrow +\infty$ implies $g_{y_n} \uparrow \mathbf{1}$; (b) $y_n \downarrow y$ implies $g_{y_n} \downarrow g_y$. (Convergence ν -almost everywhere.)

These relations hold for ν -almost all x, and the exceptional set may depend on $(y_n)_n$.

3.2 Lemma. It is possible to choose functions $G_y(\cdot)$ in the equivalence classes g_y such that the relations (a)–(d) hold for all x except for a single ν -negligible set.

We set $G(x, y) = G_y(x)$ and define μ_x by

$$\mu_x((-\infty, y]) = G(x, y) \, .$$

The equality

(3.3)
$$\iint f(x,y)\,\mu(\mathrm{d}x\mathrm{d}y) = \int \left(\int f(x,y)\,\mu_x(\mathrm{d}y)\right)\nu(\mathrm{d}x)$$

will be proven first for indicator functions $f = \mathbf{1}_A, A \subset \mathbb{R}^2$.

3.4 Exercise. Prove that (3.3) holds for $f = \mathbf{1}_{A \times (-\infty, y]}$ where $A \subset \mathbb{R}$ is a ν -measurable set and $y \in \mathbb{R}$.

By the monotone class theorem (or the π - λ theorem), (3.3) holds for $f = \mathbf{1}_A$ where $A \subset \mathbb{R}^2$ is a Borel set (or just a μ -measurable set).

Linear combinations of such functions approximate uniformly every bounded μ -measurable function.

Theorem 5a1 is thus proved.

4 Further information

4a Special cases

Two cases were discussed before: discrete and absolutely continuous. Here is a cingular case.

4.1 Exercise. Let Y be uniform on (0, 1) and

$$X = \begin{cases} 3Y & \text{for } Y < 1/3, \\ \frac{3}{2}(1-Y) & \text{for } Y > 1/3. \end{cases}$$

Find the conditional distribution of Y given X = x. Generalize it to $X = \varphi(Y)$ where φ is a piecewise smooth function. What if Y has a density f (not just constant)?

4b Generalizations

Standard (or nice) measurable spaces.

Standard (or Lebesgue-Rokhlin) probability spaces.

Disintegration of a measure on the product of two standard measurable spaces.

The case $Y(\omega) = \omega$. Regular conditional probability. Transition probability. Every sub- σ -field is $\sigma(X)$ for some X.

4c Applications

All properties of probabilities and expectations hold for *conditional* probabilities and expectations. For example, the conditional Hölder inequality:

$$\mathbb{E}\left(|XY|\left|\mathcal{E}\right) \le \left(\mathbb{E}\left(|X|^{p}\left|\mathcal{E}\right)\right)^{1/p} \left(\mathbb{E}\left(|Y|^{q}\left|\mathcal{E}\right)\right)^{1/q} \quad \text{for } \frac{1}{p} + \frac{1}{q} = 1.$$

Also, the conditional Monotone Convergence Theorem, etc.