1 Informal discussion

1a Conditional expectation: probabilistic intuition

Let X, Y and $Z=f(X, Y)$ be random variables, μ the joint distribution of X, Y, ν the marginal distribution of X, and μ_{x} the conditional distribution of Y given $X=x$. The conditional expectation is

$$
\mathbb{E}(Z \mid X)=g(X)
$$

where the regression function g,

$$
g(x)=\mathbb{E}(f(X, Y) \mid X=x)=\int f(x, y) \mu_{x}(\mathrm{~d} y)
$$

is optimal in the following sense:

$$
\min _{g} \mathbb{E}|g(X)-f(X, Y)|^{2}
$$

It is easy to see that $\mathbb{E} f(X, Y)=\mathbb{E} g(X)$, which is the formula of total (or iterated) expectation: $\mathbb{E}(\mathbb{E}(Z \mid X))=\mathbb{E} Z$.

1b Conditional expectation: geometric intuition

$$
g=Q f, \quad \text { where } \quad Q: L_{2}(\mu) \rightarrow L_{2}(\nu)
$$

is the orthogonal projection, and $L_{2}(\nu)$ is embedded into $L_{2}(\mu)$ by $g \mapsto$ $((x, y) \mapsto g(x))$. Thus, $\langle f, \mathbf{1}\rangle=\langle g, \mathbf{1}\rangle$, which means $\mathbb{E} f(X, Y)=\mathbb{E} g(X)$.

1c Conditional distribution: naive idea

$$
\mathbb{P}(Y \in A \mid X=x)=g_{A}(x), \quad \text { where } \quad g_{A}=Q \mathbf{1}_{\mathbb{R} \times A}
$$

1d Conditional distribution: a difficulty

However, g_{A} is not a function but an equivalence class. We may choose a function, but the necessary conditions, such as additivity

$$
g_{A \uplus B}=g_{A}+g_{B},
$$

may be violated on a negligible set (of x) that depends on A, B. (The more so for countable additivity.) The union of a continuum of negligible sets need not be negligible!

2 Conditional expectation

We have a probability measure μ on \mathbb{R}^{2}, and define ν by $\nu(A)=\mu(A \times \mathbb{R})$ for Borel sets $A \subset \mathbb{R}$.
2.1 Exercise. Prove that ν is a probability measure on \mathbb{R}.

We embed $L_{2}(\nu)$ into $L_{2}(\mu)$ by $g \mapsto f, f(x, y)=g(x)$.
2.2 Exercise. Prove that we get a linear isometric embedding, and its image is a closed linear subspace.

We introduce the orthogonal projection $Q: L_{2}(\mu) \rightarrow L_{2}(\nu)$ and define

$$
\begin{equation*}
\mathbb{E}(f(X, Y) \mid X)=g(X) \quad \text { where } \quad g=Q f \tag{2.3}
\end{equation*}
$$

2.4 Exercise. Prove that (2.3) conforms with the elementary definition

$$
\mathbb{E}(f(X, Y) \mid X=x)=\sum_{y} f(x, y) \frac{\mathbb{P}(X=x, Y=y)}{\mathbb{P}(X=x)}
$$

whenever μ is discrete.
2.5 Exercise. Prove that (2.3) conforms with the usual definition

$$
\mathbb{E}(f(X, Y) \mid X=x)=\int f(x, y) \frac{f_{X, Y}(x, y)}{f_{X}(x)} \mathrm{d} y
$$

whenever μ has a density (that is, is absolutely continuous).
In these two cases (discrete and absolutely continuous),

$$
\mathbb{E}(f(X, Y) \mid X=x)=\int f(x, y) \mu_{x}(\mathrm{~d} y)
$$

for some family $\left(\mu_{x}\right)_{x \in \mathbb{R}}$ of probability measures on \mathbb{R}. If such a family exists, μ_{x} is called the conditional distribution of Y given $X=x$.

We may change μ_{x} at will on a ν-negligible set (of x). That is, $\left(\mu_{x}\right)_{x}$ should be treated as an equivalence class rather than a function. This equivalence class is unique.
2.6 Exercise. Prove that $f \geq 0$ implies $Q f \geq 0$ (pointwise inequalities)
(a) assuming existence of conditional distributions, (b) in general.

Hint: (b): otherwise $(Q f)^{+}$is closer to f than $Q f$.
2.7 Exercise. Prove that $f_{1} \leq f_{2}$ implies $Q f_{1} \leq Q f_{2}$.
2.8 Exercise. Prove that $f_{n} \uparrow f$ implies $Q f_{n} \uparrow Q f$ and $f_{n} \downarrow f$ implies $Q f_{n} \downarrow Q f$ (convergence ν-almost everywhere)
(a) assuming existence of conditional distributions, (b) in general.

Hint: (b): $f_{n} \uparrow f$ implies $\left\|f_{n}-f\right\| \rightarrow 0$.

3 Conditional distribution

See 'Results formulated', Sect. 5a.
We consider $f_{y}=\mathbf{1}_{\mathbb{R} \times(-\infty, y]}$ and $g_{y}=Q f_{y}$. (These are a continuum of equivalence classes.)
3.1 Exercise. Prove that
(a) $y_{1} \leq y_{2}$ implies $g_{y_{1}} \leq g_{y_{2}}$;
(b) $y_{n} \downarrow-\infty$ implies $g_{y_{n}} \downarrow 0$;
(c) $y_{n} \uparrow+\infty$ implies $g_{y_{n}} \uparrow \mathbf{1}$;
(b) $y_{n} \downarrow y$ implies $g_{y_{n}} \downarrow g_{y}$.
(Convergence ν-almost everywhere.)
These relations hold for ν-almost all x, and the exceptional set may depend on $\left(y_{n}\right)_{n}$.
3.2 Lemma. It is possible to choose functions $G_{y}(\cdot)$ in the equivalence classes g_{y} such that the relations (a)-(d) hold for all x except for a single ν-negligible set.

We set $G(x, y)=G_{y}(x)$ and define μ_{x} by

$$
\mu_{x}((-\infty, y])=G(x, y)
$$

The equality

$$
\begin{equation*}
\iint f(x, y) \mu(\mathrm{d} x \mathrm{~d} y)=\int\left(\int f(x, y) \mu_{x}(\mathrm{~d} y)\right) \nu(\mathrm{d} x) \tag{3.3}
\end{equation*}
$$

will be proven first for indicator functions $f=\mathbf{1}_{A}, A \subset \mathbb{R}^{2}$.
3.4 Exercise. Prove that (3.3) holds for $f=\mathbf{1}_{A \times(-\infty, y]}$ where $A \subset \mathbb{R}$ is a ν-measurable set and $y \in \mathbb{R}$.

By the monotone class theorem (or the $\pi-\lambda$ theorem), (3.3) holds for $f=\mathbf{1}_{A}$ where $A \subset \mathbb{R}^{2}$ is a Borel set (or just a μ-measurable set).

Linear combinations of such functions approximate uniformly every bounded μ-measurable function.

Theorem 5a1 is thus proved.

4 Further information

4 a Special cases

Two cases were discussed before: discrete and absolutely continuous. Here is a cingular case.
4.1 Exercise. Let Y be uniform on $(0,1)$ and

$$
X= \begin{cases}3 Y & \text { for } Y<1 / 3 \\ \frac{3}{2}(1-Y) & \text { for } Y>1 / 3\end{cases}
$$

Find the conditional distribution of Y given $X=x$. Generalize it to $X=$ $\varphi(Y)$ where φ is a piecewise smooth function. What if Y has a density f (not just constant)?

4b Generalizations

Standard (or nice) measurable spaces.
Standard (or Lebesgue-Rokhlin) probability spaces.
Disintegration of a measure on the product of two standard measurable spaces.

The case $Y(\omega)=\omega$. Regular conditional probability. Transition probability. Every sub- σ-field is $\sigma(X)$ for some X.

4c Applications

All properties of probabilities and expectations hold for conditional probabilities and expectations. For example, the conditional Hölder inequality:

$$
\mathbb{E}(|X Y| \mid \mathcal{E}) \leq\left(\mathbb{E}\left(|X|^{p} \mid \mathcal{E}\right)\right)^{1 / p}\left(\mathbb{E}\left(|Y|^{q} \mid \mathcal{E}\right)\right)^{1 / q} \quad \text { for } \frac{1}{p}+\frac{1}{q}=1
$$

Also, the conditional Monotone Convergence Theorem, etc.

