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1 Informal discussion

1a Conditional expectation: probabilistic intuition

Let X, Y and Z = f(X, Y ) be random variables, µ the joint distribution of
X, Y , ν the marginal distribution of X, and µx the conditional distribution
of Y given X = x. The conditional expectation is

E
(

Z
∣

∣X
)

= g(X) ,

where the regression function g,

g(x) = E
(

f(X, Y )
∣

∣X = x
)

=

∫

f(x, y) µx(dy) ,

is optimal in the following sense:

min
g

E |g(X) − f(X, Y )|2 .

It is easy to see that E f(X, Y ) = E g(X), which is the formula of total (or
iterated) expectation: E (E

(

Z
∣

∣X
)

) = E Z.

1b Conditional expectation: geometric intuition

g = Qf , where Q : L2(µ) → L2(ν)

is the orthogonal projection, and L2(ν) is embedded into L2(µ) by g 7→
(

(x, y) 7→ g(x)
)

. Thus, 〈f, 1〉 = 〈g, 1〉, which means E f(X, Y ) = E g(X).

1c Conditional distribution: naive idea

P
(

Y ∈ A
∣

∣X = x
)

= gA(x) , where gA = Q1R×A .

1d Conditional distribution: a difficulty

However, gA is not a function but an equivalence class. We may choose a
function, but the necessary conditions, such as additivity

gA⊎B = gA + gB ,

may be violated on a negligible set (of x) that depends on A, B. (The more
so for countable additivity.) The union of a continuum of negligible sets need
not be negligible!
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2 Conditional expectation

We have a probability measure µ on R
2, and define ν by ν(A) = µ(A × R)

for Borel sets A ⊂ R.

2.1 Exercise. Prove that ν is a probability measure on R.

We embed L2(ν) into L2(µ) by g 7→ f , f(x, y) = g(x).

2.2 Exercise. Prove that we get a linear isometric embedding, and its image
is a closed linear subspace.

We introduce the orthogonal projection Q : L2(µ) → L2(ν) and define

(2.3) E
(

f(X, Y )
∣

∣X
)

= g(X) where g = Qf .

2.4 Exercise. Prove that (2.3) conforms with the elementary definition

E
(

f(X, Y )
∣

∣X = x
)

=
∑

y

f(x, y)
P

(

X = x, Y = y
)

P
(

X = x
)

whenever µ is discrete.

2.5 Exercise. Prove that (2.3) conforms with the usual definition

E
(

f(X, Y )
∣

∣X = x
)

=

∫

f(x, y)
fX,Y (x, y)

fX(x)
dy

whenever µ has a density (that is, is absolutely continuous).

In these two cases (discrete and absolutely continuous),

E
(

f(X, Y )
∣

∣X = x
)

=

∫

f(x, y) µx(dy)

for some family (µx)x∈R of probability measures on R. If such a family exists,
µx is called the conditional distribution of Y given X = x.

We may change µx at will on a ν-negligible set (of x). That is, (µx)x should
be treated as an equivalence class rather than a function. This equivalence
class is unique.

2.6 Exercise. Prove that f ≥ 0 implies Qf ≥ 0 (pointwise inequalities)
(a) assuming existence of conditional distributions, (b) in general.

Hint: (b): otherwise (Qf)+ is closer to f than Qf .

2.7 Exercise. Prove that f1 ≤ f2 implies Qf1 ≤ Qf2.

2.8 Exercise. Prove that fn ↑ f implies Qfn ↑ Qf and fn ↓ f implies
Qfn ↓ Qf (convergence ν-almost everywhere)
(a) assuming existence of conditional distributions, (b) in general.

Hint: (b): fn ↑ f implies ‖fn − f‖ → 0.
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3 Conditional distribution

See ‘Results formulated’, Sect. 5a.
We consider fy = 1R×(−∞,y] and gy = Qfy. (These are a continuum of

equivalence classes.)

3.1 Exercise. Prove that
(a) y1 ≤ y2 implies gy1

≤ gy2
;

(b) yn ↓ −∞ implies gyn
↓ 0;

(c) yn ↑ +∞ implies gyn
↑ 1;

(b) yn ↓ y implies gyn
↓ gy.

(Convergence ν-almost everywhere.)

These relations hold for ν-almost all x, and the exceptional set may de-
pend on (yn)n.

3.2 Lemma. It is possible to choose functions Gy(·) in the equivalence classes
gy such that the relations (a)–(d) hold for all x except for a single ν-negligible
set.

We set G(x, y) = Gy(x) and define µx by

µx

(

(−∞, y]
)

= G(x, y) .

The equality

(3.3)

∫∫

f(x, y) µ(dxdy) =

∫
(

∫

f(x, y) µx(dy)

)

ν(dx)

will be proven first for indicator functions f = 1A, A ⊂ R
2.

3.4 Exercise. Prove that (3.3) holds for f = 1A×(−∞,y] where A ⊂ R is a
ν-measurable set and y ∈ R.

By the monotone class theorem (or the π-λ theorem), (3.3) holds for
f = 1A where A ⊂ R

2 is a Borel set (or just a µ-measurable set).
Linear combinations of such functions approximate uniformly every bounded

µ-measurable function.
Theorem 5a1 is thus proved.
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4 Further information

4a Special cases

Two cases were discussed before: discrete and absolutely continuous. Here
is a cingular case.

4.1 Exercise. Let Y be uniform on (0, 1) and

X =

{

3Y for Y < 1/3,
3
2
(1 − Y ) for Y > 1/3.

Find the conditional distribution of Y given X = x. Generalize it to X =
ϕ(Y ) where ϕ is a piecewise smooth function. What if Y has a density f
(not just constant)?

4b Generalizations

Standard (or nice) measurable spaces.
Standard (or Lebesgue-Rokhlin) probability spaces.
Disintegration of a measure on the product of two standard measurable

spaces.
The case Y (ω) = ω. Regular conditional probability. Transition proba-

bility. Every sub-σ-field is σ(X) for some X.

4c Applications

All properties of probabilities and expectations hold for conditional proba-
bilities and expectations. For example, the conditional Hölder inequality:

E
(

|XY |
∣

∣E
)

≤
(

E
(

|X|p
∣

∣E
))

1/p
(

E
(

|Y |q
∣

∣E
))

1/q for
1

p
+

1

q
= 1 .

Also, the conditional Monotone Convergence Theorem, etc.


	Informal discussion
	Conditional expectation: probabilistic intuition
	Conditional expectation: geometric intuition
	Conditional distribution: naive idea
	Conditional distribution: a difficulty

	Conditional expectation
	Conditional distribution
	Further information
	Special cases
	Generalizations
	Applications


