See "Results formulated", Sect. 1a.
Let $\left(S_{n}\right)_{n}$ be the simple random walk, and $M_{n}=\max \left(S_{0}, \ldots, S_{n}\right)$.
1 Lemma. The conditional distribution of S_{n} given $M_{n} \geq m$ is symmetric around m (for $m \geq 0$).

That is, $\mathbb{E}\left(f\left(S_{n}-m\right) \mid M_{n} \geq m\right)=0$ for every odd function f ('odd' means $f(-x)=-f(x))$.

2 Exercise. $\mathbb{P}\left(M_{n}<m\right)=\mathbb{P}\left(S_{n}<m\right)-\mathbb{P}\left(S_{n}>m\right)($ for $m \geq 0)$.
Prove it.
Hint: $f=\operatorname{sgn} ; \mathbb{E}(Y)=\mathbb{E}(Y \mid A) \mathbb{P}(A)+\mathbb{E}(Y \mid \bar{A}) \mathbb{P}(\bar{A})$.
3 Exercise. For $m \geq 0$,
$\mathbb{P}\left(M_{n}=m\right)=\mathbb{P}\left(S_{n}=m\right)+\mathbb{P}\left(S_{n}=m+1\right)=2^{-n} \cdot\left\{\begin{array}{ll}\binom{n}{\frac{n}{2} \pm \frac{m}{2}} & \text { for } m+n \text { even }, \\ \left(\frac{n}{2} \pm \frac{m+1}{2}\right.\end{array}\right) \quad$ for $m+n$ odd.
Prove it.
Hint: $\mathbb{P}\left(M_{n}<m+1\right)-\mathbb{P}\left(M_{n}<m\right)$.
4 Exercise. $\mathbb{P}\left(S_{1}>0, \ldots, S_{n}>0\right)=\frac{1}{2} \mathbb{P}\left(S_{n-1}=0\right)+\frac{1}{2} \mathbb{P}\left(S_{n-1}=1\right)$.
Prove it.
Hint: $\mathbb{P}\left(S_{1}>0, \ldots, S_{n}>0\right)=\frac{1}{2} \mathbb{P}\left(M_{n-1}<1\right)$.
Note that $\mathbb{P}\left(S_{2 k}=0\right)=\mathbb{P}\left(S_{1} \neq 0, \ldots, S_{2 k+1} \neq 0\right)=\mathbb{P}\left(S_{1} \neq 0, \ldots, S_{2 k} \neq\right.$ $0)=\mathbb{P}\left(S_{2 k-1}=1\right)$.

5 Exercise. $\mathbb{P}\left(S_{n}-m=-c, M_{n}<m\right)=\mathbb{P}\left(S_{n}-m=-c\right)-\mathbb{P}\left(S_{n}-m=c\right)$ for $c>0, m \geq 0$.

Prove it.
Hint: $f(c)=1, f(-c)=-1$, otherwise 0; similar to Exercise 2.
In other words, $\mathbb{P}\left(S_{n}=s, M_{n}<m\right)=\mathbb{P}\left(S_{n}=s\right)-\mathbb{P}\left(S_{n}=2 m-s\right)$. It follows that $\mathbb{P}\left(S_{n}=s, M_{n}=m\right)=\mathbb{P}\left(S_{n}=2 m-s\right)-\mathbb{P}\left(S_{n}=2 m-s+2\right)$. The joint distribution is found!

6 Exercise. $\mathbb{P}\left(S_{1}<0, \ldots, S_{n}<0 ; S_{n}=-c\right)=\frac{1}{2} \mathbb{P}\left(S_{n-1}=c-1\right)-$ $\frac{1}{2} \mathbb{P}\left(S_{n-1}=c+1\right)($ for $c \geq 0)$.

Prove it.
Hint: it is $\frac{1}{2} \mathbb{P}\left(M_{n-1}<1, S_{n-1}=-(c-1)\right)$; use Exercise 5 .

7 Exercise. For $s \geq 0$,
$\mathbb{P}\left(S_{1}>0, \ldots, S_{n}>0 \mid S_{n}=s\right)=\frac{\mathbb{P}\left(S_{n-1}=s-1\right)-\mathbb{P}\left(S_{n-1}=s+1\right)}{2 \mathbb{P}\left(S_{n}=s\right)}=\frac{s}{n}$.
Prove it.
We get (for $a>b \geq 0$)

$$
\mathbb{P}\left(S_{1}>0, \ldots, S_{a+b}>0 \mid S_{a+b}=a-b\right)=\frac{a-b}{a+b},
$$

just the ballot theorem.
Here is another use of reflection.
8 Exercise. The expected number of points of increase is equal to 1 .
Prove it.
Hint: it is equal to the expected number of points of maxima, defined by

$$
\begin{array}{ll}
S_{l}<S_{k} & \text { for } l=0, \ldots, k-1, \\
S_{l} \leq S_{k} & \text { for } l=k+1, \ldots, n .
\end{array}
$$

