## 1 Random walk on a graph

Assume that a connected finite oriented graph has $m$ vertices, and each vertex has $k$ outgoing edges and $k$ incoming edges (the same $k$ for all vertices). Denote the set of vertices by $V$ and the set of edges by $E ; E \subset V \times V$ (it may intersect the diagonal). (Multiple edges are thus excluded, but all said can be easily generalized to graphs with multiple edges.) It is assumed that $E \cap((A \times(V \backslash A)) \cup((V \backslash A) \times A)) \neq \emptyset$ for every $A \subset V$ such that $A \neq \emptyset$ and $V \backslash A \neq \emptyset$ (weak connectedness). Also, $\#\{y \in V:(x, y) \in$ $E\}=\#\{y \in V:(y, x) \in E\}=k$ for all $x \in V$. In addition, we assume aperiodicity: there exists no $p \in\{2,3, \ldots\}$ such that every loop length is divisible by $p$. (A loop is a sequence of vertices $\left(y_{0}, y_{1}, \ldots, y_{t}\right)$ such that $\left(y_{0}, y_{1}\right) \in E, \ldots,\left(y_{t-1}, y_{t}\right) \in E$ and $y_{t}=y_{0}$; its length is $t$.)

A random walk started at a given vertex $x_{0}$. A path (of length $n$ ) of the random walk is a sequence $\left(s_{0}, \ldots, s_{n}\right)$ of vertices such that the pairs $\left(s_{k-1}, s_{k}\right)$ belong to $E$ (for $k=1, \ldots, n$ ) and $s_{0}=x_{0}$. There are $k^{n}$ such paths; each has the probability $k^{-n}$ (by definition). We have the probability space $\Omega$ of paths, and random variables $S_{0}, \ldots, S_{n}: \Omega \rightarrow V$.

We start with some graph-theoretic (non-probabilistic) statements.
1.1 Lemma. For every $A \subset V$, the number of incoming edges is equal to the number of outgoing edges. That is,

$$
\#(E \cap(A \times(V \backslash A)))=\#(E \cap((V \backslash A) \times A))
$$

Proof. We have

$$
\begin{gathered}
E \cap(A \times V)=E \cap(A \times(V \backslash A)) \uplus E \cap(A \times A), \\
E \cap(V \times A)=E \cap((V \backslash A) \times A) \uplus E \cap(A \times A)
\end{gathered}
$$

and

$$
\#(E \cap(A \times V))=k \cdot \# A=\#(E \cap(V \times A))
$$

1.2 Corollary. (Strong connectedness.)
$E \cap(A \times(V \backslash A)) \neq \emptyset$ for every $A \subset V$ such that $A \neq \emptyset$ and $V \backslash A \neq \emptyset$.
1.3 Corollary. For all $x, y \in V$ there exists a path (of some length) from $x$ to $y$.
1.4 Lemma. There exists $T$ such that for all $x, y \in V$, every $t \geq T$ is the length of some (at least one) path from $x$ to $y$.

Proof. (Sketch.)
The set $L_{x}$ of lengths of all loops from $x$ to $x$ is a semigroup, therefore $L_{x}-L_{x}$ is a group, $L_{x}-L_{x}=p_{x} \mathbb{Z}$ for some $p_{x}$. The period $p_{x}$ does not depend on $x$. Thus, $p_{x}=1$ for all $x$. It means existence of $N$ such that $N \in L_{x}$ and $N+1 \in L_{x}$. We take $T=N^{2}$ and note that $N^{2}+k N+r=$ $N(N+k)+r=N(N+k-r)+(N+1) r \in L_{x}$. Generalization from $x=y$ to all $x, y$ is easy.

Now we return to probability. We want to show that the initial point $x_{0}$ is ultimately forgotten by the Markov chain.

Given another starting point $x_{0}^{\prime} \in V$, we introduce the probability space $\Omega^{\prime}$ of paths (of length $n$ ) starting at $x_{0}^{\prime}$, and random variables $S_{0}^{\prime}, \ldots, S_{n}^{\prime}$ : $\Omega^{\prime} \rightarrow V$. We take the product

$$
\tilde{\Omega}=\Omega \times \Omega^{\prime}
$$

and treat $S_{t}, S_{t}^{\prime}$ as maps $\tilde{\Omega} \rightarrow V$. We get two independent random walks, one starting at $x_{0}$, the other at $x_{0}^{\prime}$. In addition, we let $\tilde{S}_{t}=\left(S_{t}, S_{t}^{\prime}\right): \tilde{\Omega} \rightarrow \tilde{V}=$ $V \times V$.

Recall the reflection principle, instrumental in 'Extremal values, etc.' It will help again! The transformation $(x, y) \mapsto(y, x)$ of $\tilde{V}$ will be treated as reflection, and the diagonal of $\tilde{V}$ as the barrier. We define $M_{n}: \tilde{\Omega} \rightarrow\{0,1\}$ by

$$
M_{n}= \begin{cases}0 & \text { if } S_{0} \neq S_{0}^{\prime}, S_{1} \neq S_{1}^{\prime}, \ldots, S_{n} \neq S_{n}^{\prime} \\ 1 & \text { otherwise }\end{cases}
$$

1.5 Lemma. The conditional distribution of $\tilde{S}_{n}$ given $M_{n}=1$ is symmetric.

That is, $\mathbb{E}\left(f\left(\tilde{S}_{n}\right) \mid M_{n}=1\right)=0$ for every antisymmetric function $f$ : $\tilde{V} \rightarrow \mathbb{R}$ (antisymmetric means $f(y, x)=-f(x, y))$.

The proof is similar to the proof of Lemma 1 in 'Extremal values, etc.'
1.6 Exercise. $\left|\mathbb{P}\left(S_{n}=x\right)-\mathbb{P}\left(S_{n}^{\prime}=x\right)\right| \leq \mathbb{P}\left(M_{n}=0\right)$.

Prove it.
Hint: $f(a, b)=\mathbf{1}_{\{x\}}(a)-\mathbf{1}_{\{x\}}(b)$.
The probability of the event $M_{n}=0$ depends on $n, x_{0}$ and $x_{0}^{\prime}$. We maximize it in $x_{0}, x_{0}^{\prime}$ :

$$
\varepsilon_{n}=\max _{x_{0}, x_{0}^{\prime} \in V} \mathbb{P}\left(M_{n}=0\right) .
$$

1.7 Lemma. $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.

The proof will be given later.
Let $p_{n}(x, y)$ denote the $n$-step transition probability from $x$ to $y$. (Thus, $\mathbb{P}\left(S_{t}=y\right)=p_{t}\left(x_{0}, y\right)$ and $\left.\mathbb{P}\left(S_{t}^{\prime}=y\right)=p_{t}\left(x_{0}^{\prime}, y\right).\right)$
1.8 Exercise. $\sum_{y \in V} p_{1}(x, y)=1$ for all $x \in V$, and $\sum_{x \in V} p_{1}(x, y)=1$ for all $y \in V$.

Prove it.
Hint: $k$ times $1 / k \ldots$
1.9 Exercise. $\sum_{y \in V} p_{n}(x, y)=1$ for all $x \in V$, and $\sum_{x \in V} p_{n}(x, y)=1$ for all $y \in V$.

Prove it.
Hint: induction in $n$.
1.10 Theorem. For each vertex $x$ of the graph,

$$
\mathbb{P}\left(S_{n}=x\right) \rightarrow \frac{1}{m} \quad \text { as } n \rightarrow \infty
$$

Proof. By 1.6] $\left|p_{n}\left(x_{0}, y\right)-p_{n}\left(x_{0}^{\prime}, y\right)\right| \leq \varepsilon_{n}$. By [1.9) $\frac{1}{m} \sum_{x_{0}^{\prime} \in V} p_{n}\left(x_{0}^{\prime}, y\right)=\frac{1}{m}$. Thus, $\left|p_{n}\left(x_{0}, y\right)-\frac{1}{m}\right| \leq \varepsilon_{n}$; finally, $\varepsilon_{n} \rightarrow 0$ by 1.7 .

Proof of Lemma 1.7, Lemma 1.4 gives us $T$ such that $p_{T}(x, y) \neq 0$ for all $x, y$. Clearly, $p_{T}(x, y) \geq k^{-T}$. Thus,

$$
\mathbb{P}\left(M_{T}=1\right) \geq \mathbb{P}\left(S_{T}=y, S_{T}^{\prime}=y\right) \geq k^{-2 T}
$$

no matter which $y$ is used. We put $\theta=1-k^{-2 T}$ and see that $\mathbb{P}\left(M_{T}=0\right) \leq \theta$. But moreover, $\mathbb{P}\left(M_{t+T}=0 \mid S_{t}=a, S_{t}^{\prime}=b\right) \leq \theta$ for all $a, b$ (provided that the condition is of non-zero probability). It follows that

$$
\begin{gathered}
\mathbb{P}\left(M_{t+T}=0 \mid M_{t}=0\right) \leq \theta \quad \text { for all } t \\
\mathbb{P}\left(M_{t+T}=0\right) \leq \theta \cdot \mathbb{P}\left(M_{t}=0\right) \quad \text { for all } t \\
\mathbb{P}\left(M_{j T}=0\right) \leq \theta^{j} \quad \text { for all } j
\end{gathered}
$$

however, $\theta^{j} \rightarrow 0$ as $j \rightarrow \infty$.
Interestingly, $\varepsilon_{n} \rightarrow 0$ exponentially fast. However, the constant $T k^{2 T}$ can be quite large.

## 2 Finite Markov chains

A Markov chain (discrete in space and time, and homogeneous in time) is described by a transition probability matrix

$$
(p(x, y))_{x, y \in V}
$$

satisfying

$$
p(x, y) \geq 0 ; \quad \forall x \sum_{y} p(x, y)=1
$$

The set $V$ is assumed to be finite. We turn $V$ into a graph putting

$$
E=\left\{(x, y) \in V^{2}: p(x, y) \neq 0\right\}
$$

and define the probability of a path $\left(s_{0}, \ldots, s_{n}\right)$ as the product of $n$ probabilities

$$
p\left(s_{0}, \ldots, s_{n}\right)=p\left(s_{0}, s_{1}\right) \ldots p\left(s_{n-1}, s_{n}\right)
$$

as before, $s_{0}$ must be equal to a given initial point $x_{0} \in V$. Here are some definitions that depend on the graph only.

A set $A \subset V$ is closed if $E \cap(A \times(V \backslash A))=\emptyset$.
A Markov chain is irreducible if $\emptyset$ and $V$ are the only closed sets. In other words: for all $x, y \in V$ there exists a path from $x$ to $y$ (recall (1.3).

An irreducible Markov chain is aperiodic, if there exists no $p \in\{2,3, \ldots\}$ such that every loop length is divisible by $p$. (This property does not depend on the initial point; recall the proof of (1.4)
2.1 Lemma. If the Markov chain is irreducible then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(S_{1} \neq y, \ldots, S_{n} \neq y\right)=0
$$

for each $y \in V$.
Proof. We take $T$ and $\varepsilon$ such that for every $x \in V$ there exists a path from $x$ to $y$ of length $\leq T$ and of probability $\geq \varepsilon$. Then (assuming $\mathbb{P}\left(S_{1} \neq\right.$ $\left.y, \ldots, S_{n} \neq y\right) \neq 0$ for all $n$ ),

$$
\mathbb{P}\left(S_{t+1} \neq y, \ldots, S_{t+T} \neq y \mid S_{t}=x\right) \leq 1-\varepsilon
$$

Thus

$$
\begin{aligned}
& \mathbb{P}\left(S_{t+1} \neq y, \ldots, S_{t+T} \neq y \mid S_{1} \neq y, \ldots, S_{t} \neq y\right)= \\
& =\sum_{x \in V} \mathbb{P}\left(S_{t+1} \neq y, \ldots, S_{t+T} \neq y \mid S_{t}=x\right) \mathbb{P}\left(S_{t}=x \mid S_{1} \neq y, \ldots, S_{t} \neq y\right) \leq \\
& \leq(1-\varepsilon)
\end{aligned}
$$

and

$$
\mathbb{P}\left(S_{1} \neq y, S_{2} \neq y, \ldots, S_{j T} \neq y\right) \leq(1-\varepsilon)^{j} \quad \text { for } j=1,2, \ldots
$$

2.2 Exercise. Let $y$ belong to each nonempty closed set. (In other words: for every $x$ there exists a path from $x$ to $y$.) Prove that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(S_{1} \neq y, \ldots, S_{n} \neq y\right)=0
$$

2.3 Exercise. Let $A \subset V$ intersect every nonempty closed set. (In other words: for every $x$ there exists a path from $x$ to $A$.) Prove that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(S_{1} \notin A, \ldots, S_{n} \notin A\right)=0
$$

2.4 Lemma. If the Markov chain is irreducible and aperiodic, then there exists $T$ such that for all $x, y \in V$, every $t \geq T$ is the length of some (at least one) path from $x$ to $y$. That is, $p_{t}(x, y)>0$.

The proof is similar to that of 1.4. (Only the graph matters.)
We may consider two independent copies of the Markov chain:

$$
\begin{gathered}
V^{2}=V \times V \\
p^{(2)}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=p\left(x_{1}, y_{1}\right) p\left(x_{2}, y_{2}\right) .
\end{gathered}
$$

2.5 Exercise. (a) If the Markov chain ( $V, p$ ) is irreducible and aperiodic, then the Markov chain $\left(V^{2}, p^{(2)}\right)$ is irreducible and aperiodic;
(b) it may happen that $(V, p)$ is irreducible but $\left(V^{2}, p^{(2)}\right)$ is not.

Prove (a) and find a counterexample for (b).
Assume that the Markov chain is irreducible and aperiodic (from now on, till Theorem (2.10).
2.6 Lemma. There exist $\varepsilon_{n} \rightarrow 0$ such that

$$
\left|p_{n}\left(x_{1}, y\right)-p_{n}\left(x_{2}, y\right)\right| \leq \varepsilon_{n}
$$

for all $x_{1}, x_{2}, y \in V$ and $n=0,1,2, \ldots$
Proof. (Sketch.) We use the reflection-type argument similarly to 1.5, 1.6, 1.7
2.7 Exercise. For all probability measures $\mu$ on $V$,

$$
\left|\sum_{x_{1}} \mu\left(x_{1}\right) p_{n}\left(x_{1}, y\right)-p_{n}\left(x_{2}, y\right)\right| \leq \varepsilon_{n}
$$

for all $x_{2}, y \in V$ and $n=0,1, \ldots$
Prove it.
Hint: $\left|\sum_{x_{1}} \mu\left(x_{1}\right)\left(p_{n}\left(x_{1}, y\right)-p_{n}\left(x_{2}, y\right)\right)\right|$.
Of course, $\mu(x)$ means $\mu(\{x\})$. Substituting for $\mu$ the distribution of $S_{t}$ we get

$$
\left|\mathbb{P}\left(S_{t+n}=y\right)-p_{n}\left(x_{2}, y\right)\right| \leq \varepsilon_{n}
$$

for all $x_{2}, y \in V$ and $t, n \in\{0,1, \ldots\}$.
2.8 Exercise. For all probability measures $\mu, \nu$ on $V$,

$$
\left|\sum_{x_{1}} \mu\left(x_{1}\right) p_{n}\left(x_{1}, y\right)-\sum_{x_{2}} \nu\left(x_{2}\right) p_{n}\left(x_{2}, y\right)\right| \leq \varepsilon_{n}
$$

for all $y \in V$ and $n=0,1, \ldots$
Prove it.

### 2.9 Corollary.

$$
\left|\mathbb{P}\left(S_{t}=y\right)-\mathbb{P}\left(S_{u}=y\right)\right| \leq \varepsilon_{n}
$$

for all $y \in V$ and $t, u \in\{n, n+1, \ldots\}$.
2.10 Theorem. If a Markov chain is irreducible and aperiodic then the limit

$$
\lim _{n} \mathbb{P}\left(S_{n}=x\right)
$$

exists for each $x \in V$.
Proof. By 2.9, $\left(\mathbb{P}\left(S_{n}=x\right)\right)_{n}$ is a Cauchy sequence.
We still assume that the Markov chain is irreducible and aperiodic (from now on, till Theorem (2.15).
2.11 Definition. A probability measure $\mu$ on $V$ is stationary, if

$$
\mu(y)=\sum_{x \in V} \mu(x) p(x, y) \quad \text { for all } y \in V
$$

2.12 Exercise. The numbers

$$
\mu(x)=\lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n}=x\right)
$$

are a stationary probability measure.
Prove it.
Hint: $\mathbb{P}\left(S_{n+1}=y\right)=\sum_{x} \mathbb{P}\left(S_{n}=x\right) p(x, y)$.
2.13 Exercise. $\mu(x)>0$ for every $x$.

Prove it.
Hint: otherwise there exist $x, y$ such that $\mu(x)>0, \mu(y)=0$ and $p(x, y)>$ 0.
2.14 Exercise. The measure $\mu$ defined in 2.12 is the only stationary probability measure.

Prove it.
Hint: apply 2.8 to stationary $\mu, \nu$.
2.15 Theorem. If a Markov chain is irreducible and aperiodic then it has one and only one stationary probability measure $\mu$, and

$$
\sum_{x \in V} \nu(x) p_{n}(x, y) \rightarrow \mu(y) \quad \text { as } n \rightarrow \infty
$$

for every probability measure $\nu$ on $V$.
2.16 Exercise. Prove Theorem 2.15

If a Markov chain $(V, p)$ is irreducible but periodic, with the (least) period $d$, then the limit

$$
\mu(x)=\lim _{n} \mathbb{P}\left(S_{n d}=x\right)
$$

exists for each $x \in V$. The numbers $\mu(x)$ are a probability measure satisfying

$$
\mu(y)=\sum_{x \in V} \mu(x) p_{d}(x, y) \quad \text { for all } y \in V .
$$

That is, $\mu$ is stationary for the Markov chain $\left(V, p_{d}\right)$. The measure

$$
\nu(x)=\lim _{n} \frac{1}{d}\left(\mathbb{P}\left(S_{n d}=x\right)+\mathbb{P}\left(S_{n d+1}=x\right)+\cdots+\mathbb{P}\left(S_{n d+d-1}=x\right)\right)
$$

is stationary for $(V, p)$.
Here is another property related to the graph only.
2.17 Definition. A state $x \in V$ is transient, if there exists $y \in V$ such that a path from $x$ to $y$ exists, but a path from $y$ to $x$ does not exist. Otherwise, $x$ is called recurrent.
2.18 Exercise. If $x$ is transient then

$$
\mathbb{P}\left(S_{n}=x\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Prove it.
Hint: apply 2.3 to the set $A$ of all $y$ such that there is no path from $y$ to $x$.

Recurrent states $x, y$ are called equivalent, if there exists a path from $x$ to $y$, and a path from $y$ to $x$. (Well, the latter follows from the former.) Equivalence classes are irreducible closed sets...

