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1 Random walk on a graph

Assume that a connected finite oriented graph has m vertices, and each vertex
has k outgoing edges and k incoming edges (the same k for all vertices).
Denote the set of vertices by V and the set of edges by E; E ⊂ V × V
(it may intersect the diagonal). (Multiple edges are thus excluded, but all
said can be easily generalized to graphs with multiple edges.) It is assumed
that E ∩

(

(A × (V \ A)) ∪ ((V \ A) × A)
)

6= ∅ for every A ⊂ V such that
A 6= ∅ and V \ A 6= ∅ (weak connectedness). Also, #{y ∈ V : (x, y) ∈
E} = #{y ∈ V : (y, x) ∈ E} = k for all x ∈ V . In addition, we assume
aperiodicity: there exists no p ∈ {2, 3, . . .} such that every loop length is
divisible by p. (A loop is a sequence of vertices (y0, y1, . . . , yt) such that
(y0, y1) ∈ E, . . . , (yt−1, yt) ∈ E and yt = y0; its length is t.)

A random walk started at a given vertex x0. A path (of length n) of
the random walk is a sequence (s0, . . . , sn) of vertices such that the pairs
(sk−1, sk) belong to E (for k = 1, . . . , n) and s0 = x0. There are kn such
paths; each has the probability k−n (by definition). We have the probability
space Ω of paths, and random variables S0, . . . , Sn : Ω → V .

We start with some graph-theoretic (non-probabilistic) statements.

1.1 Lemma. For every A ⊂ V , the number of incoming edges is equal to
the number of outgoing edges. That is,

#
(

E ∩ (A × (V \ A))
)

= #
(

E ∩ ((V \ A) × A)
)

.

Proof. We have

E ∩ (A × V ) = E ∩ (A × (V \ A)) ⊎ E ∩ (A × A) ,

E ∩ (V × A) = E ∩ ((V \ A) × A) ⊎ E ∩ (A × A)

and
#

(

E ∩ (A × V )
)

= k · #A = #
(

E ∩ (V × A)
)

.

1.2 Corollary. (Strong connectedness.)
E ∩ (A × (V \ A)) 6= ∅ for every A ⊂ V such that A 6= ∅ and V \ A 6= ∅.

1.3 Corollary. For all x, y ∈ V there exists a path (of some length) from x
to y.

1.4 Lemma. There exists T such that for all x, y ∈ V , every t ≥ T is the
length of some (at least one) path from x to y.
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Proof. (Sketch.)
The set Lx of lengths of all loops from x to x is a semigroup, therefore

Lx − Lx is a group, Lx − Lx = pxZ for some px. The period px does not
depend on x. Thus, px = 1 for all x. It means existence of N such that
N ∈ Lx and N + 1 ∈ Lx. We take T = N2 and note that N2 + kN + r =
N(N + k) + r = N(N + k − r) + (N + 1)r ∈ Lx. Generalization from x = y
to all x, y is easy.

Now we return to probability. We want to show that the initial point x0

is ultimately forgotten by the Markov chain.
Given another starting point x′

0 ∈ V , we introduce the probability space
Ω′ of paths (of length n) starting at x′

0, and random variables S ′
0, . . . , S

′
n :

Ω′ → V . We take the product

Ω̃ = Ω × Ω′

and treat St, S
′
t as maps Ω̃ → V . We get two independent random walks, one

starting at x0, the other at x′
0. In addition, we let S̃t = (St, S

′
t) : Ω̃ → Ṽ =

V × V .
Recall the reflection principle, instrumental in ‘Extremal values, etc.’ It

will help again! The transformation (x, y) 7→ (y, x) of Ṽ will be treated as
reflection, and the diagonal of Ṽ as the barrier. We define Mn : Ω̃ → {0, 1}
by

Mn =

{

0 if S0 6= S ′
0, S1 6= S ′

1, . . . , Sn 6= S ′
n,

1 otherwise.

1.5 Lemma. The conditional distribution of S̃n given Mn = 1 is symmetric.

That is, E
(

f(S̃n)
∣

∣Mn = 1
)

= 0 for every antisymmetric function f :

Ṽ → R (antisymmetric means f(y, x) = −f(x, y)).
The proof is similar to the proof of Lemma 1 in ‘Extremal values, etc.’

1.6 Exercise. |P
(

Sn = x
)

− P
(

S ′
n = x

)

| ≤ P
(

Mn = 0
)

.
Prove it.
Hint: f(a, b) = 1{x}(a) − 1{x}(b).

The probability of the event Mn = 0 depends on n, x0 and x′
0. We

maximize it in x0, x
′
0:

εn = max
x0,x′

0
∈V

P
(

Mn = 0
)

.

1.7 Lemma. εn → 0 as n → ∞.
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The proof will be given later.
Let pn(x, y) denote the n-step transition probability from x to y. (Thus,

P
(

St = y
)

= pt(x0, y) and P
(

S ′
t = y

)

= pt(x
′
0, y).)

1.8 Exercise.
∑

y∈V p1(x, y) = 1 for all x ∈ V , and
∑

x∈V p1(x, y) = 1 for
all y ∈ V .

Prove it.
Hint: k times 1/k. . .

1.9 Exercise.
∑

y∈V pn(x, y) = 1 for all x ∈ V , and
∑

x∈V pn(x, y) = 1 for
all y ∈ V .

Prove it.
Hint: induction in n.

1.10 Theorem. For each vertex x of the graph,

P
(

Sn = x
)

→
1

m
as n → ∞ .

Proof. By 1.6, |pn(x0, y) − pn(x′
0, y)| ≤ εn. By 1.9, 1

m

∑

x′

0
∈V pn(x′

0, y) = 1
m

.

Thus, |pn(x0, y) − 1
m
| ≤ εn; finally, εn → 0 by 1.7.

Proof of Lemma 1.7. Lemma 1.4 gives us T such that pT (x, y) 6= 0 for all
x, y. Clearly, pT (x, y) ≥ k−T . Thus,

P
(

MT = 1
)

≥ P
(

ST = y, S ′
T = y

)

≥ k−2T ,

no matter which y is used. We put θ = 1−k−2T and see that P
(

MT = 0
)

≤ θ.
But moreover, P

(

Mt+T = 0
∣

∣St = a, S ′
t = b

)

≤ θ for all a, b (provided that
the condition is of non-zero probability). It follows that

P
(

Mt+T = 0
∣

∣Mt = 0
)

≤ θ for all t ;

P
(

Mt+T = 0
)

≤ θ · P
(

Mt = 0
)

for all t ;

P
(

MjT = 0
)

≤ θj for all j ;

however, θj → 0 as j → ∞.

Interestingly, εn → 0 exponentially fast. However, the constant Tk2T can
be quite large.
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2 Finite Markov chains

A Markov chain (discrete in space and time, and homogeneous in time) is
described by a transition probability matrix

(

p(x, y)
)

x,y∈V

satisfying

p(x, y) ≥ 0 ; ∀x
∑

y

p(x, y) = 1 .

The set V is assumed to be finite. We turn V into a graph putting

E = {(x, y) ∈ V 2 : p(x, y) 6= 0}

and define the probability of a path (s0, . . . , sn) as the product of n proba-
bilities

p(s0, . . . , sn) = p(s0, s1) . . . p(sn−1, sn) ;

as before, s0 must be equal to a given initial point x0 ∈ V . Here are some
definitions that depend on the graph only.

A set A ⊂ V is closed if E ∩
(

A × (V \ A)
)

= ∅.
A Markov chain is irreducible if ∅ and V are the only closed sets. In other

words: for all x, y ∈ V there exists a path from x to y (recall 1.3).
An irreducible Markov chain is aperiodic, if there exists no p ∈ {2, 3, . . .}

such that every loop length is divisible by p. (This property does not depend
on the initial point; recall the proof of 1.4.)

2.1 Lemma. If the Markov chain is irreducible then

lim
n→∞

P
(

S1 6= y, . . . , Sn 6= y
)

= 0

for each y ∈ V .

Proof. We take T and ε such that for every x ∈ V there exists a path from
x to y of length ≤ T and of probability ≥ ε. Then (assuming P

(

S1 6=
y, . . . , Sn 6= y

)

6= 0 for all n),

P
(

St+1 6= y, . . . , St+T 6= y
∣

∣St = x
)

≤ 1 − ε .

Thus

P
(

St+1 6= y, . . . , St+T 6= y
∣

∣S1 6= y, . . . , St 6= y
)

=

=
∑

x∈V

P
(

St+1 6= y, . . . , St+T 6= y
∣

∣St = x
)

P
(

St = x
∣

∣S1 6= y, . . . , St 6= y
)

≤

≤ (1 − ε)
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and
P

(

S1 6= y, S2 6= y, . . . , SjT 6= y
)

≤ (1 − ε)j for j = 1, 2, . . .

2.2 Exercise. Let y belong to each nonempty closed set. (In other words:
for every x there exists a path from x to y.) Prove that

lim
n→∞

P
(

S1 6= y, . . . , Sn 6= y
)

= 0 .

2.3 Exercise. Let A ⊂ V intersect every nonempty closed set. (In other
words: for every x there exists a path from x to A.) Prove that

lim
n→∞

P
(

S1 /∈ A, . . . , Sn /∈ A
)

= 0 .

2.4 Lemma. If the Markov chain is irreducible and aperiodic, then there
exists T such that for all x, y ∈ V , every t ≥ T is the length of some (at least
one) path from x to y. That is, pt(x, y) > 0.

The proof is similar to that of 1.4. (Only the graph matters.)
We may consider two independent copies of the Markov chain:

V 2 = V × V ,

p(2)
(

(x1, x2), (y1, y2)
)

= p(x1, y1)p(x2, y2) .

2.5 Exercise. (a) If the Markov chain (V, p) is irreducible and aperiodic,
then the Markov chain (V 2, p(2)) is irreducible and aperiodic;

(b) it may happen that (V, p) is irreducible but (V 2, p(2)) is not.
Prove (a) and find a counterexample for (b).

Assume that the Markov chain is irreducible and aperiodic (from now on,
till Theorem 2.10).

2.6 Lemma. There exist εn → 0 such that

|pn(x1, y) − pn(x2, y)| ≤ εn

for all x1, x2, y ∈ V and n = 0, 1, 2, . . .

Proof. (Sketch.) We use the reflection-type argument similarly to 1.5, 1.6,
1.7.
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2.7 Exercise. For all probability measures µ on V ,

∣

∣

∣

∣

∑

x1

µ(x1)pn(x1, y) − pn(x2, y)

∣

∣

∣

∣

≤ εn

for all x2, y ∈ V and n = 0, 1, . . .
Prove it.
Hint: |

∑

x1
µ(x1)(pn(x1, y) − pn(x2, y))|.

Of course, µ(x) means µ({x}). Substituting for µ the distribution of St

we get
|P

(

St+n = y
)

− pn(x2, y)| ≤ εn

for all x2, y ∈ V and t, n ∈ {0, 1, . . .}.

2.8 Exercise. For all probability measures µ, ν on V ,

∣

∣

∣

∣

∑

x1

µ(x1)pn(x1, y) −
∑

x2

ν(x2)pn(x2, y)

∣

∣

∣

∣

≤ εn

for all y ∈ V and n = 0, 1, . . .
Prove it.

2.9 Corollary.

|P
(

St = y
)

− P
(

Su = y
)

| ≤ εn

for all y ∈ V and t, u ∈ {n, n + 1, . . .}.

2.10 Theorem. If a Markov chain is irreducible and aperiodic then the limit

lim
n

P
(

Sn = x
)

exists for each x ∈ V .

Proof. By 2.9,
(

P
(

Sn = x
))

n is a Cauchy sequence.

We still assume that the Markov chain is irreducible and aperiodic (from
now on, till Theorem 2.15).

2.11 Definition. A probability measure µ on V is stationary, if

µ(y) =
∑

x∈V

µ(x)p(x, y) for all y ∈ V .
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2.12 Exercise. The numbers

µ(x) = lim
n→∞

P
(

Sn = x
)

are a stationary probability measure.
Prove it.
Hint: P

(

Sn+1 = y
)

=
∑

x
P

(

Sn = x
)

p(x, y).

2.13 Exercise. µ(x) > 0 for every x.
Prove it.
Hint: otherwise there exist x, y such that µ(x) > 0, µ(y) = 0 and p(x, y) >

0.

2.14 Exercise. The measure µ defined in 2.12 is the only stationary prob-
ability measure.

Prove it.
Hint: apply 2.8 to stationary µ, ν.

2.15 Theorem. If a Markov chain is irreducible and aperiodic then it has
one and only one stationary probability measure µ, and

∑

x∈V

ν(x)pn(x, y) → µ(y) as n → ∞

for every probability measure ν on V .

2.16 Exercise. Prove Theorem 2.15.

If a Markov chain (V, p) is irreducible but periodic, with the (least) period
d, then the limit

µ(x) = lim
n

P
(

Snd = x
)

exists for each x ∈ V . The numbers µ(x) are a probability measure satisfying

µ(y) =
∑

x∈V

µ(x)pd(x, y) for all y ∈ V .

That is, µ is stationary for the Markov chain (V, pd). The measure

ν(x) = lim
n

1

d

(

P
(

Snd = x
)

+ P
(

Snd+1 = x
)

+ · · ·+ P
(

Snd+d−1 = x
))

is stationary for (V, p).
Here is another property related to the graph only.
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2.17 Definition. A state x ∈ V is transient, if there exists y ∈ V such that
a path from x to y exists, but a path from y to x does not exist. Otherwise,
x is called recurrent.

2.18 Exercise. If x is transient then

P
(

Sn = x
)

→ 0 as n → ∞ .

Prove it.
Hint: apply 2.3 to the set A of all y such that there is no path from y to

x.

Recurrent states x, y are called equivalent, if there exists a path from x
to y, and a path from y to x. (Well, the latter follows from the former.)
Equivalence classes are irreducible closed sets. . .
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