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1 Random walk on a graph

Assume that a connected finite oriented graph has m vertices, and each vertex
has k outgoing edges and k incoming edges (the same k for all vertices).
Denote the set of vertices by V and the set of edges by F; EE C V xV
(it may intersect the diagonal). (Multiple edges are thus excluded, but all
said can be easily generalized to graphs with multiple edges.) It is assumed
that EN ((A x (V\A)U((V\A) x A)) #0 for every A C V such that
A # D and V\ A # () (weak connectedness). Also, #{y € V : (z,y) €
E} =#{y € V : (y,x) € E} = k for all z € V. In addition, we assume
aperiodicity: there exists no p € {2,3,...} such that every loop length is
divisible by p. (A loop is a sequence of vertices (yo,%1,--.,%:) such that
(yo,11) € E, ..., (y1-1,y:) € E and y; = yo; its length is ¢.)

A random walk started at a given vertex xy. A path (of length n) of
the random walk is a sequence (so,...,s,) of vertices such that the pairs
(Sk—1, k) belong to E (for k = 1,...,n) and sy = xy. There are k" such
paths; each has the probability £~" (by definition). We have the probability
space €2 of paths, and random variables Sy, ...,S5,: Q — V.

We start with some graph-theoretic (non-probabilistic) statements.

1.1 Lemma. For every A C V, the number of incoming edges is equal to
the number of outgoing edges. That is,

H(EN(Ax (V\A) = #(EN((V\ 4) x 4)).
Proof. We have

EN(AxV)=EN(Ax(VNA)WEN(AxA),
EN(VxA)=EnNn(V\A) xA)WENAxA)
and
#(ENAXV))=k-#A=#(En(V x A4)).
0

1.2 Corollary. (Strong connectedness.)
EN(Ax (V\A))#0 for every A C V such that A # 0 and V' \ A # 0.

1.3 Corollary. For all z,y € V there exists a path (of some length) from z
to y.

1.4 Lemma. There exists T such that for all x,y € V, every t > T is the
length of some (at least one) path from z to y.
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Proof. (Sketch.)

The set L, of lengths of all loops from x to x is a semigroup, therefore
L, — L, is a group, L, — L, = p,Z for some p,. The period p, does not
depend on x. Thus, p, = 1 for all . It means existence of N such that
N e L,and N+1¢€ L,. We take T = N? and note that N2 + kN +r =
NN+ k)+r=N(N+k—r)+ (N+1)r € L,. Generalization from z =y
to all x,y is easy. O

Now we return to probability. We want to show that the initial point xg
is ultimately forgotten by the Markov chain.

Given another starting point z;, € V, we introduce the probability space
(Y of paths (of length n) starting at z{,, and random variables S{,...,S] :
' — V. We take the product

Q=Qx

and treat Sy, S} as maps Q— V. We get two independent random walks, one
starting at xo, the other at zj. In addition, we let S, = (S, S8/ : Q@ — V =
VxV.

Recall the reflection principle, instrumental in ‘Extremal values, etc.” It
will help again! The transformation (x,y) — (y,z) of V will be treated as
reflection, and the diagonal of V as the barrier. We define M, : Q — {0,1}
by

_{ow&%s&%%aww&¢s;

1 otherwise.

1.5 Lemma. The conditional distribution of S, given M, = 1 is symmetric.

That is, E(f(gn) }Mn = 1) = 0 for every antisymmetric function f :
V — R (antisymmetric means f(y,z) = —f(x,y)).
The proof is similar to the proof of Lemma 1 in ‘Extremal values, etc.’

1.6 Exercise. [P(S, =12) —P(S,=2)| <P(M,=0).
Prove it.
Hint: f(CL, b) = 1{:,3}(0,) — l{m} (b)

The probability of the event M, = 0 depends on n, zy and x;. We
maximize it in xg, z{:

€, = max P(Mn:O).

x0,z(€EV

1.7 Lemma. ¢, — 0 as n — oo.
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The proof will be given later.
Let p,(x,y) denote the n-step transition probability from x to y. (Thus,

P(S;=y) = pi(zo,y) and P(S{ = y) = py(5,y).)

1.8 Exercise. > .y pi(r,y) =1forallx € V, and }_ . pi(x,y) =1 for
ally e V.

Prove it.

Hint: & times 1/k. ..

1.9 Exercise. > .y pu(z,y) = 1forallx € V, and 3,y pa(z,y) =1 for
all y € V.

Prove it.

Hint: induction in n.

1.10 Theorem. For each vertex x of the graph,

P(Sn:x)ﬁi asn — 00.
m

Proof. By [LG |pn(l‘o,y) _pn($67y)| < e, By[>LH #Em{)evpn(xloay) = #
Thus, |p,(xo,y) — %\ < &,; finally, &, — 0 by [ O

Proof of Lemma [ Lemma [C4 gives us T such that pr(z,y) # 0 for all
x,y. Clearly, pr(z,y) > k~T. Thus,

P(Mr=1)>P(Sr=y,5h=y) > k",

no matter which y is used. We put § = 1—k~2" and see that P (MT = 0) <.
But moreover, IP’(Mt+T = O}St =a,S] = b) < 0 for all a,b (provided that
the condition is of non-zero probability). It follows that

P(Mysr =0|M; =0) <0 for all ¢;
P(Mpr=0)<60-P(M,=0) forallt;
P(Mjr=0) <¢ forall j;
however, 6/ — 0 as j — oo. U

Interestingly, €, — 0 exponentially fast. However, the constant Tk?" can
be quite large.
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2 Finite Markov chains

A Markov chain (discrete in space and time, and homogeneous in time) is
described by a transition probability matriz

(p(ZL‘, y))x,ye\/

satisfying
plz,y) =05 Vo ¥ plr,y)=1.
y

The set V is assumed to be finite. We turn V' into a graph putting

E ={(z,y) € V*:p(z,y) # 0}
and define the probability of a path (sg,...,s,) as the product of n proba-
bilities
p(So, ) Sn) = p(SOa 31) .- 'p(SN—la Sn) ;

as before, sy must be equal to a given initial point zy € V. Here are some
definitions that depend on the graph only.

Aset ACVis closed if EN (A x (V\ A)) =0.

A Markov chain is srreducible if ) and V' are the only closed sets. In other
words: for all z,y € V there exists a path from x to y (recall [L3)).

An irreducible Markov chain is aperiodic, if there exists no p € {2,3,...}
such that every loop length is divisible by p. (This property does not depend
on the initial point; recall the proof of [[4])

2.1 Lemma. If the Markov chain is irreducible then

limIP’(Slséy,...,Sn#y):O

n—oo

for each y € V.

Proof. We take T' and ¢ such that for every x € V' there exists a path from
x to y of length < T and of probability > ¢. Then (assuming IP’(SI #*

Y,....S, #y) #0for all n),
P(Stﬂ#ya---,SHT?éy}St:l’) <l-e.
Thus

P(StJrl#ya---ustJrT#y‘Sl#yw-wst#y) =
:ZP(StH%ya---,StJrT?éy‘St:5U)P(St:$}517éya---75t7éy) <

zeV
<(1-¢)
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and
P(Sl%yasé#ya7S]T7éy)§(1_€)j forj:1,2,...
0

2.2 Exercise. Let y belong to each nonempty closed set. (In other words:
for every x there exists a path from z to y.) Prove that

lim P(Sl%y,...,sn#y)zo.

2.3 Exercise. Let A C V intersect every nonempty closed set. (In other
words: for every x there exists a path from = to A.) Prove that

lim P(S1 ¢ A,...,S, ¢ A)=0.

2.4 Lemma. If the Markov chain is irreducible and aperiodic, then there
exists T" such that for all x,y € V', every t > T is the length of some (at least
one) path from z to y. That is, py(x,y) > 0.

The proof is similar to that of [[4l (Only the graph matters.)
We may consider two independent copies of the Markov chain:

VEi=V xV,
PP (1, 32), (Y1, y2)) = (@1, 91)p(22, Y2) -

2.5 Exercise. (a) If the Markov chain (V,p) is irreducible and aperiodic,
then the Markov chain (V2 p®?) is irreducible and aperiodic;

(b) it may happen that (V,p) is irreducible but (V2,p®) is not.

Prove (a) and find a counterexample for (b).

Assume that the Markov chain is irreducible and aperiodic (from now on,
till Theorem 2T0).

2.6 Lemma. There exist ¢,, — 0 such that

|pn<x17y> _pn(x%y)‘ S En
for all 1,29,y € Vand n=20,1,2,...

Proof. (Sketch.) We use the reflection-type argument similarly to [CH [C6,
2 O
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2.7 Exercise. For all probability measures p on V,

Zﬂ(xl)pn(%, Y) — pn(z2,9)| < &0

for all zo,y € Vand n =0,1,...
Prove it.

Hint: | >, p(21)(pn(1,y) — pulm2,9))]-

Of course, p(z) means pu({x}). Substituting for u the distribution of S;
we get
P (Sern =y) = Pal2,9)| < €0

for all 25,y € V and t,n € {0,1,...}.

2.8 Exercise. For all probability measures p, v on V,

S uam(eron) - S vlanlmlean)| < e

Z2

forallye Vandn=0,1,...
Prove it.

2.9 Corollary.
P(S;=y)—P(S,=y)|<e,

forally e Vand t,u € {n,n+1,...}.

2.10 Theorem. If a Markov chain is irreducible and aperiodic then the limit
lim P (Sn = x)

exists for each z € V.

Proof. By 23, (IP’(Sn = :E))n is a Cauchy sequence. 0

We still assume that the Markov chain is irreducible and aperiodic (from
now on, till Theorem EZTH).

2.11 Definition. A probability measure p on V' is stationary, if

wy) = w@)p(z,y) forallyeV.

zeV
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2.12 Exercise. The numbers

p(z) = lim P(S, =)
are a stationary probability measure.
Prove it.

Hint: P(Sp1 =y) = >, P (S, = 2)p(z,y).

2.13 Exercise. p(x) > 0 for every z.

Prove it.

Hint: otherwise there exist z, y such that u(x) > 0, u(y) = 0 and p(z,y) >
0.

2.14 Exercise. The measure p defined in is the only stationary prob-
ability measure.

Prove it.

Hint: apply to stationary p, v.

2.15 Theorem. If a Markov chain is irreducible and aperiodic then it has

one and only one stationary probability measure p, and

> v(@)pale,y) — ply) asn — oo

for every probability measure v on V.
2.16 Exercise. Prove Theorem ZTH.

If a Markov chain (V] p) is irreducible but periodic, with the (least) period
d, then the limit
p(z) =lmP(Spy = )

exists for each x € V. The numbers p(z) are a probability measure satisfying

py) = p(@)pa(z,y) forally e V.

zeV
That is, p is stationary for the Markov chain (V) p,). The measure

.1
is stationary for (V,p).
Here is another property related to the graph only.
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2.17 Definition. A state x € V is transient, if there exists y € V such that
a path from z to y exists, but a path from y to x does not exist. Otherwise,
x is called recurrent.

2.18 Exercise. If z is transient then
IP’(Sn::E) —0 asn—o00.

Prove it.
Hint: apply to the set A of all y such that there is no path from y to

Recurrent states x,y are called equivalent, if there exists a path from x
to y, and a path from y to x. (Well, the latter follows from the former.)
Equivalence classes are irreducible closed sets. . .
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