1 Random walk on a graph

Assume that a connected finite oriented graph has m vertices, and each vertex has k outgoing edges and k incoming edges (the same k for all vertices). Denote the set of vertices by V and the set of edges by E; $E \subset V \times V$ (it may intersect the diagonal). (Multiple edges are thus excluded, but all said can be easily generalized to graphs with multiple edges.) It is assumed that $E \cap ((A \times (V \setminus A)) \cup ((V \setminus A) \times A)) \neq \emptyset$ for every $A \subset V$ such that $A \neq \emptyset$ and $V \setminus A \neq \emptyset$ (weak connectedness). Also, $\#\{y \in V : (x, y) \in E\} = \#\{y \in V : (y, x) \in E\} = k$ for all $x \in V$. In addition, we assume aperiodicity: there exists no $p \in \{2, 3, ...\}$ such that every loop length is divisible by p. (A loop is a sequence of vertices (y_0, y_1, \ldots, y_t) such that $(y_0, y_1) \in E, \ldots, (y_{t-1}, y_t) \in E$ and $y_t = y_0$; its length is t.)

A random walk started at a given vertex x_0 . A path (of length n) of the random walk is a sequence (s_0, \ldots, s_n) of vertices such that the pairs (s_{k-1}, s_k) belong to E (for $k = 1, \ldots, n$) and $s_0 = x_0$. There are k^n such paths; each has the probability k^{-n} (by definition). We have the probability space Ω of paths, and random variables $S_0, \ldots, S_n : \Omega \to V$.

We start with some graph-theoretic (non-probabilistic) statements.

1.1 Lemma. For every $A \subset V$, the number of incoming edges is equal to the number of outgoing edges. That is,

$$\#(E \cap (A \times (V \setminus A))) = \#(E \cap ((V \setminus A) \times A)).$$

Proof. We have

$$E \cap (A \times V) = E \cap (A \times (V \setminus A)) \uplus E \cap (A \times A),$$

$$E \cap (V \times A) = E \cap ((V \setminus A) \times A) \uplus E \cap (A \times A)$$

and

$$#(E \cap (A \times V)) = k \cdot #A = #(E \cap (V \times A)).$$

1.2 Corollary. (Strong connectedness.)

 $E \cap (A \times (V \setminus A)) \neq \emptyset$ for every $A \subset V$ such that $A \neq \emptyset$ and $V \setminus A \neq \emptyset$.

1.3 Corollary. For all $x, y \in V$ there exists a path (of *some* length) from x to y.

1.4 Lemma. There exists T such that for all $x, y \in V$, every $t \ge T$ is the length of some (at least one) path from x to y.

Proof. (Sketch.)

The set L_x of lengths of all loops from x to x is a semigroup, therefore $L_x - L_x$ is a group, $L_x - L_x = p_x \mathbb{Z}$ for some p_x . The period p_x does not depend on x. Thus, $p_x = 1$ for all x. It means existence of N such that $N \in L_x$ and $N + 1 \in L_x$. We take $T = N^2$ and note that $N^2 + kN + r = N(N + k) + r = N(N + k - r) + (N + 1)r \in L_x$. Generalization from x = y to all x, y is easy.

Now we return to probability. We want to show that the initial point x_0 is ultimately forgotten by the Markov chain.

Given another starting point $x'_0 \in V$, we introduce the probability space Ω' of paths (of length n) starting at x'_0 , and random variables $S'_0, \ldots, S'_n : \Omega' \to V$. We take the product

$$\tilde{\Omega} = \Omega \times \Omega'$$

and treat S_t, S'_t as maps $\tilde{\Omega} \to V$. We get two *independent* random walks, one starting at x_0 , the other at x'_0 . In addition, we let $\tilde{S}_t = (S_t, S'_t) : \tilde{\Omega} \to \tilde{V} = V \times V$.

Recall the reflection principle, instrumental in 'Extremal values, etc.' It will help again! The transformation $(x, y) \mapsto (y, x)$ of \tilde{V} will be treated as reflection, and the diagonal of \tilde{V} as the barrier. We define $M_n : \tilde{\Omega} \to \{0, 1\}$ by

$$M_n = \begin{cases} 0 & \text{if } S_0 \neq S'_0, S_1 \neq S'_1, \dots, S_n \neq S'_n, \\ 1 & \text{otherwise.} \end{cases}$$

1.5 Lemma. The conditional distribution of \tilde{S}_n given $M_n = 1$ is symmetric.

That is, $\mathbb{E}(f(\hat{S}_n)|M_n = 1) = 0$ for every antisymmetric function $f : \tilde{V} \to \mathbb{R}$ (antisymmetric means f(y, x) = -f(x, y)).

The proof is similar to the proof of Lemma 1 in 'Extremal values, etc.'

1.6 Exercise. $|\mathbb{P}(S_n = x) - \mathbb{P}(S'_n = x)| \leq \mathbb{P}(M_n = 0).$ Prove it. Hint: $f(a, b) = \mathbf{1}_{\{x\}}(a) - \mathbf{1}_{\{x\}}(b).$

The probability of the event $M_n = 0$ depends on n, x_0 and x'_0 . We maximize it in x_0, x'_0 :

$$\varepsilon_n = \max_{x_0, x'_0 \in V} \mathbb{P}(M_n = 0).$$

1.7 Lemma. $\varepsilon_n \to 0$ as $n \to \infty$.

3

The proof will be given later.

Let $p_n(x, y)$ denote the *n*-step transition probability from x to y. (Thus, $\mathbb{P}(S_t = y) = p_t(x_0, y)$ and $\mathbb{P}(S'_t = y) = p_t(x'_0, y)$.)

1.8 Exercise. $\sum_{y \in V} p_1(x, y) = 1$ for all $x \in V$, and $\sum_{x \in V} p_1(x, y) = 1$ for all $y \in V$.

Prove it.

Hint: k times 1/k...

1.9 Exercise. $\sum_{y \in V} p_n(x, y) = 1$ for all $x \in V$, and $\sum_{x \in V} p_n(x, y) = 1$ for all $y \in V$.

Prove it.

Hint: induction in n.

1.10 Theorem. For each vertex x of the graph,

$$\mathbb{P}(S_n = x) \to \frac{1}{m} \text{ as } n \to \infty.$$

Proof. By 1.6, $|p_n(x_0, y) - p_n(x'_0, y)| \le \varepsilon_n$. By 1.9, $\frac{1}{m} \sum_{x'_0 \in V} p_n(x'_0, y) = \frac{1}{m}$. Thus, $|p_n(x_0, y) - \frac{1}{m}| \le \varepsilon_n$; finally, $\varepsilon_n \to 0$ by 1.7.

Proof of Lemma 1.7. Lemma 1.4 gives us T such that $p_T(x,y) \neq 0$ for all x, y. Clearly, $p_T(x, y) \geq k^{-T}$. Thus,

$$\mathbb{P}(M_T = 1) \ge \mathbb{P}(S_T = y, S'_T = y) \ge k^{-2T},$$

no matter which y is used. We put $\theta = 1 - k^{-2T}$ and see that $\mathbb{P}(M_T = 0) \leq \theta$. But moreover, $\mathbb{P}(M_{t+T} = 0 | S_t = a, S'_t = b) \leq \theta$ for all a, b (provided that the condition is of non-zero probability). It follows that

$$\mathbb{P}(M_{t+T} = 0 | M_t = 0) \le \theta \quad \text{for all } t;$$

$$\mathbb{P}(M_{t+T} = 0) \le \theta \cdot \mathbb{P}(M_t = 0) \quad \text{for all } t;$$

$$\mathbb{P}(M_{jT} = 0) \le \theta^j \quad \text{for all } j;$$

however, $\theta^j \to 0$ as $j \to \infty$.

Interestingly, $\varepsilon_n \to 0$ exponentially fast. However, the constant Tk^{2T} can be quite large.

FORGETTING THE PAST

2 Finite Markov chains

A *Markov chain* (discrete in space and time, and homogeneous in time) is described by a *transition probability matrix*

$$(p(x,y))_{x,y\in V}$$

satisfying

$$p(x,y) \ge 0$$
; $\forall x \sum_{y} p(x,y) = 1$.

The set V is assumed to be finite. We turn V into a graph putting

$$E = \{(x, y) \in V^2 : p(x, y) \neq 0\}$$

and define the probability of a path (s_0, \ldots, s_n) as the product of n probabilities

$$p(s_0,\ldots,s_n) = p(s_0,s_1)\ldots p(s_{n-1},s_n);$$

as before, s_0 must be equal to a given initial point $x_0 \in V$. Here are some definitions that depend on the graph only.

A set $A \subset V$ is closed if $E \cap (A \times (V \setminus A)) = \emptyset$.

A Markov chain is *irreducible* if \emptyset and V are the only closed sets. In other words: for all $x, y \in V$ there exists a path from x to y (recall 1.3).

An irreducible Markov chain is *aperiodic*, if there exists no $p \in \{2, 3, ...\}$ such that every loop length is divisible by p. (This property does not depend on the initial point; recall the proof of 1.4.)

2.1 Lemma. If the Markov chain is irreducible then

$$\lim_{n \to \infty} \mathbb{P}(S_1 \neq y, \dots, S_n \neq y) = 0$$

for each $y \in V$.

Proof. We take T and ε such that for every $x \in V$ there exists a path from x to y of length $\leq T$ and of probability $\geq \varepsilon$. Then (assuming $\mathbb{P}(S_1 \neq y, \ldots, S_n \neq y) \neq 0$ for all n),

$$\mathbb{P}(S_{t+1} \neq y, \dots, S_{t+T} \neq y | S_t = x) \le 1 - \varepsilon.$$

Thus

$$\mathbb{P}\left(S_{t+1} \neq y, \dots, S_{t+T} \neq y \,\middle|\, S_1 \neq y, \dots, S_t \neq y\right) = \\ = \sum_{x \in V} \mathbb{P}\left(S_{t+1} \neq y, \dots, S_{t+T} \neq y \,\middle|\, S_t = x\right) \mathbb{P}\left(S_t = x \,\middle|\, S_1 \neq y, \dots, S_t \neq y\right) \leq \\ \leq (1 - \varepsilon)$$

and

$$\mathbb{P}\left(S_1 \neq y, S_2 \neq y, \dots, S_{jT} \neq y\right) \le (1 - \varepsilon)^j \quad \text{for } j = 1, 2, \dots$$

2.2 Exercise. Let y belong to each nonempty closed set. (In other words: for every x there exists a path from x to y.) Prove that

$$\lim_{n\to\infty} \mathbb{P}(S_1 \neq y, \dots, S_n \neq y) = 0.$$

2.3 Exercise. Let $A \subset V$ intersect every nonempty closed set. (In other words: for every x there exists a path from x to A.) Prove that

$$\lim_{n\to\infty} \mathbb{P}(S_1 \notin A, \dots, S_n \notin A) = 0.$$

2.4 Lemma. If the Markov chain is irreducible and aperiodic, then there exists T such that for all $x, y \in V$, every $t \geq T$ is the length of some (at least one) path from x to y. That is, $p_t(x, y) > 0$.

The proof is similar to that of 1.4. (Only the graph matters.) We may consider two independent copies of the Markov chain:

$$V^{2} = V \times V,$$

$$p^{(2)}((x_{1}, x_{2}), (y_{1}, y_{2})) = p(x_{1}, y_{1})p(x_{2}, y_{2}).$$

2.5 Exercise. (a) If the Markov chain (V, p) is irreducible and aperiodic, then the Markov chain $(V^2, p^{(2)})$ is irreducible and aperiodic;

(b) it may happen that (V, p) is irreducible but $(V^2, p^{(2)})$ is not.

Prove (a) and find a counterexample for (b).

Assume that the Markov chain is irreducible and aperiodic (from now on, till Theorem 2.10).

2.6 Lemma. There exist $\varepsilon_n \to 0$ such that

$$|p_n(x_1, y) - p_n(x_2, y)| \le \varepsilon_n$$

for all $x_1, x_2, y \in V$ and n = 0, 1, 2, ...

Proof. (Sketch.) We use the reflection-type argument similarly to 1.5, 1.6, 1.7.

2.7 Exercise. For all probability measures μ on V,

$$\left|\sum_{x_1} \mu(x_1) p_n(x_1, y) - p_n(x_2, y)\right| \le \varepsilon_n$$

for all $x_2, y \in V$ and $n = 0, 1, \ldots$

Prove it.

Hint: $|\sum_{x_1} \mu(x_1)(p_n(x_1, y) - p_n(x_2, y))|.$

Of course, $\mu(x)$ means $\mu(\{x\})$. Substituting for μ the distribution of S_t we get

$$\left|\mathbb{P}\left(S_{t+n}=y\right)-p_n(x_2,y)\right|\leq\varepsilon_n$$

for all $x_2, y \in V$ and $t, n \in \{0, 1, ...\}$.

2.8 Exercise. For all probability measures μ, ν on V,

$$\left|\sum_{x_1} \mu(x_1) p_n(x_1, y) - \sum_{x_2} \nu(x_2) p_n(x_2, y)\right| \le \varepsilon_n$$

for all $y \in V$ and $n = 0, 1, \ldots$

Prove it.

2.9 Corollary.

$$\left|\mathbb{P}\left(S_{t}=y\right)-\mathbb{P}\left(S_{u}=y\right)\right|\leq\varepsilon_{n}$$

for all $y \in V$ and $t, u \in \{n, n+1, \dots\}$.

2.10 Theorem. If a Markov chain is irreducible and aperiodic then the limit

$$\lim_{n} \mathbb{P}(S_n = x)$$

exists for each $x \in V$.

Proof. By 2.9, $(\mathbb{P}(S_n = x))_n$ is a Cauchy sequence.

We still assume that the Markov chain is irreducible and aperiodic (from now on, till Theorem 2.15).

2.11 Definition. A probability measure μ on V is *stationary*, if

$$\mu(y) = \sum_{x \in V} \mu(x) p(x, y) \quad \text{for all } y \in V.$$

FORGETTING THE PAST

2.12 Exercise. The numbers

$$\mu(x) = \lim_{n \to \infty} \mathbb{P}(S_n = x)$$

are a stationary probability measure.

Prove it.

Hint: $\mathbb{P}(S_{n+1} = y) = \sum_{x} \mathbb{P}(S_n = x) p(x, y).$

2.13 Exercise. $\mu(x) > 0$ for every x.

Prove it.

0.

Hint: otherwise there exist x, y such that $\mu(x) > 0, \mu(y) = 0$ and p(x, y) > 0

2.14 Exercise. The measure μ defined in 2.12 is the only stationary probability measure.

Prove it.

Hint: apply 2.8 to stationary μ, ν .

2.15 Theorem. If a Markov chain is irreducible and aperiodic then it has one and only one stationary probability measure μ , and

$$\sum_{x \in V} \nu(x) p_n(x, y) \to \mu(y) \quad \text{as } n \to \infty$$

for every probability measure ν on V.

2.16 Exercise. Prove Theorem 2.15.

If a Markov chain (V, p) is irreducible but periodic, with the (least) period d, then the limit

$$\mu(x) = \lim_{n} \mathbb{P}(S_{nd} = x)$$

exists for each $x \in V$. The numbers $\mu(x)$ are a probability measure satisfying

$$\mu(y) = \sum_{x \in V} \mu(x) p_d(x, y) \quad \text{for all } y \in V$$

That is, μ is stationary for the Markov chain (V, p_d) . The measure

$$\nu(x) = \lim_{n} \frac{1}{d} \left(\mathbb{P} \left(S_{nd} = x \right) + \mathbb{P} \left(S_{nd+1} = x \right) + \dots + \mathbb{P} \left(S_{nd+d-1} = x \right) \right)$$

is stationary for (V, p).

Here is another property related to the graph only.

2.17 Definition. A state $x \in V$ is *transient*, if there exists $y \in V$ such that a path from x to y exists, but a path from y to x does not exist. Otherwise, x is called *recurrent*.

2.18 Exercise. If x is transient then

$$\mathbb{P}(S_n = x) \to 0 \text{ as } n \to \infty.$$

Prove it.

Hint: apply 2.3 to the set A of all y such that there is no path from y to x.

Recurrent states x, y are called equivalent, if there exists a path from x to y, and a path from y to x. (Well, the latter follows from the former.) Equivalence classes are irreducible closed sets...