1 Kolmogorov's maximal inequality

Let X_1, \ldots, X_n be independent random variables, $\mathbb{E} X_k = 0$, $\operatorname{Var}(X_k) < \infty$ for $k = 1, \ldots, n$. Consider $S_k = X_1 + \cdots + X_k$.

1.1 Lemma. $\mathbb{E}\left(\varphi(X_1,\ldots,X_k)S_n\right) = \mathbb{E}\left(\varphi(X_1,\ldots,X_k)S_k\right)$ for every k < n and every bounded Borel function $\varphi : \mathbb{R}^k \to \mathbb{R}$.

Proof. Denoting by μ_k the distribution of X_k we have $\int x \, \mu_k(\mathrm{d}x) = 0$, thus

$$\mathbb{E}\left(\varphi(X_1,\ldots,X_k)S_n\right) = \int \mu_1(\mathrm{d}x_1)\ldots\mu_n(\mathrm{d}x_n)\,\varphi(x_1,\ldots,x_k)(x_1+\cdots+x_n) = \int \mu_1(\mathrm{d}x_1)\ldots\mu_k(\mathrm{d}x_k)\,\varphi(x_1,\ldots,x_k)\int \mu_{k+1}(\mathrm{d}x_{k+1})\ldots\mu_n(\mathrm{d}x_n)\,(x_1+\cdots+x_n) = \int \mu_1(\mathrm{d}x_1)\ldots\mu_k(\mathrm{d}x_k)\,\varphi(x_1,\ldots,x_k)(x_1+\cdots+x_k) = \mathbb{E}\left(\varphi(X_1,\ldots,X_k)S_k\right).$$

In terms of conditioning,

$$\mathbb{E}\left(\varphi(X_1,\ldots,X_k)S_n\right) = \mathbb{E}\left(\mathbb{E}\left(\varphi(X_1,\ldots,X_k)S_n \,\middle|\, X_1,\ldots,X_k\right)\right) = \\ = \mathbb{E}\left(\varphi(X_1,\ldots,X_k)\mathbb{E}\left(S_n \,\middle|\, X_1,\ldots,X_k\right)\right) = \mathbb{E}\left(\varphi(X_1,\ldots,X_k)S_k\right).$$

1.2 Exercise. $\mathbb{E}\left(\varphi(X_1,\ldots,X_k)S_n^2\right) \geq \mathbb{E}\left(\varphi(X_1,\ldots,X_k)S_k^2\right)$ for every k < n and every bounded Borel function $\varphi: \mathbb{R}^k \to [0,\infty)$.

Prove it.

Hint: $\int \mu_{k+1}(\mathrm{d}x_{k+1}) \dots \mu_n(\mathrm{d}x_n)(x_1 + \dots + x_n)^2 \ge (\int \mu_{k+1}(\mathrm{d}x_{k+1}) \dots \mu_n(\mathrm{d}x_n)(x_1 + \dots + x_n))^2.$

1.3 Remark. More generally, the Jensen inequality gives $\mathbb{E}(\varphi(X_1, \ldots, X_k)\psi(S_n)) \geq \mathbb{E}(\varphi(X_1, \ldots, X_k)\psi(S_k))$ for every k < n, every bounded Borel function $\varphi : \mathbb{R}^k \to \mathbb{R}$ and every convex $\psi : \mathbb{R} \to \mathbb{R}$ (as long as the expectations exist). Especially, $\psi(s)$ may be |s - a|, or $(s - a)^+$, or $(s - a)^-$ for any $a \in \mathbb{R}$.

1.4 Theorem. For every n and every c > 0,

$$\mathbb{P}\left(\max_{k=1,\dots,n} |S_k| \ge c\right) \le \frac{1}{c^2} \mathbb{E} S_n^2.$$

Proof. We introduce events $A_k = \{|S_1| < c, \ldots, |S_{k-1}| < c, |S_k| \ge c\}$ and apply 1.2 to their indicators:

$$\mathbb{E}\left(\mathbf{1}_{A_k}S_n^2\right) \geq \mathbb{E}\left(\mathbf{1}_{A_k}S_k^2\right) \geq c^2 \mathbb{P}(A_k).$$

Summing up we get

$$\mathbb{E}\left(\mathbf{1}_{A}S_{n}^{2}\right) \geq c^{2}\mathbb{P}\left(A\right)$$

where $A = A_1 \uplus \cdots \uplus A_n = \{\max_k |S_k| \ge c\}.$

Clearly, $\mathbb{E} S_n^2 = \sum_{k=1}^n \operatorname{Var} X_k$.

1.5 Exercise. For an infinite sequence $(X_k)_k$, for every c > 0,

$$\mathbb{P}\left(\sup_{k} |S_{k}| \ge c\right) \le \frac{1}{c^{2}} \sum_{k=1}^{\infty} \operatorname{Var} X_{k}.$$

Prove it.

Hint: it is not hard, but be careful; if in trouble, try $\mathbb{P}(\sup_k |S_k| > c - \varepsilon)$.

2 Random series

2.1 Proposition. Let X_1, X_2, \ldots be independent random variables, $\mathbb{E} X_k = 0$, $Var(X_k) < \infty$ for all k, and

$$\sum_{k=1}^{\infty} \operatorname{Var} X_k < \infty \,.$$

Then the series

$$\sum_{k=1}^{\infty} X_k$$

converges a.s.

Proof. Let $S_n = X_1 + \cdots + X_n$. It is sufficient to prove that $(S_n(\omega))_n$ is a Cauchy sequence for almost all ω , that is,

$$\sup_{k,l \ge n} |S_k - S_l| \downarrow 0 \quad \text{a.s. as } n \to \infty \,,$$

or equivalently,

$$\mathbb{P}\left(\sup_{k,l\geq n} |S_k - S_l| \geq 2\varepsilon\right) \downarrow 0 \quad \text{as } n \to \infty$$

for every $\varepsilon > 0$. Using 1.5,

$$\mathbb{P}\left(\sup_{k,l\geq n} |S_k - S_l| \geq 2\varepsilon\right) \leq \mathbb{P}\left(\sup_k |S_{n+k} - S_n| \geq \varepsilon\right) = \\ = \mathbb{P}\left(\sup_k |X_{n+1} + \dots + X_{n+k}| \geq \varepsilon\right) \leq \frac{1}{\varepsilon^2} \sum_k \operatorname{Var} X_{n+k} \downarrow 0$$

as $n \to \infty$.

3 Martingale convergence

Given $f \in L_2(0, 1)$, we consider its orthogonal projection f_n to the 2^n -dimensional subspace of step functions,

$$f_n(x) = 2^n \int_{2^{-n}(k-1)}^{2^{-n}k} f(u) \, \mathrm{d}u \quad \text{for } x \in \left(2^{-n}(k-1), 2^{-n}k\right).$$

In terms of binary digits $\beta_1(x), \beta_2(x), \ldots$ of x,

$$x = \frac{\beta_1(x)}{2^1} + \frac{\beta_2(x)}{2^2} + \dots, \quad \beta_k(x) \in \{0, 1\},$$

we have $f_n(x) = g_n(\beta_1(x), \ldots, \beta_n(x))$ for some $g_n : \{0, 1\}^n \to \mathbb{R}$. Note that

$$g_k(b_1,\ldots,b_k) = \frac{1}{2}g_{k+1}(b_1,\ldots,b_k,0) + \frac{1}{2}g_{k+1}(b_1,\ldots,b_k,1)$$

and moreover,

$$g_k(b_1,\ldots,b_k) = 2^{-(n-k)} \sum_{b_{k+1},\ldots,b_n} g_n(b_1,\ldots,b_k,b_{k+1},\ldots,b_n)$$

for k < n.

Treating (0, 1) with Lebesgue measure as a probability space and β_1, β_2, \ldots as random variables we see that β_1, β_2, \ldots are independent, $\mathbb{P}(\beta_k = 0) = 0.5 = \mathbb{P}(\beta_k = 1)$, and the random variables $f_n = g_n(\beta_1, \ldots, \beta_n)$ satisfy

$$\mathbb{E}(f_n | \beta_1, \ldots, \beta_k) = f_k \text{ for } k < n.$$

Such sequences of random variables are called *martingales*. The differences $f_n - f_{n-1}$ need not be independent, but still, we have a counterpart of 1.1. (It really means that f_k is the orthogonal projection of f_n to the 2^k -dimensional subspace...)

3.1 Lemma. $\mathbb{E}\left(\varphi(\beta_1,\ldots,\beta_k)f_n\right) = \mathbb{E}\left(\varphi(\beta_1,\ldots,\beta_k)f_k\right)$ for every k < n and every function $\varphi: \{0,1\}^k \to \mathbb{R}$.

Proof.

$$\mathbb{E}\left(\varphi(\beta_{1},...,\beta_{k})f_{n}\right) = 2^{-n}\sum_{b_{1},...,b_{n}}\varphi(b_{1},...,b_{k})g_{n}(b_{1},...,b_{n}) = 2^{-k}\sum_{b_{1},...,b_{k}}\varphi(b_{1},...,b_{k})2^{-(n-k)}\sum_{b_{k+1},...,b_{n}}g_{n}(b_{1},...,b_{n}) = 2^{-k}\sum_{b_{1},...,b_{k}}\varphi(b_{1},...,b_{k})g_{k}(b_{1},...,b_{k}) = \mathbb{E}\left(\varphi(\beta_{1},...,\beta_{k})f_{k}\right).$$

In terms of conditioning,

$$\mathbb{E}\left(\varphi(\beta_1,\ldots,\beta_k)f_n\right) = \mathbb{E}\left(\mathbb{E}\left(\varphi(\beta_1,\ldots,\beta_k)f_n \,\middle|\, \beta_1,\ldots,\beta_k\right)\right) = \\ = \mathbb{E}\left(\varphi(\beta_1,\ldots,\beta_k)\mathbb{E}\left(f_n \,\middle|\, \beta_1,\ldots,\beta_k\right)\right) = \mathbb{E}\left(\varphi(\beta_1,\ldots,\beta_k)f_k\right).$$

3.2 Exercise. $\mathbb{E}\left(\varphi(\beta_1,\ldots,\beta_k)f_n^2\right) \geq \mathbb{E}\left(\varphi(\beta_1,\ldots,\beta_k)f_k^2\right)$ for every k < n and every $\varphi: \{0,1\}^k \to [0,\infty)$.

Prove it.

Hint: similar to 1.2.

In fact, $\mathbb{E}\left(\varphi(\beta_1,\ldots,\beta_k)\psi(f_n)\right) \geq \mathbb{E}\left(\varphi(\beta_1,\ldots,\beta_k)\psi(f_k)\right)$ for convex ψ .

3.3 Exercise. For every n and every c > 0,

$$\mathbb{P}\left(\max_{k=1,\dots,n} |f_k| \ge c\right) \le \frac{1}{c^2} \mathbb{E} f_n^2.$$

Prove it.

Hint: similar to 1.4.

3.4 Exercise. For every c > 0,

$$\mathbb{P}\left(\sup_{k} |f_{k}| \ge c\right) \le \frac{1}{c^{2}} \sup_{k} \mathbb{E} f_{k}^{2}.$$

Prove it.

Hint: similar to 1.5.

Applying it to $f - f_n$ (in place of f) we get

(3.5)
$$\mathbb{P}\left(\sup_{k} |f_{n+k} - f_n| \ge c\right) \le \frac{1}{c^2} \sup_{k} \mathbb{E} |f_{n+k} - f_n|^2.$$

3.6 Proposition. The sequence $(f_n)_n$ converges almost everywhere.

Proof. The differences $f_n - f_{n-1}$ are mutually orthogonal, thus

$$||f_0||^2 + ||f_1 - f_0||^2 + \dots + ||f_n - f_{n-1}||^2 = ||f_n||^2 \le ||f||^2.$$

It follows that $\sum_{k=n}^{\infty} ||f_{k+1} - f_k||^2 \to 0$ as $n \to \infty$. Therefore $\sup_k \mathbb{E} |f_{n+k} - f_n|^2 \to 0$ as $n \to \infty$. By (3.5), $\mathbb{P}(\sup_k |f_{n+k} - f_n| \ge \varepsilon) \to 0$ as $n \to \infty$ for every $\varepsilon > 0$. Similarly to the proof of 2.1 we conclude that $(f_n(x))_n$ is a Cauchy sequence for almost all x.

In fact, $\lim_{n \to \infty} f_n = f$.

4 Backwards martingale convergence

Given $f \in L_2(0, 1)$, we consider its orthogonal projection f_n to the subspace of 2^{-n} -periodic functions,

$$f_n(x) = 2^{-n} \sum_{k:0 < x+2^{-n}k < 1} f(x+2^{-n}k) \text{ for } x \in (0,1).$$

Note that

$$f_k(x) = \frac{1}{2}f_{k-1}(x) + \frac{1}{2}f_{k-1}(x+2^{-k})$$

and moreover,

$$f_k(x) = 2^{-(k-n)} \sum_{j=1}^{2^{k-n}} f_n(x+2^{-k}j)$$

for n < k.

The following fact is evident if we are sure that f_n is indeed the orthogonal projection of f... but let us prove it anyway.

4.1 Lemma. Let n < k, and $\varphi : (0, 1) \to \mathbb{R}$ be a 2^{-k} -periodic bounded Borel function. Then

$$\int_0^1 \varphi(x) f_n(x) \, \mathrm{d}x = \int_0^1 \varphi(x) f_k(x) \, \mathrm{d}x \, .$$

Proof.

$$\int_{0}^{1} \varphi(x) f_{n}(x) \, \mathrm{d}x = 2^{n} \int_{0}^{2^{-n}} \varphi(x) f_{n}(x) \, \mathrm{d}x = 2^{n} \sum_{j=1}^{2^{k-n}} \int_{(j-1)2^{-k}}^{j2^{-k}} \varphi(x) f_{n}(x) \, \mathrm{d}x =$$
$$= 2^{k} \int_{0}^{2^{-k}} \varphi(x) \left(2^{-(k-n)} \sum_{j=1}^{2^{k-n}} f_{n}(x+j2^{-k}) \right) \, \mathrm{d}x =$$
$$= 2^{k} \int_{0}^{2^{-k}} \varphi(x) f_{k}(x) \, \mathrm{d}x = \int_{0}^{1} \varphi(x) f_{k}(x) \, \mathrm{d}x \, .$$

Treating (0,1) with Lebesgue measure as a probability space and f_n , φ as random variables, we have

$$\mathbb{E}\left(\varphi f_n\right) = \mathbb{E}\left(\varphi f_k\right).$$

In terms of (non-elementary!) conditioning (and binary digits),

$$f_n = g_n(\beta_{n+1}, \beta_{n+2}, \dots), \quad \varphi = \psi(\beta_{k+1}, \beta_{k+2}, \dots);$$

 $\mathbb{E}\left(\psi(\beta_{k+1},\ldots)g_n(\beta_{n+1},\ldots)\right) = \mathbb{E}\left(\mathbb{E}\left(\psi(\beta_{k+1},\ldots)g_n(\beta_{n+1},\ldots)\big|\beta_{k+1},\ldots\right)\right) = \mathbb{E}\left(\psi(\beta_{k+1},\ldots)\mathbb{E}\left(g_n(\beta_{n+1},\ldots)\big|\beta_{k+1},\ldots\right)\right) = \mathbb{E}\left(\psi(\beta_{k+1},\ldots)g_k(\beta_{k+1},\ldots)\right).$

4.2 Exercise. $\mathbb{E}\left(\varphi f_n^2\right) \geq \mathbb{E}\left(\varphi f_k^2\right)$ for $\varphi(\cdot) \geq 0$. Prove it.

In fact, $\mathbb{E}(\varphi\psi(f_n)) \ge \mathbb{E}(\varphi\psi(f_k))$ for convex ψ .

4.3 Lemma.

$$\mathbb{P}\left(\max_{k=n,\dots,n+m} |f_k| \ge c\right) \le \frac{1}{c^2} \mathbb{E} f_n^2.$$

Proof. We introduce events $A_k = \{|f_k| \ge c, |f_{k+1}| < c, \dots, |f_{n+m}| < c\}$ and apply 4.2 to their indicators:

$$\mathbb{E}\left(\mathbf{1}_{A_{k}}f_{n}^{2}\right) \geq \mathbb{E}\left(\mathbf{1}_{A_{k}}f_{k}^{2}\right) \geq c^{2}\mathbb{P}\left(A_{k}\right).$$

Summing up we get

$$\mathbb{E}\left(\mathbf{1}_{A}f_{n}^{2}\right) \geq c^{2}\mathbb{P}\left(A\right)$$

where $A = A_1 \uplus \cdots \uplus A_n = \{ \max_{k=n,\dots,n+m} |f_k| \ge c \}.$

It follows that

$$\mathbb{P}\left(\sup_{k\geq n}|f_k|\geq c\right)\leq \frac{1}{c^2}\mathbb{E}\,f_n^2$$

4.4 Exercise. The sequence $(f_n)_n$ converges almost everywhere. Prove it.

Hint: similar to 3.6.