1 Kolmogorov's maximal inequality

Let X_{1}, \ldots, X_{n} be independent random variables, $\mathbb{E} X_{k}=0, \operatorname{Var}\left(X_{k}\right)<\infty$ for $k=1, \ldots, n$. Consider $S_{k}=X_{1}+\cdots+X_{k}$.
1.1 Lemma. $\mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) S_{n}\right)=\mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) S_{k}\right)$ for every $k<n$ and every bounded Borel function $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}$.

Proof. Denoting by μ_{k} the distribution of X_{k} we have $\int x \mu_{k}(\mathrm{~d} x)=0$, thus

$$
\begin{aligned}
& \mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) S_{n}\right)=\int \mu_{1}\left(\mathrm{~d} x_{1}\right) \ldots \mu_{n}\left(\mathrm{~d} x_{n}\right) \varphi\left(x_{1}, \ldots, x_{k}\right)\left(x_{1}+\cdots+x_{n}\right)= \\
& \int \mu_{1}\left(\mathrm{~d} x_{1}\right) \ldots \mu_{k}\left(\mathrm{~d} x_{k}\right) \varphi\left(x_{1}, \ldots, x_{k}\right) \int \mu_{k+1}\left(\mathrm{~d} x_{k+1}\right) \ldots \mu_{n}\left(\mathrm{~d} x_{n}\right)\left(x_{1}+\cdots+x_{n}\right) \\
& =\int \mu_{1}\left(\mathrm{~d} x_{1}\right) \ldots \mu_{k}\left(\mathrm{~d} x_{k}\right) \varphi\left(x_{1}, \ldots, x_{k}\right)\left(x_{1}+\cdots+x_{k}\right)=\mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) S_{k}\right) .
\end{aligned}
$$

In terms of conditioning,

$$
\begin{aligned}
& \mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) S_{n}\right)=\mathbb{E}\left(\mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) S_{n} \mid X_{1}, \ldots, X_{k}\right)\right)= \\
& \quad=\mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) \mathbb{E}\left(S_{n} \mid X_{1}, \ldots, X_{k}\right)\right)=\mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) S_{k}\right)
\end{aligned}
$$

1.2 Exercise. $\mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) S_{n}^{2}\right) \geq \mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) S_{k}^{2}\right)$ for every $k<n$ and every bounded Borel function $\varphi: \mathbb{R}^{k} \rightarrow[0, \infty)$.

Prove it.
Hint: $\int \mu_{k+1}\left(\mathrm{~d} x_{k+1}\right) \ldots \mu_{n}\left(\mathrm{~d} x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)^{2} \geq$ $\left(\int \mu_{k+1}\left(\mathrm{~d} x_{k+1}\right) \ldots \mu_{n}\left(\mathrm{~d} x_{n}\right)\left(x_{1}+\cdots+x_{n}\right)\right)^{2}$.
1.3 Remark. More generally, the Jensen inequality gives $\mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) \psi\left(S_{n}\right)\right) \geq \mathbb{E}\left(\varphi\left(X_{1}, \ldots, X_{k}\right) \psi\left(S_{k}\right)\right)$ for every $k<n$, every bounded Borel function $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ and every convex $\psi: \mathbb{R} \rightarrow \mathbb{R}$ (as long as the expectations exist). Especially, $\psi(s)$ may be $|s-a|$, or $(s-a)^{+}$, or $(s-a)^{-}$for any $a \in \mathbb{R}$.
1.4 Theorem. For every n and every $c>0$,

$$
\mathbb{P}\left(\max _{k=1, \ldots, n}\left|S_{k}\right| \geq c\right) \leq \frac{1}{c^{2}} \mathbb{E} S_{n}^{2} .
$$

Proof. We introduce events $A_{k}=\left\{\left|S_{1}\right|<c, \ldots,\left|S_{k-1}\right|<c,\left|S_{k}\right| \geq c\right\}$ and apply 1.2 to their indicators:

$$
\mathbb{E}\left(\mathbf{1}_{A_{k}} S_{n}^{2}\right) \geq \mathbb{E}\left(\mathbf{1}_{A_{k}} S_{k}^{2}\right) \geq c^{2} \mathbb{P}\left(A_{k}\right)
$$

Summing up we get

$$
\mathbb{E}\left(\mathbf{1}_{A} S_{n}^{2}\right) \geq c^{2} \mathbb{P}(A)
$$

where $A=A_{1} \uplus \cdots \uplus A_{n}=\left\{\max _{k}\left|S_{k}\right| \geq c\right\}$.
Clearly, $\mathbb{E} S_{n}^{2}=\sum_{k=1}^{n} \operatorname{Var} X_{k}$.
1.5 Exercise. For an infinite sequence $\left(X_{k}\right)_{k}$, for every $c>0$,

$$
\mathbb{P}\left(\sup _{k}\left|S_{k}\right| \geq c\right) \leq \frac{1}{c^{2}} \sum_{k=1}^{\infty} \operatorname{Var} X_{k}
$$

Prove it.
Hint: it is not hard, but be careful; if in trouble, try $\mathbb{P}\left(\sup _{k}\left|S_{k}\right|>c-\varepsilon\right)$.

2 Random series

2.1 Proposition. Let X_{1}, X_{2}, \ldots be independent random variables, $\mathbb{E} X_{k}=$ $0, \operatorname{Var}\left(X_{k}\right)<\infty$ for all k, and

$$
\sum_{k=1}^{\infty} \operatorname{Var} X_{k}<\infty
$$

Then the series

$$
\sum_{k=1}^{\infty} X_{k}
$$

converges a.s.
Proof. Let $S_{n}=X_{1}+\cdots+X_{n}$. It is sufficient to prove that $\left(S_{n}(\omega)\right)_{n}$ is a Cauchy sequence for almost all ω, that is,

$$
\sup _{k, l \geq n}\left|S_{k}-S_{l}\right| \downarrow 0 \quad \text { a.s. as } n \rightarrow \infty
$$

or equivalently,

$$
\mathbb{P}\left(\sup _{k, l \geq n}\left|S_{k}-S_{l}\right| \geq 2 \varepsilon\right) \downarrow 0 \quad \text { as } n \rightarrow \infty
$$

for every $\varepsilon>0$. Using 1.5,

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{k, l \geq n}\left|S_{k}-S_{l}\right| \geq 2 \varepsilon\right) \leq \mathbb{P}\left(\sup _{k}\left|S_{n+k}-S_{n}\right| \geq \varepsilon\right)= \\
& \quad=\mathbb{P}\left(\sup _{k}\left|X_{n+1}+\cdots+X_{n+k}\right| \geq \varepsilon\right) \leq \frac{1}{\varepsilon^{2}} \sum_{k} \operatorname{Var} X_{n+k} \downarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.

3 Martingale convergence

Given $f \in L_{2}(0,1)$, we consider its orthogonal projection f_{n} to the 2^{n}-dimensional subspace of step functions,

$$
f_{n}(x)=2^{n} \int_{2^{-n}(k-1)}^{2^{-n} k} f(u) \mathrm{d} u \quad \text { for } x \in\left(2^{-n}(k-1), 2^{-n} k\right)
$$

In terms of binary digits $\beta_{1}(x), \beta_{2}(x), \ldots$ of x,

$$
x=\frac{\beta_{1}(x)}{2^{1}}+\frac{\beta_{2}(x)}{2^{2}}+\ldots, \quad \beta_{k}(x) \in\{0,1\}
$$

we have $f_{n}(x)=g_{n}\left(\beta_{1}(x), \ldots, \beta_{n}(x)\right)$ for some $g_{n}:\{0,1\}^{n} \rightarrow \mathbb{R}$. Note that

$$
g_{k}\left(b_{1}, \ldots, b_{k}\right)=\frac{1}{2} g_{k+1}\left(b_{1}, \ldots, b_{k}, 0\right)+\frac{1}{2} g_{k+1}\left(b_{1}, \ldots, b_{k}, 1\right)
$$

and moreover,

$$
g_{k}\left(b_{1}, \ldots, b_{k}\right)=2^{-(n-k)} \sum_{b_{k+1}, \ldots, b_{n}} g_{n}\left(b_{1}, \ldots, b_{k}, b_{k+1}, \ldots, b_{n}\right)
$$

for $k<n$.
Treating $(0,1)$ with Lebesgue measure as a probability space and $\beta_{1}, \beta_{2}, \ldots$ as random variables we see that $\beta_{1}, \beta_{2}, \ldots$ are independent, $\mathbb{P}\left(\beta_{k}=0\right)=$ $0.5=\mathbb{P}\left(\beta_{k}=1\right)$, and the random variables $f_{n}=g_{n}\left(\beta_{1}, \ldots, \beta_{n}\right)$ satisfy

$$
\mathbb{E}\left(f_{n} \mid \beta_{1}, \ldots, \beta_{k}\right)=f_{k} \quad \text { for } k<n
$$

Such sequences of random variables are called martingales. The differences $f_{n}-f_{n-1}$ need not be independent, but still, we have a counterpart of 1.1 (It really means that f_{k} is the orthogonal projection of f_{n} to the 2^{k}-dimensional subspace...)
3.1 Lemma. $\mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) f_{n}\right)=\mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) f_{k}\right)$ for every $k<n$ and every function $\varphi:\{0,1\}^{k} \rightarrow \mathbb{R}$.

Proof.

$$
\begin{aligned}
& \mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) f_{n}\right)=2^{-n} \sum_{b_{1}, \ldots, b_{n}} \varphi\left(b_{1}, \ldots, b_{k}\right) g_{n}\left(b_{1}, \ldots, b_{n}\right)= \\
& =2^{-k} \sum_{b_{1}, \ldots, b_{k}} \varphi\left(b_{1}, \ldots, b_{k}\right) 2^{-(n-k)} \sum_{b_{k+1}, \ldots, b_{n}} g_{n}\left(b_{1}, \ldots, b_{n}\right)= \\
& \quad=2^{-k} \sum_{b_{1}, \ldots, b_{k}} \varphi\left(b_{1}, \ldots, b_{k}\right) g_{k}\left(b_{1}, \ldots, b_{k}\right)=\mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) f_{k}\right)
\end{aligned}
$$

In terms of conditioning,

$$
\begin{aligned}
& \mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) f_{n}\right)=\mathbb{E}\left(\mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) f_{n} \mid \beta_{1}, \ldots, \beta_{k}\right)\right)= \\
& \quad=\mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) \mathbb{E}\left(f_{n} \mid \beta_{1}, \ldots, \beta_{k}\right)\right)=\mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) f_{k}\right)
\end{aligned}
$$

3.2 Exercise. $\mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) f_{n}^{2}\right) \geq \mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) f_{k}^{2}\right)$ for every $k<n$ and every $\varphi:\{0,1\}^{k} \rightarrow[0, \infty)$.

Prove it.
Hint: similar to 1.2
In fact, $\mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) \psi\left(f_{n}\right)\right) \geq \mathbb{E}\left(\varphi\left(\beta_{1}, \ldots, \beta_{k}\right) \psi\left(f_{k}\right)\right)$ for convex ψ.
3.3 Exercise. For every n and every $c>0$,

$$
\mathbb{P}\left(\max _{k=1, \ldots, n}\left|f_{k}\right| \geq c\right) \leq \frac{1}{c^{2}} \mathbb{E} f_{n}^{2}
$$

Prove it.
Hint: similar to 1.4
3.4 Exercise. For every $c>0$,

$$
\mathbb{P}\left(\sup _{k}\left|f_{k}\right| \geq c\right) \leq \frac{1}{c^{2}} \sup _{k} \mathbb{E} f_{k}^{2}
$$

Prove it.
Hint: similar to 1.5
Applying it to $f-f_{n}$ (in place of f) we get

$$
\begin{equation*}
\mathbb{P}\left(\sup _{k}\left|f_{n+k}-f_{n}\right| \geq c\right) \leq \frac{1}{c^{2}} \sup _{k} \mathbb{E}\left|f_{n+k}-f_{n}\right|^{2} . \tag{3.5}
\end{equation*}
$$

3.6 Proposition. The sequence $\left(f_{n}\right)_{n}$ converges almost everywhere.

Proof. The differences $f_{n}-f_{n-1}$ are mutually orthogonal, thus

$$
\left\|f_{0}\right\|^{2}+\left\|f_{1}-f_{0}\right\|^{2}+\cdots+\left\|f_{n}-f_{n-1}\right\|^{2}=\left\|f_{n}\right\|^{2} \leq\|f\|^{2} .
$$

It follows that $\sum_{k=n}^{\infty}\left\|f_{k+1}-f_{k}\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\sup _{k} \mathbb{E} \mid f_{n+k}-$ $\left.f_{n}\right|^{2} \rightarrow 0$ as $n \rightarrow \infty$. By (3.5), $\mathbb{P}\left(\sup _{k}\left|f_{n+k}-f_{n}\right| \geq \varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $\varepsilon>0$. Similarly to the proof of 2.1 we conclude that $\left(f_{n}(x)\right)_{n}$ is a Cauchy sequence for almost all x.

In fact, $\lim _{n} f_{n}=f$.

4 Backwards martingale convergence

Given $f \in L_{2}(0,1)$, we consider its orthogonal projection f_{n} to the subspace of 2^{-n}-periodic functions,

$$
f_{n}(x)=2^{-n} \sum_{k: 0<x+2^{-n} k<1} f\left(x+2^{-n} k\right) \quad \text { for } x \in(0,1) .
$$

Note that

$$
f_{k}(x)=\frac{1}{2} f_{k-1}(x)+\frac{1}{2} f_{k-1}\left(x+2^{-k}\right)
$$

and moreover,

$$
f_{k}(x)=2^{-(k-n)} \sum_{j=1}^{2^{k-n}} f_{n}\left(x+2^{-k} j\right)
$$

for $n<k$.
The following fact is evident if we are sure that f_{n} is indeed the orthogonal projection of $f \ldots$ but let us prove it anyway.
4.1 Lemma. Let $n<k$, and $\varphi:(0,1) \rightarrow \mathbb{R}$ be a 2^{-k}-periodic bounded Borel function. Then

$$
\int_{0}^{1} \varphi(x) f_{n}(x) \mathrm{d} x=\int_{0}^{1} \varphi(x) f_{k}(x) \mathrm{d} x
$$

Proof.

$$
\begin{gathered}
\int_{0}^{1} \varphi(x) f_{n}(x) \mathrm{d} x=2^{n} \int_{0}^{2^{-n}} \varphi(x) f_{n}(x) \mathrm{d} x=2^{n} \sum_{j=1}^{2^{k-n}} \int_{(j-1) 2^{-k}}^{j 2^{-k}} \varphi(x) f_{n}(x) \mathrm{d} x= \\
=2^{k} \int_{0}^{2^{-k}} \varphi(x) \\
\left(2^{-(k-n)} \sum_{j=1}^{2^{k-n}} f_{n}\left(x+j 2^{-k}\right)\right) \mathrm{d} x= \\
=2^{k} \int_{0}^{2^{-k}} \varphi(x) f_{k}(x) \mathrm{d} x=\int_{0}^{1} \varphi(x) f_{k}(x) \mathrm{d} x
\end{gathered}
$$

Treating $(0,1)$ with Lebesgue measure as a probability space and f_{n}, φ as random variables, we have

$$
\mathbb{E}\left(\varphi f_{n}\right)=\mathbb{E}\left(\varphi f_{k}\right)
$$

In terms of (non-elementary!) conditioning (and binary digits),

$$
\begin{gathered}
f_{n}=g_{n}\left(\beta_{n+1}, \beta_{n+2}, \ldots\right), \quad \varphi=\psi\left(\beta_{k+1}, \beta_{k+2}, \ldots\right) ; \\
\mathbb{E}\left(\psi\left(\beta_{k+1}, \ldots\right) g_{n}\left(\beta_{n+1}, \ldots\right)\right)=\mathbb{E}\left(\mathbb{E}\left(\psi\left(\beta_{k+1}, \ldots\right) g_{n}\left(\beta_{n+1}, \ldots\right) \mid \beta_{k+1}, \ldots\right)\right)= \\
=\mathbb{E}\left(\psi\left(\beta_{k+1}, \ldots\right) \mathbb{E}\left(g_{n}\left(\beta_{n+1}, \ldots\right) \mid \beta_{k+1}, \ldots\right)\right)=\mathbb{E}\left(\psi\left(\beta_{k+1}, \ldots\right) g_{k}\left(\beta_{k+1}, \ldots\right)\right) .
\end{gathered}
$$

4.2 Exercise. $\mathbb{E}\left(\varphi f_{n}^{2}\right) \geq \mathbb{E}\left(\varphi f_{k}^{2}\right)$ for $\varphi(\cdot) \geq 0$.

Prove it.
In fact, $\mathbb{E}\left(\varphi \psi\left(f_{n}\right)\right) \geq \mathbb{E}\left(\varphi \psi\left(f_{k}\right)\right)$ for convex ψ.

4.3 Lemma.

$$
\mathbb{P}\left(\max _{k=n, \ldots, n+m}\left|f_{k}\right| \geq c\right) \leq \frac{1}{c^{2}} \mathbb{E} f_{n}^{2} .
$$

Proof. We introduce events $A_{k}=\left\{\left|f_{k}\right| \geq c,\left|f_{k+1}\right|<c, \ldots,\left|f_{n+m}\right|<c\right\}$ and apply 4.2 to their indicators:

$$
\mathbb{E}\left(\mathbf{1}_{A_{k}} f_{n}^{2}\right) \geq \mathbb{E}\left(\mathbf{1}_{A_{k}} f_{k}^{2}\right) \geq c^{2} \mathbb{P}\left(A_{k}\right)
$$

Summing up we get

$$
\mathbb{E}\left(\mathbf{1}_{A} f_{n}^{2}\right) \geq c^{2} \mathbb{P}(A)
$$

where $A=A_{1} \uplus \cdots \uplus A_{n}=\left\{\max _{k=n, \ldots, n+m}\left|f_{k}\right| \geq c\right\}$.
It follows that

$$
\mathbb{P}\left(\sup _{k \geq n}\left|f_{k}\right| \geq c\right) \leq \frac{1}{c^{2}} \mathbb{E} f_{n}^{2}
$$

4.4 Exercise. The sequence $\left(f_{n}\right)_{n}$ converges almost everywhere.

Prove it.
Hint: similar to 3.6,

