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1 Kolmogorov’s maximal inequality

Let X1, . . . , Xn be independent random variables, EXk = 0, Var(Xk) < ∞
for k = 1, . . . , n. Consider Sk = X1 + · · ·+Xk.

1.1 Lemma. E
(

ϕ(X1, . . . , Xk)Sn

)

= E
(

ϕ(X1, . . . , Xk)Sk

)

for every k < n

and every bounded Borel function ϕ : R
k → R.

Proof. Denoting by µk the distribution of Xk we have
∫

xµk(dx) = 0, thus

E
(

ϕ(X1, . . . , Xk)Sn

)

=

∫

µ1(dx1) . . . µn(dxn)ϕ(x1, . . . , xk)(x1+· · ·+xn) =
∫

µ1(dx1) . . . µk(dxk)ϕ(x1, . . . , xk)

∫

µk+1(dxk+1) . . . µn(dxn) (x1 + · · ·+xn)

=

∫

µ1(dx1) . . . µk(dxk)ϕ(x1, . . . , xk)(x1+· · ·+xk) = E
(

ϕ(X1, . . . , Xk)Sk

)

.

In terms of conditioning,

E
(

ϕ(X1, . . . , Xk)Sn

)

= E
(

E
(

ϕ(X1, . . . , Xk)Sn

∣

∣X1, . . . , Xk

))

=

= E
(

ϕ(X1, . . . , Xk)E
(

Sn

∣

∣X1, . . . , Xk

))

= E
(

ϕ(X1, . . . , Xk)Sk

)

.

1.2 Exercise. E
(

ϕ(X1, . . . , Xk)S
2
n

)

≥ E
(

ϕ(X1, . . . , Xk)S
2
k

)

for every k < n

and every bounded Borel function ϕ : R
k → [0,∞).

Prove it.

Hint:
∫

µk+1(dxk+1) . . . µn(dxn)(x1 + · · · + xn)2 ≥
(∫

µk+1(dxk+1) . . . µn(dxn)(x1 + · · ·+ xn)
)

2.

1.3 Remark. More generally, the Jensen inequality gives
E

(

ϕ(X1, . . . , Xk)ψ(Sn)
)

≥ E
(

ϕ(X1, . . . , Xk)ψ(Sk)
)

for every k < n,
every bounded Borel function ϕ : R

k → R and every convex ψ : R → R (as
long as the expectations exist). Especially, ψ(s) may be |s− a|, or (s− a)+,
or (s− a)− for any a ∈ R.

1.4 Theorem. For every n and every c > 0,

P

(

max
k=1,...,n

|Sk| ≥ c
)

≤
1

c2
ES2

n .
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Proof. We introduce events Ak = {|S1| < c, . . . , |Sk−1| < c, |Sk| ≥ c} and
apply 1.2 to their indicators:

E
(

1Ak
S2

n

)

≥ E
(

1Ak
S2

k

)

≥ c2P
(

Ak

)

.

Summing up we get
E

(

1AS
2
n

)

≥ c2P
(

A
)

where A = A1 ⊎ · · · ⊎ An = {maxk |Sk| ≥ c}.

Clearly, ES2
n =

∑n

k=1 VarXk.

1.5 Exercise. For an infinite sequence (Xk)k, for every c > 0,

P

(

sup
k

|Sk| ≥ c
)

≤
1

c2

∞
∑

k=1

VarXk .

Prove it.
Hint: it is not hard, but be careful; if in trouble, try P

(

supk |Sk| > c−ε
)

.

2 Random series

2.1 Proposition. Let X1, X2, . . . be independent random variables, EXk =
0, Var(Xk) <∞ for all k, and

∞
∑

k=1

VarXk <∞ .

Then the series
∞

∑

k=1

Xk

converges a.s.

Proof. Let Sn = X1 + · · · + Xn. It is sufficient to prove that (Sn(ω))n is a
Cauchy sequence for almost all ω, that is,

sup
k,l≥n

|Sk − Sl| ↓ 0 a.s. as n→ ∞ ,

or equivalently,

P

(

sup
k,l≥n

|Sk − Sl| ≥ 2ε
)

↓ 0 as n→ ∞
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for every ε > 0. Using 1.5,

P

(

sup
k,l≥n

|Sk − Sl| ≥ 2ε
)

≤ P

(

sup
k

|Sn+k − Sn| ≥ ε
)

=

= P

(

sup
k

|Xn+1 + · · · +Xn+k| ≥ ε
)

≤
1

ε2

∑

k

VarXn+k ↓ 0

as n→ ∞.

3 Martingale convergence

Given f ∈ L2(0, 1), we consider its orthogonal projection fn to the 2n-dimen-
sional subspace of step functions,

fn(x) = 2n

∫ 2−nk

2−n(k−1)

f(u) du for x ∈
(

2−n(k − 1), 2−nk
)

.

In terms of binary digits β1(x), β2(x), . . . of x,

x =
β1(x)

21
+
β2(x)

22
+ . . . , βk(x) ∈ {0, 1} ,

we have fn(x) = gn

(

β1(x), . . . , βn(x)
)

for some gn : {0, 1}n → R. Note that

gk(b1, . . . , bk) = 1
2
gk+1(b1, . . . , bk, 0) + 1

2
gk+1(b1, . . . , bk, 1)

and moreover,

gk(b1, . . . , bk) = 2−(n−k)
∑

bk+1,...,bn

gn(b1, . . . , bk, bk+1, . . . , bn)

for k < n.
Treating (0, 1) with Lebesgue measure as a probability space and β1, β2, . . .

as random variables we see that β1, β2, . . . are independent, P
(

βk = 0
)

=
0.5 = P

(

βk = 1
)

, and the random variables fn = gn(β1, . . . , βn) satisfy

E
(

fn

∣

∣β1, . . . , βk

)

= fk for k < n .

Such sequences of random variables are called martingales. The differences
fn−fn−1 need not be independent, but still, we have a counterpart of 1.1. (It
really means that fk is the orthogonal projection of fn to the 2k-dimensional
subspace. . . )
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3.1 Lemma. E
(

ϕ(β1, . . . , βk)fn

)

= E
(

ϕ(β1, . . . , βk)fk

)

for every k < n and
every function ϕ : {0, 1}k → R.

Proof.

E
(

ϕ(β1, . . . , βk)fn

)

= 2−n
∑

b1,...,bn

ϕ(b1, . . . , bk)gn(b1, . . . , bn) =

= 2−k
∑

b1,...,bk

ϕ(b1, . . . , bk)2
−(n−k)

∑

bk+1,...,bn

gn(b1, . . . , bn) =

= 2−k
∑

b1,...,bk

ϕ(b1, . . . , bk)gk(b1, . . . , bk) = E
(

ϕ(β1, . . . , βk)fk

)

.

In terms of conditioning,

E
(

ϕ(β1, . . . , βk)fn

)

= E
(

E
(

ϕ(β1, . . . , βk)fn

∣

∣β1, . . . , βk

))

=

= E
(

ϕ(β1, . . . , βk)E
(

fn

∣

∣β1, . . . , βk

))

= E
(

ϕ(β1, . . . , βk)fk

)

.

3.2 Exercise. E
(

ϕ(β1, . . . , βk)f
2
n

)

≥ E
(

ϕ(β1, . . . , βk)f
2
k

)

for every k < n

and every ϕ : {0, 1}k → [0,∞).
Prove it.
Hint: similar to 1.2.

In fact, E
(

ϕ(β1, . . . , βk)ψ(fn)
)

≥ E
(

ϕ(β1, . . . , βk)ψ(fk)
)

for convex ψ.

3.3 Exercise. For every n and every c > 0,

P

(

max
k=1,...,n

|fk| ≥ c
)

≤
1

c2
E f 2

n .

Prove it.
Hint: similar to 1.4.

3.4 Exercise. For every c > 0,

P

(

sup
k

|fk| ≥ c
)

≤
1

c2
sup

k

E f 2
k .

Prove it.
Hint: similar to 1.5.

Applying it to f − fn (in place of f) we get

(3.5) P

(

sup
k

|fn+k − fn| ≥ c
)

≤
1

c2
sup

k

E |fn+k − fn|
2 .
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3.6 Proposition. The sequence (fn)n converges almost everywhere.

Proof. The differences fn − fn−1 are mutually orthogonal, thus

‖f0‖
2 + ‖f1 − f0‖

2 + · · ·+ ‖fn − fn−1‖
2 = ‖fn‖

2 ≤ ‖f‖2 .

It follows that
∑∞

k=n ‖fk+1 − fk‖
2 → 0 as n → ∞. Therefore supk E |fn+k −

fn|
2 → 0 as n → ∞. By (3.5), P

(

supk |fn+k − fn| ≥ ε
)

→ 0 as n → ∞
for every ε > 0. Similarly to the proof of 2.1 we conclude that (fn(x))n is a
Cauchy sequence for almost all x.

In fact, limn fn = f .

4 Backwards martingale convergence

Given f ∈ L2(0, 1), we consider its orthogonal projection fn to the subspace
of 2−n-periodic functions,

fn(x) = 2−n
∑

k:0<x+2−nk<1

f(x+ 2−nk) for x ∈ (0, 1) .

Note that
fk(x) = 1

2
fk−1(x) + 1

2
fk−1(x+ 2−k)

and moreover,

fk(x) = 2−(k−n)

2k−n

∑

j=1

fn(x+ 2−kj)

for n < k.
The following fact is evident if we are sure that fn is indeed the orthogonal

projection of f . . . but let us prove it anyway.

4.1 Lemma. Let n < k, and ϕ : (0, 1) → R be a 2−k-periodic bounded Borel
function. Then

∫ 1

0

ϕ(x)fn(x) dx =

∫ 1

0

ϕ(x)fk(x) dx .

Proof.
∫ 1

0

ϕ(x)fn(x) dx = 2n

∫ 2−n

0

ϕ(x)fn(x) dx = 2n

2k−n

∑

j=1

∫ j2−k

(j−1)2−k

ϕ(x)fn(x) dx =

= 2k

∫ 2−k

0

ϕ(x)

(

2−(k−n)

2k−n

∑

j=1

fn(x+ j2−k)

)

dx =

= 2k

∫ 2−k

0

ϕ(x)fk(x) dx =

∫ 1

0

ϕ(x)fk(x) dx .
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Treating (0, 1) with Lebesgue measure as a probability space and fn, ϕ
as random variables, we have

E
(

ϕfn

)

= E
(

ϕfk

)

.

In terms of (non-elementary!) conditioning (and binary digits),

fn = gn(βn+1, βn+2, . . . ) , ϕ = ψ(βk+1, βk+2, . . . ) ;

E
(

ψ(βk+1, . . . )gn(βn+1, . . . )
)

= E
(

E
(

ψ(βk+1, . . . )gn(βn+1, . . . )
∣

∣βk+1, . . .
))

=

= E
(

ψ(βk+1, . . . )E
(

gn(βn+1, . . . )
∣

∣βk+1, . . .
))

= E
(

ψ(βk+1, . . . )gk(βk+1, . . . )
)

.

4.2 Exercise. E
(

ϕf 2
n

)

≥ E
(

ϕf 2
k

)

for ϕ(·) ≥ 0.
Prove it.

In fact, E
(

ϕψ(fn)
)

≥ E
(

ϕψ(fk)
)

for convex ψ.

4.3 Lemma.

P

(

max
k=n,...,n+m

|fk| ≥ c
)

≤
1

c2
E f 2

n .

Proof. We introduce events Ak = {|fk| ≥ c, |fk+1| < c, . . . , |fn+m| < c} and
apply 4.2 to their indicators:

E
(

1Ak
f 2

n

)

≥ E
(

1Ak
f 2

k

)

≥ c2P
(

Ak

)

.

Summing up we get
E

(

1Af
2
n

)

≥ c2P
(

A
)

where A = A1 ⊎ · · · ⊎ An = {maxk=n,...,n+m |fk| ≥ c}.

It follows that

P

(

sup
k≥n

|fk| ≥ c
)

≤
1

c2
E f 2

n .

4.4 Exercise. The sequence (fn)n converges almost everywhere.
Prove it.
Hint: similar to 3.6.
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