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1a Conventions, notation, terminology etc.

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the real line
Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {(x1, . . . , xn) : x1, . . . , xn ∈ R}
Thus, Rm+n = Rm × Rn up to canonical isomorphism.1

A ⊂ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∀x (x ∈ A =⇒ x ∈ B)
Thus, (A ⊂ B) ∧ (B ⊂ A) ⇐⇒ (A = B). 2

A ]B . . . . . . . . . . . . . . . . . . just A ∪B when A ∩B = ∅, otherwise undefined.
(1, . . . , n) or (x1, . . . , xn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . finite sequence
(1, 2, . . . ) or (x1, x2, . . . ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . infinite sequence
f : A→ B . . . . . . . . . . . . . . . . . . f ⊂ A×B and ∀x ∈ A ∃ ! y ∈ B (x, y) ∈ f . 3

Tx . . . . . . . . . . . . . . . . . . . . . . . . . the same as T (x) when a mapping T is linear.
|x| (for x ∈ Rn) . . . . . . . . . . . . . . . . . . . . . .

√
x21 + · · ·+ x2n Euclidean norm

〈x, y〉 (for x, y ∈ Rn) . . . . . . . . . . . . . . . . x1y1 + · · ·+ xnyn scalar product
A◦, A (for A ⊂ Rn) . . . . . . . . . . . . . . . . . . . . . . . . . the interior and the closure
near a point . . . . . . . . . . . . . . . . . . . . . . . . . . . in some neighborhood of the point

Index of terminology and notation is often available at the end of a section.

1‘a rule of thumb: there is a canonical isomorphism between X and Y if and only if
you would feel comfortable writing ”X = Y”’ — Reid Barton, see Mathoverflow, What is
the definition of “canonical”?

2Why “⊂” and “$” rather than “⊆” and “⊂”? First, our textbooks do so; second, I
need “⊂” several times a day, while “$” hardly once a month.

3Here B is the codomain, generally not the image of f .

http://mathoverflow.net/questions/19644/what-is-the-definition-of-canonical
http://mathoverflow.net/questions/19644/what-is-the-definition-of-canonical
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1b Linear algebra

Vector space (=linear space) (usually, over R)
Linear operator (=mapping=function) between vector spaces
Isomorphism of vector spaces: a linear bijection.
Basis of a vector space
Dimension of a finite-dimensional vector space: the number of vectors in
every basis.
Two finite-dimensional vector spaces are isomorphic if and only if their di-
mensions are equal.
Subspace of a vector space.
Inner product on a vector space: 〈x, y〉
A basis of a subspace, being a linearly independent system, can be extended
to a basis of the whole finite-dimensional vector space.

1c Topology

A sequence of points of Rn; its convergence, limit
Mapping Rn → Rm; continuity (at a point; on a set)
Cauchy criterion of convergence
Subsequence; Bolzano-Weierstrass theorem
Subset of Rn, its limit points; closed set; bounded set
Compact set
Open set
Closure, boundary, interior
Open cover; Heine-Borel theorem
Open ball, closed ball, sphere

1c1 Exercise. Prove or disprove: a mapping f : R2 → R is continuous if and
only if it is continuous in each coordinate separately; that is, f(x, ·) : R→ R
is continuous for every x, and f(·, y) : R→ R is continuous for every y.

1c2 Exercise. (a) Prove that finite union of closed sets is closed, but union
of countably many closed sets need not be closed; moreover, every open set
in Rn is such union. However, intersection of closed sets is always closed.

(b) Formulate and prove the dual statement (take the complement).

1c3 Exercise. Prove that a set K ⊂ Rn is compact if and only if every
continuous function f : K → R is bounded.
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1c4 Exercise. Prove that a continuous image of a compact set is compact,
but a continuous image of a bounded set need not be bounded, and a con-
tinuous image of a closed set need not be closed; moreover, every open set in
Rn is a continuous image of a closed set.1

1c5 Exercise. Prove that every decreasing sequence of nonempty compact
sets has a nonempty intersection. Does it hold for closed sets? for open sets?

1c6 Exercise. Let X ⊂ Rn be a closed set, f : X → Rm a continuous
mapping. Prove that its graph Γf = {(x, f(x)) : x ∈ X} is a closed subset
of Rn+m. Is the converse true?

1c7 Exercise. Formulate accurately and prove: composition of two contin-
uous mappings is continuous.

1c8 Exercise. Prove existence of a bijection f from the open unit ball {x :
|x| < 1} ⊂ Rn onto the whole Rn such that f and f−1 are continuous. (Such
mappings are called homeomorphisms). What about the closed ball?

1c9 Exercise. Let f : R → R be a continuous bijection. Prove that f−1 :
R→ R is continuous.

1c10 Exercise. Give an example of a continuous bijection f : [0, 1)→ S1 =
{(x, y) : x2 + y2 = 1} ⊂ R2 such that f−1 : S1 → [0, 1) fails to be continuous.
The same for f : [0,∞)→ S1.

1c11 Exercise. Give an example of a continuous bijec-
tion f : R → A = {(x, y) : (|x| − 1)2 + y2 = 1} ⊂ R2

such that f−1 : A→ R fails to be continuous.

1c12 Exercise. Give an example of a continuous bijection
f : R2 → B = {(x, y, z) : (

√
x2 + y2 − 1)2 + z2 = 1} ⊂ R3

such that f−1 : B → R2 fails to be continuous.2

1Hint: the closed set need not be connected.
2What about a continuous bijection f : Rn → Rn ? In fact, f−1 is continuous, which

can be proved using powerful means of topology (the Brouwer invariance of domain theo-
rem); we’ll return to this point later.
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1d Differentiation

f : Rn → Rm ;
f(x) = f(x0) + A(x− x0) + o(|x− x0|) , or

f(x+ h) = f(x) + Ah+ o(|h|) ;

A a matrix, or a linear mapping Rn → Rm

A = (Df)x = Df(x) = df(x) = (etc) : Rn → Rm derivative, or differential
Ah = A(h) = (Dhf)x = (Df)xh = Df(x)h = df(x, h) = (etc) ∈ Rm

derivative along vector
Dkf = Dekf ∈ Rm, ek = (0, . . . , 0, 1, 0, . . . , 0) partial derivative
(Df)xh = h1(D1f)x + · · ·+ hn(Dnf)x ∈ Rm since h = h1e1 + · · ·+ hnen
(Df)x =

(
(D1f)x, . . . , (Dnf)x

)
(columns of matrix)

f(x) =
(
f1(x)
...

fm(x)

)
; (Df)x =

(
(Df1)x
...

(Dfm)x

)
(rows of matrix)

(Df)x =
(
(Djfi)x

)
i=1,...,m,j=1,...,n (elements of matrix)(

D(f + g)
)
x = (Df)x + (Dg)x,

(
D(cf)

)
x = c(Df)x linearity of D(

D(g ◦ f)
)
x = (Dg)f(x)(Df)x chain rule

For m = 1 only: (Dhf)x = 〈∇f(x), h〉; ∇f(x) ∈ Rn gradient
∇
(
f(x)g(x)

)
= f(x)∇g(x) + g(x)∇f(x) product rule

For n = 1 only: (Df)xh = hf ′(x), f ′(x) ∈ Rm, h ∈ R.

If D1f, . . . , Dnf exist and are continuous, then Df exists (and is continu-
ous).1

If DiDjf and DjDif exist and are continuous, then DiDjf = DjDif . 2

1d1 Exercise. Generalize the product rule3

(a) for the scalar product 〈f(·), g(·)〉 where f, g : Rn → Rm;
(b) for the pointwise product fg where f : Rn → R and g : Rn → Rm.

some clarifications

For Df to be defined at x it is necessary that f is defined near x. If f is
defined on a set with empty interior, we have no Df . For example, consider
the mapping from the cylinder C = {(x, y, z) : x2 + y2 = 1, −1 < z < 1}
to the sphere S = {(x, y, z) : x2 + y2 + x2 = 1}, defined by f(x, y, z) =(
x
√

1− z2, y
√

1− z2, z
)
. As you’ll see in Analysis-4, in this case (Df)x for

1Moreover, if D1f, . . . ,Dnf exist near x0 and are continuous at x0, then Df exists at
x0. (Zorich, Sect. 8.4.2, Th. 2.)

2Moreover, if DiDjf exists near x0 and is continuous at x0, then DjDif exists at x0,
and (DiDjf)x0

= (DjDif)x0
. (Courant, Sect. 1.4d.)

3More generally: Shurman Ex.4.4.8,4.4.9.
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x ∈ C is a linear operator1 from the tangent plane TxC to C to the tangent
plane Tf(x)S to S. But it is not a 3 × 3 matrix, and is beyond Analysis-3.
Never mind (until you reach Analysis-4). But note that linear operators will
be more useful than matrices.2

For f : Rn → Rm we have Df : Rn → Rn → Rm (“currying”), in the
sense that Df : x 7→

(
h 7→ (Df)xh

)
. Sometimes we treat it as a function of

x, sometimes as a function of h. For example, it is usual to say that “if f
is linear then Df = f”. Really?! For m = n = 1 we know that (ex)′ = ex,
while x′ 6= x, x′ = 1 (a constant). What happens?

For f(x) = ex we have (Df)x = f ′(x) = ex, but this ex is treated as a
1× 1 matrix (ex), thus, the linear mapping h 7→ exh;

D
(
x 7→ ex

)
: x 7→

(
h 7→ exh

)
.

For g(x) = x we have (Dg)x = g′(x) = 1 : h 7→ 1 · h;

D(x 7→ x︸ ︷︷ ︸
id

) : x 7→ (h 7→ h︸ ︷︷ ︸
id

)︸ ︷︷ ︸
const

.

In some sense this is id, and in another sense this is const.
It is also usual to say that “the differential of the composition is the

composition of differentials”. Really?! Form = n = 1 we know that (esinx)′ =
esinx cosx 6= ecosx. Yes, but one means that, given f(x) = y and g(y) = z, we
have

(
D(g ◦ f)

)
x = (Dg)y ◦ (Df)x (the chain rule); and it is usual to write

AB rather than A ◦B when A,B are linear operators.

1d2 Exercise. Formulate accurately and prove the following two claims
about a differentiable mapping f : Rn → Rm:

(a) f is linear if and only if Df = f ;
(b) f is linear if and only if f(0) = 0 and Df is constant.

1d3 Exercise.
Consider functions f : R2 \ {(0, 0)} → R constant on all
rays from the origin; that is, f(r cosϕ, r sinϕ) = h(ϕ)
for some h : R→ R, h(ϕ + 2π) = h(ϕ). Assume that h
is continuous.

(a) Prove that the iterated limits

lim
x→0+

lim
y→0+

f(x, y) and lim
y→0+

lim
x→0+

f(x, y)

1Not isometric, but preserves the area.
2Zorich requires f to be defined near x in Sect. 8.2.2 and later, but not in Sect. 8.2.1

(thus, Df need not be unique in 8.2.1).
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exist and are equal to h(0) and h(π/2) respectively.
(b) prove that the “full” limit

lim
(x,y)→(0,0),x>0,y>0

f(x, y)

exists if and only if h is constant on [0, π/2].
(c) It can happen that the two iterated limits exist and are equal, but the

“full” limit does not exist. Give an example.
(d) The same as (c) and in addition, f is a rational function (that is, the

ratio of two polynomials).1

(e) Generalize all that to arbitrary (not just positive) x, y.

1d4 Exercise.
Consider functions g : R2 \ {(0, 0)} → R of the form
g(x, y) = f(x2, y) where f is as in 1d3.

(a) Prove that the limit

lim
t→0+

g(ta, tb)

exists for every (a, b) 6= (0, 0); calculate the limit in terms of the function h
of 1d3.

(b) It can happen that the “full” limit

lim
(x,y)→(0,0)

g(x, y)

does not exist. Give an example.

1d5 Exercise. 2 It can happen that d
dt

∣∣
t=0
f(x0 + th) exists for all h but is

not linear in h. (Of course, such f cannot be differentiable at x0.) Give an
example.3

1d6 Exercise. 4 It can happen that d
dt

∣∣
t=0
f(x0 + th) exists for all h and is

linear in h and nevertheless f is not differentiable at x0. Give an example.5

“The multivariate derivative is truly a pan-dimensional construct,
not just an amalgamation of cross sectional data.”

(Shurman, p.156)

1Hint: try x2 + y2 in the denominator.
2Shurman, Ex.4.8.10.
3Hint: try (x, y) 7→ f(x, y)

√
x2 + y2 for f as in 1d3.

4Shurman, Ex.4.8.11.
5Hint: try (x, y) 7→ f(x, y)

√
x2 + y2 for f as in 1d4.
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1e Textbooks to 1b, 1c, 1d

∗ R. Courant, F. John “Introduction to calculus and analysis” vol. 2,
Springer 1989.

∗ W. Fleming “Functions of several variables” Springer 1977.

∗ J. Hubbard, B. Hubbard “Vector calculus, linear algebra, and differen-
tial forms” Prentice-Hall 2002.

∗ S. Lang “Undergraduate analysis” Springer 1997.

∗ T. Shifrin “Multivariable mathematics” Wiley 2005.

∗ J. Shurman “Multivariable calculus” (online only).

∗ V. Zorich “Mathematical analysis I” Springer 2004.

Textbook linear algebra topology differentiation

Courant 2.1–2.3 1.1–1.3; A.1–A.3 1.4–1.7
Fleming 1.2–1.3 1.4; 2.1–2.5; ≈ 2.8, 2.11 3.1–3.3; 4.1–4.4
Hubbard 1.4 1.5–1.6 1.7–1.9

Lang 6.1–6.3 6.4–7.2; 8 15.1–15.2; ≈ 17
Shifrin 1; 4.3; 5.1–5.3 2; 5.1 3

Shurman 2.1–2.2; 3.1–3.2; 3.5–3.7 2.3–2.4 4.1–4.7.1; 4.8
Zorich 8.1 7 8.2–8.4.4

1f Change of basis

linear algebra

Let V be an n-dimensional vector space, and (α1, . . . , αn) a basis of V .
Then each v ∈ V is x1α1 + · · · + xnαn for some x1, . . . , xn ∈ R, uniquely
determined by v, and the mapping Lα : Rn → V defined by Lα(x1, . . . , xn) =
x1α1 + · · ·+xnαn, is an isomorphism (of vector spaces). One says that these
x1, . . . , xn are the coordinates of v w.r.t. this basis, and x = (x1, . . . , xn) ∈ Rn

is the coordinate vector of v relative to this basis.
In particular, if V = Rn and (α1, . . . , αn) is the standard basis (e1, . . . , en)

of Rn, then Lα = id, that is, Lα(x1, . . . , xn) = (x1, . . . , xn). In general,
Lα(ei) = αi for i = 1, . . . , n.

Another basis (β1, . . . , βn) of V leads to another isomorphism Lβ : Rn →
V , Lβ(ei) = βi; and then we have

Rn

Lα

~~

Lβ

  
V

LβL
−1
α

// V

ei>
Lα

��

�
Lβ

��
αi

�
LβL

−1
α

// βi
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That is, LβL
−1
α : V → V , LβL

−1
α αi = βi. This is the so-called active transfor-

mation of V that transforms (α1, . . . , αn) to (β1, . . . , βn). On the other hand
we have

Rn

Lα   

L−1
β Lα

// Rn

Lβ~~
V

x�

Lα ��

� L−1
β Lα

// y?

Lβ��
v

x1α1+· · ·+xnαn = v = y1β1+· · ·+ynβn; L−1β Lα : Rn → Rn, L−1β Lα(x1, . . . , xn) =
(y1, . . . , yn). This is the so-called passive transformation of Rn that trans-
forms the coordinate vector (of arbitrary v ∈ V ) relative to one basis into
the coordinate vector (of the same v) relative to the other basis.

Let A = (ai,j)i,j be the matrix of the operator L−1β Lα : Rn → Rn;
that is, yi =

∑
j ai,jxj. Then

∑
j xjαj = v =

∑
i yiβi =

∑
i,j ai,jxjβi =∑

j xj
∑

i ai,jβi, that is,

αj =
∑
i

ai,jβi .

We see that A describes both the passive transformation and the relation
between the two bases.1

1f1 Exercise. 2 Consider the 2-dimensional vector subspace V = {(x, y, z) :
x+ y + z = 0} of R3, and two bases:

α1 = (1,−1, 0) ,

α2 = (1, 0,−1) ,
and

β1 = (0, 1,−1) ,

β2 = (1, 1,−2) .

Find the change-of-basis matrix A.

1f2 Exercise. Consider the 3-dimensional vector space V of all functions
P : R→ R such that ∀x P ′′′(x) = 0, and two coordinate systems on V :

P 7→
(
P (0), P ′(0), P ′′(0)

)
and P 7→

(
P (−1), P (0), P (1)

)
.

Find the two bases of V (that correspond to these coordinate systems), and
the change-of-basis matrix.

1See also: “Change of basis” and “Active and passive transformation” in Wikipedia;
Hubbard Sect. 2.6.

2Hubbard 2.6.17. A quote therefrom:
Note that unlike R3, for which the “obvious” basis is the standard basis vectors, the
subspace V ⊂ R3 in Example 2.6.17 does not come with a distinguished basis.

http://en.wikipedia.org/wiki/Change_of_basis
http://en.wikipedia.org/wiki/Active_and_passive_transformation
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topology

We may transfer all topological notions from Rn to arbitrary n-dimen-
sional vector space. For example, consider the space V of quadratic polynomi-
als (Exer. 1f2); given P, Pk ∈ V , we may interpret Pk → P as Pk(0)→ P (0),
P ′k(0) → P ′(0), P ′′k (0) → P ′′(0). Or alternatively, as Pk(−1) → P (−1),
Pk(0)→ P (0), Pk(1)→ P (1). Is it the same? Yes, it is, as we’ll see soon.

1f3 Exercise. (a) Every linear mapping Rn → Rm is continuous;
(b) every invertible linear mapping Rn → Rn is a homeomorphism (that

is, continuous invertible mapping with continuous inverse).
Prove it.

1f4 Exercise. Every homeomorphism ϕ : Rn → Rn preserves topological
notions; namely:

xk → x ⇐⇒ ϕ(xk)→ ϕ(x);
A is open ⇐⇒ ϕ(A) is open; and the same for “closed”, and “com-

pact”;
ϕ(A◦) =

(
ϕ(A)

)◦; ϕ(A) = ϕ(A); and ϕ(∂A) = ∂
(
ϕ(A)

)
(the boundary,

∂A = A \ A◦).
Prove it.

We apply this, in particular, to ϕ = L−1β Lα, and conclude.

Topological notions in Rn are insensitive to a change of basis.
Topological notions are well-defined in every n-dimensional vector space,
and preserved by isomorphisms of these spaces.

1f5 Exercise. Every (vector) subspace of a finite-dimensional vector space
is closed (topologically).

Prove it.1,2

A mapping f : Rn → Rm relates two spaces; accordingly, we introduce
two homeomorphisms, ϕ : Rn → Rn and ψ : Rm → Rm,

Rn f //

ϕ
��

Rm

ψ
��

Rn ψ◦f◦ϕ−1
// Rm

getting a mapping g = ψ ◦ f ◦ ϕ−1 : Rn → Rm.

1Hint: choose a basis.
2This claim fails in infinite dimension.
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1f6 Exercise. (a)
(
f is continuous

)
⇐⇒

(
g is continuous

)
;

(b) ∀x ∈ Rn
(
f is continuous at x ⇐⇒ g is continuous at ϕ(x)

)
;

(c) ∀x ∈ Rn
(
f is continuous near x ⇐⇒ g is continuous near ϕ(x)

)
.

Prove it.

Thus, when checking continuity of a given mapping, we may choose at
will a pair of bases. This applies to any pair of finite-dimensional vector
spaces. The case m = n is not an exception; for f : Rn → Rn we still may
use two different bases, thus treating f as a mapping between two copies of
Rn.

metric

A Euclidean metric on an n-dimensional vector space V may be defined
equivalently as

∗ an inner product x, y 7→ 〈x, y〉 on V ;

∗ a norm x 7→ |x| on V that corresponds to some inner product by
|x|2 = 〈x, x〉; in this case the norm | · | is called Euclidean, and 〈x, y〉 =
1
2

(
|x+ y|2 − |x|2 − |y|2

)
= 1

4

(
|x+ y|2 − |x− y|2

)
;

∗ distance function x, y 7→ |x − y| that corresponds to some Euclidean
norm | · |.

On Rn we have the standard Euclidean metric, and the standard basis of
Rn is orthonormal in this metric.

An arbitrary basis (α1, . . . , αn) of a vector space V leads to the Euclidean
metric |x1α1 + · · ·+xnαn| =

√
x21 + · · ·+ x2n, and is orthonormal in this (and

only this) metric. On the other hand, for arbitrary Euclidean metric on V
there exists an orthonormal basis (due to the orthogonalization process).

An n-dimensional vector space endowed with a Euclidean metric is called
n-dimensional Euclidean space.

Let E be an n-dimensional Euclidean space. A basis (α1, . . . , αn) of E is
orthonormal if and only if the operator Lα : (x1, . . . , xn) 7→ x1α1 + · · ·+xnαn
is isometric, that is, ∀x ∈ Rn |Lαx| = |x|. By isomorphism of Euclidean
spaces we mean an isometric invertible linear operator. All n-dimensional
Euclidean spaces are isomorphic (to each other, and to Rn).

For arbitrary (not just isometric) invertible linear operator L : E1 → E2

between Euclidean spaces there exist a, b ∈ (0,∞) such that

(1f7) ∀x ∈ E1 a|x| ≤ |Lx| ≤ b|x| .

Indeed, the ball B = {x ∈ E1 : |x| ≤ 1} is compact, therefore L(B) ⊂ E2 is
compact, which gives b <∞. The same argument applies to L−1 : E2 → E1,
giving 1/a <∞.
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It follows that two arbitrary Euclidean norms | · |1, | · |2 on a n-dimensional
vector space V are equivalent:1

(1f8) ∃a, b ∈ (0,∞) ∀x ∈ V a|x|1 ≤ |x|2 ≤ b|x|1 .

Proof: apply 1f7 to E1 = (V, | · |1), E2 = (V, | · |2) and L = id : x 7→ x.

1f9 Exercise. Find an orthonormal basis in the space V of 1f1 with the
standard Euclidean metric inherited from R3.

1f10 Exercise. Is it possible to endow V of 1f2 with a Euclidean metric
such that both bases (mentioned in 1f2) are orthonormal?

space of matrices or linear operators

1f11 Definition. The norm ‖A‖ of a linear operator A : E1 → E2 between
finite-dimensional Euclidean vector spaces E1, E2 is

‖A‖ = sup
x∈E1,x 6=0

|Ax|
|x|

.

Also,
‖A‖ = max

|x|≤1
|Ax|

(think, why); this is the maximum of a continuous function on a compact
set.

The operator norm ‖A‖ of a matrix A : Rn → Rm is, by definition, the
norm of the corresponding operator.

1f12 Exercise. If a matrix A = (ai,j)i,j is diagonal then

‖A‖ = max
i=1,...,min(m,n)

|ai,i|.

Prove it.

The set L(Rn → Rm) of all matrices evidently is an mn-dimensional vec-
tor space. Does the operator norm turn it to a Euclidean space? No, it does
not. Even if we restrict ourselves to L(R2 → R2), and even to its 2-dimen-
sional subspace of diagonal matrices, we get (by 1f12, up to isomorphism)
R2 with the norm

‖(s, t)‖ = max(|s|, |t|) ,
1In fact, two norms (Euclidean or not) are always equivalent in finite dimension (but

not in infinite dimension).
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its unit ball {x : ‖x‖ ≤ 1} being the square [−1, 1]× [−1, 1]. This is not the
Euclidean plane! For two non-collinear vectors a = (1, 1) and b = (1,−1) we
have ‖a‖ = 1, ‖b‖ = 1 and ‖a+b‖ = 2, which never happens on the Euclidean
plane. Also, the “parallelogram equality” |a − b|2 + |a + b|2 = 2|a|2 + 2|b|2
holds for arbitrary vectors a, b of a Euclidean space, but fails for the operator
norm.

1f13 Exercise. Prove that ‖ · ‖ is a norm on L(Rn → Rm), that is,

‖tA‖ = |t| · ‖A‖ for all A ∈ L(Rn → Rm), t ∈ R ;

‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ L(Rn → Rm) ;

‖A‖ > 0 whenever A 6= 0 .

1f14 Exercise. Consider the composition BA : E1 → E3 of two linear op-
erators A : E1 → E2 and B : E2 → E3 between Euclidean spaces E1, E2, E3;
prove that ‖BA‖ ≤ ‖B‖ · ‖A‖.

Treating a matrix as just mn numbers, we have a Euclidean norm, the
so-called Hilbert-Schmidt norm ‖A‖HS of a matrix A = (ai,j)i,j:
‖A‖HS =

(∑
i,j a

2
i,j

)
1/2.

1f15 Exercise. (a) ‖A‖HS =
√

trace(A∗A);
(b) ‖A‖ ≤ ‖A‖HS ≤

√
n‖A‖.1

Prove it.

Thus, the operator norm is equivalent to the Euclidean norm; both may
be used when dealing with topological notions in L(Rn → Rm).

1f16 Exercise. The following conditions on matrices A,Ak ∈ L(Rn → Rm)
are equivalent:

(a) Ak → A;
(b) all elements of Ak converge to the corresponding elements of A; that

is, (Ak)i,j → Ai,j as k →∞ for all i, j.
Prove it.

1f17 Exercise. In the situation of 1f14 prove that BA is a continuous func-
tion of A,B, in two ways (via 1f14, and via 1f16).

1Hint to ‖A‖ ≤ ‖A‖HS: denoting the rows of A by r1, . . . , rm ∈ Rn we have Ax =( 〈r1,x〉
...

〈rm,x〉

)
. Hint to ‖A‖HS ≤

√
n‖A‖: denoting the columns of A by c1, . . . , cn ∈ Rm we

have |cj | ≤ ‖A‖ for each j = 1, . . . , n.
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1f18 Exercise. (a) Determinant is a continuous function A 7→ detA on
L(Rn → Rn);

(b) invertible operators are an open set;
(c) the mapping A 7→ A−1 is continuous on this open set.

Prove it.1

1f19 Exercise. If A ∈ L(Rn → Rn) satisfies ‖A‖ < 1, then
(a) the series id−A+ A2 − A3 + . . . converges in L(Rn → Rn);
(b) the sum S of this series satisfies (id +A)S = id, S(id +A) = id; thus,

id +A is invertible;
(c) det(id +A) > 0.

Prove it.2

differentiation

Looking at the definition of (Df)x for f : Rn → R,

f(x+ h) = f(x) + (Df)xh+ o(|h|) ,

we observe that it does not involve any basis. True, it involves the Euclidean
norm; but the notion o(|h|) is insensitive to the choice of a norm due to (1f8),
and we may write o(h) instead of o(|h|).

For f : Rn → Rm, two norms appear:

|f(x+ h)− f(x)− (Df)xh|Rm
|h|Rn

→ 0 as h→ 0 ,

and still, (1f8) ensures that both norms do not matter.

When differentiating a given mapping, we may choose at will a pair of
bases. This applies to any pair of finite-dimensional vector spaces.

Here, by “differentiating” we mean checking differentiability and calcu-
lating the differential (interpreted as a linear operator, not matrix).

In contrast, partial derivatives (elements of the matrix of the linear oper-
ator) depend on the bases. Moreover, sometimes the partial derivative exist
but the differential does not exist.

1f20 Exercise. It can happen that both partial derivatives of f : R2 → R at
(0, 0) vanish in the standard basis of R2, but do not vanish in another basis.
Give an example.3

1Hint: recall the algebraic formulas for detA and A−1.
2Hint: (c) consider det(id +tA) for t ∈ [0, 1].
3Hint: similar to 1d5.
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Looking at the definition of the gradient,

〈∇f(x), h〉 = (Dhf)x for f : Rn → R ,

we observe that it does not involve any basis, but involves the Euclidean
metric. And indeed, the gradient depends on the choice of the metric. It
is well-defined for differentiable real-valued functions on a Euclidean space.
Any orthonormal basis may be used equally well.

1f21 Exercise. On the space V of 1f2 consider the function f : P 7→∫ 1

−1 P (t) dt. Find ∇f(0) twice, in the two bases mentioned in 1f2 (that is, rel-
ative to the two corresponding Euclidean metrics). Did you get two different
elements of V ?

1f22 Definition. Let U ⊂ Rn be an open set. A differentiable mapping
f : U → Rm is continuously differentiable if the mapping Df is continuous
(from U to L(Rn,Rm)). The set of all continuously differentiable mappings
U → Rm is denoted by C1(U → Rm). In particular, C1(U) = C1(U → R).

Here Rn and Rm may be replaced with finite-dimensional vector spaces.
Note that C1(U → Rm) is a vector space, and C1(U) is an algebra:

fg ∈ C1(U) for all f, g ∈ C1(U).

1f23 Exercise. For f ∈ C1(U → Rm) and g ∈ C1(Rm → R`) prove that
g ◦ f ∈ C1(U → R`).1

1f24 Exercise. A mapping f is continuously differentiable if and only if all
parial derivativesDifj exist and are continuous. (Here f(x) =

(
f1(x), . . . , fm(x)

)
.)

Prove it.

1f25 Exercise. (a) Let f ∈ C1(U) and g ∈ C1(U → Rm); prove that
fg ∈ C1(U → Rm) (pointwise product).

(b) Let f, g ∈ C1(U → Rm); prove that 〈f(·), g(·)〉 ∈ C1(U) (scalar
product).2

Below, by “differentiate” I mean: (1) find the derivative at every point of
differentiability, and (2) prove non-differentiability at every other point.

1f26 Exercise. (a) Differentiate the mapping R2 3 (r, θ) 7→ (r cos θ, r sin θ) ∈
R2.

(b) Differentiate the function f : (0,∞) × R → R defined by f(r, θ) =
g(r cos θ, r sin θ) for a given differentiable g : R2 → R.

1Hint: chain rule, 1c7 and 1f17.
2Hint: use 1d1.
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(c) For f, g as in (b) prove that(
∂g

∂x

)2

+

(
∂g

∂y

)2

=

(
∂f

∂r

)2

+
1

r2

(
∂f

∂θ

)2

whenever x = r cos θ, y = r sin θ, r > 0.

1f27 Exercise. 1 (a) Determinant is a continuously differentiable function
f : A 7→ detA on L(Rn → Rn);

(b) (Df)id(H) = tr(H) for all H ∈ L(Rn → Rn);
(c) (D log |f |)A(H) = tr(A−1H) for allH ∈ L(Rn → Rn) and all invertible

A ∈ L(Rn → Rn).
Prove it.

Thus,
log | det(A+H)| ≈ log | detA|+ tr(A−1H)

for small H.

1f28 Exercise. Let f : Rn → Rm be differentiable and symmetric in the
sense that f(x1, . . . , xn) is insensitive to any permutation of x1, . . . , xn. Prove
that

(a) (Dif)(x1,...,xn) = (Djf)(x1,...,xn) whenever xi = xj;
(b) the operator (Df)(x1,...,xn) cannot be one-to-one if some of x1, . . . , xn

are equal.

1f29 Exercise. Consider the vector space Vn+1 = {f : f (n+1)(·) = 0} and
the mapping ϕ : Rn → Vn+1,

ϕ(t1, . . . , tn) : t 7→ (t− t1) . . . (t− tn) .

Prove that
(a) the operator (Dϕ)(t1,...,tn) cannot be invertible if some of t1, . . . , tn are

equal;
(b) the operator (Dϕ)(t1,...,tn) is invertible whenever t1, . . . , tn are pairwise

distinct;
(c) dim(Dϕ)(t1,...,tn)(Rn) = #{t1, . . . , tn};

that is, the dimension of the image is equal to the number of distinct coor-
dinates.

1Shurman:Ex.4.4.9
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from mean value to finite increment

Recall the 1-dimensional mean value theorem: if f : [a, b]→ R is contin-
uous on [a, b] and differentiable on (a, b), then f(b)− f(a) = f ′(t)(b− a) for
some t ∈ (a, b).

Applying this to the function t 7→ f
(
a+t(b−a)

)
we get the n-dimensional

mean value theorem: if G ⊂ Rn is open, f : G → R is continuous on G and
differentiable on G, and a, b ∈ G are such that a + t(b − a) ∈ G for all
t ∈ (0, 1), then

f(b)− f(a) = (Df)a+t(b−a)(b− a) = 〈∇f
(
a+ t(b− a)

)
, b− a〉

for some t ∈ (0, 1); and therefore

(1f30) |f(b)− f(a)| ≤ |b− a| sup
t∈(0,1)

‖(Df)a+t(b−a)‖ =

= |b− a| sup
t∈(0,1)

|∇f
(
a+ t(b− a)

)
| .

Given open G ⊂ Rn; a, b as before; and f : G → Rm continuous on G
and differentiable on G, f(x) =

(
f1(x), . . . , fm(x)

)
, we may apply (1f30) to

f1 and get
|f1(b)− f1(a)| ≤ |b− a| sup

t∈(0,1)
‖(Df)a+t(b−a)‖︸ ︷︷ ︸

C

since ‖(Df1)x‖ ≤
∥∥∥( (Df1)x

...
(Dfm)x

)∥∥∥ = ‖(Df)x‖. The same holds for f2, . . . , fm,

which implies easily |f(b)− f(a)| ≤ C
√
n(b− a); but we can get more,

(1f31) |f(b)− f(a)| ≤ C|b− a| , finite increment theorem1

just by changing the basis in Rm such that f(b)− f(a) is proportional to the
first basis vector!

1Zorich vol. 2, Sect. 10.4.1, Th. 1.
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