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Iterated integral is an indispensable tool for calculating multidimensional
integrals (in particular, volumes).

5a Introduction

It is easy to see that

ε2
∑
k,l∈Z

f(εk, εl)→
∫
R2

f as ε→ 0

for every continuous f : R2 → R with bounded support. The double sum-
mation is evidently equivalent to iterated summation,

ε2
∑
k,l∈Z

f(εk, εl) = ε
∑
k∈Z

(
ε
∑
l∈Z

f(εk, εl)

)
,

which suggests that ∫
R2

f =

∫
R

(∫
R
f(x, y) dy

)
dx ,

(alternative notation:
∫∫

f(x, y) dxdy =
∫

dx
∫

dy f(x, y), and the like), that
is,

(5a1)

∫
R2

f =

∫
R

(
x 7→

∫
R
f(x, ·)

)
,

where f(x, ·) : R→ R is defined by f(x, ·) : y 7→ f(x, y).
It should be very useful, to integrate with respect to one variable at a

time.
Related problems:
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∗ does integrability of f imply integrability of f(x, ·) for every x?

∗ is the function x 7→
∫
R f(x, ·) integrable?

∗ is the two-dimensional integral equal to the iterated integral?

∗ if the iterated integral is well-defined, does it follow that f is integrable?

And, of course, we need a multidimensional theory; R2 is only the simplest
case.

Some authors1 impose on f additional requirements. Others2 consider
all integrable functions f ; we do so, too, in Sect. 5d, but first we consider
simpler cases (Sect. 5b) and counterexamples (Sect. 5c).

5b Simple cases

step functions

First we consider a step function f : R2 → R, treated as in Sect. 4g: a
linear combination of indicator functions of boxes (and boxes of volume zero
are allowed).

Given B = [a1, b1]× [a2, b2] and f = 1lB, we have

f(x, ·) = 1l[a1,b1](x)1l[a2,b2] ;

∫
R
f(x, ·) = (b2 − a2)1l[a1,b1](x) ;∫

R

(
x 7→

∫
R
f(x, ·)

)
= (b1 − a1)(b2 − a2) = v(B) =

∫
R2

f .

(Alternative notation:
∫

dy f(x, y) = (b2 − a2)1l[a1,b1](x);
∫

dx
∫

dy f(x, y) =
v(B) =

∫∫
f(x, y) dxdy.)

Similarly, given a box B ⊂ Rm+n, we have B = B1 × B2 for some boxes
B1 ⊂ Rm, B2 ⊂ Rn; thus, f(x, ·) = 1lB1(x)1lB2 ;

∫
Rn f(x, ·) = v(B2)1lB1(x);∫

Rm

(
x 7→

∫
Rn

f(x, ·)
)

= v(B1)v(B2) = v(B) =

∫
Rm+n

f .

By linearity, ∫
Rm

(
x 7→

∫
Rn

f(x, ·)
)

=

∫
Rm+n

f

for every step function f : Rm+n → R; in this case, all sections f(x, ·) are step
functions, and the function x 7→

∫
Rn f(x, ·) is also a step function. Similarly,

(5b1)

∫
Rn

(
y 7→

∫
Rm

f(·, y)

)
=

∫
Rm+n

f =

∫
Rm

(
x 7→

∫
Rn

f(x, ·)
)
.

1Lang, Shifrin, Shurman.
2Burkill, Hubbard, Zorich.
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continuous functions

Now we consider a continuous function f : Rm+n → R with bounded
support. Integrability of f is ensured by 4f1(a), as well as integrability of
f(x, ·).

If xn → x, then f(xn, ·) → f(x, ·) uniformly (due to uniform continuity
of f), whence by 4e6

∫
Rn f(xn, ·) →

∫
Rn f(x, ·); we see that the function

x 7→
∫
Rn f(x, ·) is continuous. Clearly it has a bounded support, and therefore

is integrable.
Now we use the sandwich. Given ε > 0, by 4g8 there exist step functions

g, h such that g ≤ f ≤ h and
∫
h −

∫
g ≤ ε. 1 We have g(x, ·) ≤ f(x, ·) ≤

h(x, ·) everywhere;
∫
Rn g(x, ·) ≤

∫
Rn f(x, ·) ≤

∫
Rn h(x, ·) for all x. On one

hand,∫
Rm+n

g =

∫
Rm

(
x 7→

∫
Rn

g(x, ·)
)
≤
∫
Rm

(
x 7→

∫
Rn

f(x, ·)
)
≤

≤
∫
Rm

(
x 7→

∫
Rn

h(x, ·)
)

=

∫
Rm+n

h ;

on the other hand,
∫
Rm+n g ≤

∫
Rm+n f ≤

∫
Rm+n h. We see that∣∣∣∣ ∫

Rm+n

f −
∫
Rm

(
x 7→

∫
Rn

f(x, ·)
)∣∣∣∣ ≤ ε ,

since both numbers belong to the interval [
∫
g,
∫
h] of length ≤ ε. We con-

clude that (5b1) holds for every continuous f with bounded support.

5b2 Exercise. Prove that∫
Rm+n

f(x1, . . . , xm)g(y1, . . . , yn) dx1 . . . dxm dy1 . . . dyn =

=

(∫
Rm

f(x1, . . . , xm) dx1 . . . dxm

)(∫
Rn

g(y1, . . . , yn) dy1 . . . dyn

)
for continuous functions f : Rm → R, g : Rn → R with bounded support.

5b3 Exercise. Calculate each integral in two ways:
(a)
∫ 1

0
dx
∫ 1

0
dy ex+y;

(b)
∫ 1

0
dy
∫ π/2
0

dx xy cos(x+ y).

1This argument applies to all integrable f , of course; but (for now) the continuity
ensures existence of the iterated integral.
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5b4 Exercise. Calculate integrals
(a)
∫
[0,1]n

(x21 + · · ·+ x2n) dx1 . . . dxn;

(b)
∫
[0,1]n

(x1 + · · ·+ xn)2 dx1 . . . dxn.

5b5 Exercise. For every continuous function f : R2 → R with bounded
support, ∫∫

R2

f(x, y + sinx) dxdy =

∫∫
R2

f(x, y) dxdy .

Prove it.

≈

5b6 Exercise. For every continuous function f : R2 → R with bounded
support, ∫∫

R2

f
(
x3 + x,

y

3x2 + 1

)
dxdy =

∫∫
R2

f(x, y) dxdy .

Prove it.
≈

5c Some counterexamples

5c1 Example. 1 Integrability of f does not imply integrability of f(x, ·) for
every x.

Define f : R2 → R by

f(x, y) =

{
1 if x = 0 and y ∈ [0, 1] is rational,

0 otherwise.

Then f = 0 outside a set {0}× [0, 1] of area 0, therefore f (being negligible)
is integrable. However, f(0, ·) is not integrable. On the other hand, f(·, y)
(being negligible) is integrable for every y, and

∫
R dy

∫
R dx f(x, y) = 0 =∫

R2 f .

5c2 Example. Existence of the iterated integral2 does not imply bound-
edness (the more so, integrability) of f , even if f is positive and symmet-
ric in the sense that f(x, y) = f(y, x) (and therefore the iterated integrals∫

dx
∫

dy f(x, y),
∫

dy
∫

dx f(x, y) are both well-defined, and equal).

1Shifrin, Example 5 on p. 281.
2That is, integrability of f(x, ·) for all x and integrability of the function x 7→

∫
f(x, ·).
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Define f : R2 → R by

f(x, y) =

{
1√
x+y

if x, y ∈ (0, 1),

0 otherwise

and observe that∫
R
f(x, ·) =

∫ 1

0

dy√
x+ y

= 2
√
x+ y

∣∣y=1

y=0
= 2
√
x+ 1− 2

√
x

for x ∈ (0, 1), evidently an integrable function.

5c3 Example. 1 Existence of both iterated integrals does not imply their
equality, even if f is antisymmetric in the sense that f(x, y) = −f(y, x).

Define f : R2 → R by

f(x, y) =


1/y2 if 0 < x < y < 1,

−1/x2 if 0 < y < x < 1,

0 otherwise;

then∫
R
f(x, ·) =

∫ x

0

(
− 1

x2

)
dy+

∫ 1

x

1

y2
dy = − 1

x2
·x+

(
−1

y

)∣∣∣y=1

y=x
= −1

x
−
(

1−1

x

)
= −1

for all x ∈ (0, 1). Thus, one iterated integral is negative (−1). By the
antisymmetry, the other iterated integral is positive (+1).

Or, alternatively,

f(x, y) =

{
x−y

(x+y)3
if x, y ∈ (0, 1),

0 otherwise;

here∫
R
f(x, ·) =

∫ 1

0

x− y
(x+ y)3

dy =

∫ 1

0

2x− (x+ y)

(x+ y)3
dy =

= 2x

∫ 1

0

dy

(x+ y)3
−
∫ 1

0

dy

(x+ y)2
= 2x·

(
−1

2

) 1

(x+ y)2

∣∣∣∣y=1

y=0

−(−1)· 1

x+ y

∣∣∣∣y=1

y=0

=

= −x
( 1

(x+ 1)2
− 1

x2

)
+
( 1

x+ 1
− 1

x

)
=
−x+ (x+ 1)

(x+ 1)2
=

1

(x+ 1)2

for all x ∈ (0, 1). Thus, one iterated integral is positive (in fact, 1/2). By
the antisymmetry, the other iterated integral is negative (−1/2).

1Burkill, Exercise 9 on p. 265.
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5c4 Remark. One may wonder, does existence of both iterated integrals
imply their equality if f is just bounded (but not necessarily integrable)?
Surprisingly, the answer is affirmative.1,2,3 It may be tempting to use this
fact for enlarging the two-dimensional integral. However, what about change
of variables then?

5c5 Example. Existence of the iterated integral does not imply integrability
of f even if f is bounded and symmetric (and therefore both iterated integrals
exist and are equal).

Here we use existence of a dense countable set A ⊂ (0, 1) × (0, 1), sym-
metric (in the sense that (x, y) ∈ A ⇐⇒ (y, x) ∈ A) and such that
{y : (x, y) ∈ A} is finite for every x.

For instance,4 the set of all
(
i
q
, j
q

)
∈ (0, 1) × (0, 1) for natural i, j and

prime q.
Or the set of all

(
(2i− 1)/2n, (2j − 1)/2n

)
∈ (0, 1)× (0, 1).

Or the set of all (x, y) ∈ (0, 1) × (0, 1) such that x
√

2 + y and x + y
√

2
are (both) rational.

For every such A, its indicator function f = 1lA satisfies 0 = ∗

∫
R2 f <

∗∫
R2 f = 1 and

∫
R f(x, ·) = 0 for all x.

5c6 Exercise. 5 Consider a function f : R2 → R of the form f(x, y) =
g(x)h(y) where g, h : R→ R are bounded functions with bounded support.

(a) If g is negligible, then f is negligible. Prove it.6

(b) Integrability of f does not imply that the set {x : f(x, ·) is not integrable}
is of volume zero. Find a counterexample.7,8

5d Integrable functions

Recall that every integrable function is bounded, with bounded support.

1In Riemann integration, of course. In Lebesgue integration the corresponding problem
is more complicated.

2Lichtenstein 1911, Fichtenholz 1913; see Sect. 16.6 in book “An interactive introduc-
tion to mathematical analysis” by J.W. Lewin.

3Amazingly, such f need not be Lebesgue measurable. (Basically, Sierpiński 1920;
see book “Measure theory” by V.I. Bogachev, vol. 1, Item 3.10.49 on page 232). I thank
Yonatan Shelah for this note.

4Burkill, Exercise 8 on page 265; Shifrin, Example 7 on page 282.
5Burkill, Exercise 6 on page 264.
6Hint: |g| ≤ ϕ (step function),

∫
ϕ ≤ ε; |h| ≤ C · 1l[−M,M ]; then

∫
|f | ≤ 2CMε.

7Hint: recall 4f12, use both cases (ck → 0, and ck = 1); use (a).
8Contrary to: Hubbard, Corollary A16.3 on page 724. Do you see the error there in

the proof?

http://math.kennesaw.edu/~jlewin/CUP/
http://math.kennesaw.edu/~jlewin/CUP/
http://math.kennesaw.edu/~jlewin/
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5d1 Theorem. If a function f : Rm+n → R is integrable, then the iterated
integrals ∫

Rm

dx
∗

∫
Rn

dy f(x, y) ,

∫
Rm

dx
∗∫
Rn

dy f(x, y) ,∫
Rn

dy
∗

∫
Rm

dx f(x, y) ,

∫
Rn

dy
∗∫
Rm

dx f(x, y)

are well-defined and equal to∫∫
Rm+n

f(x, y) dxdy .

Clarification. The claim that
∫

dx ∗
∫

dy f(x, y) is well-defined means that
the function x 7→ ∗

∫
dy f(x, y) is integrable.

The equality∫ (
x 7→

∗

∫
f(x, ·)

)
=

∫ (
x 7→

∗∫
f(x, ·)

)
implies integrability (with the same integral) of every function sandwiched
between the lower and upper integrals.1 It is convenient to interpret x 7→∫
f(x, ·) as any such function and write, as before,∫

Rm+n

f =

∫
Rm

(
x 7→

∫
Rn

f(x, ·)
)

and ∫
dx

∫
dy f(x, y) =

∫∫
f(x, y) dxdy =

∫
dy

∫
dx f(x, y)

even though fx may be non-integrable for some x.
Theorem 5d1 is proved via sandwiching (recall Sect. 4g), — either by step

functions or by continuous functions. Let us use the former.

Proof. By (4g6),
∗∫

Rm+n f = infh≥f
∫
Rm+n h where h runs over all step func-

tions. For every such h,
∫
Rm+n h =

∫
Rm

(
x 7→

∫
Rn h(x, ·)

)
by (5b1). We

have
∫
Rn h(x, ·) =

∗∫
Rn h(x, ·) ≥ ∗∫

Rn f(x, ·) (since h(x, ·) ≥ f(x, ·)), thus,∫
Rm+n h ≥ ∗

∫
Rm

(
x 7→ ∗∫

Rn f(x, ·)
)

for all these h. Therefore

∗∫
Rm+n

f ≥
∗∫
Rm

(
x 7→

∗∫
Rn

f(x, ·)
)
.

1But not every bounded function that is equal to the integral whenever it exists! In
contrast to Lebesgue integration, here we cannot take 0 whenever the integral does not
exist; recall 5c6(b). See also Zorich, Sect. 11.4.3, Exercise 1(c).
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Similarly (or via (−f)),

∗

∫
Rm+n

f ≤
∗

∫
Rm

(
x 7→

∗

∫
Rn

f(x, ·)
)
.

Using integrability of f ,∫
Rm+n

f ≤
∗

∫
Rm

(
x 7→

∗

∫
Rn

f(x, ·)
)
≤

∗∫
Rm

(
x 7→

∗∫
Rn

f(x, ·)
)
≤
∫
Rm+n

f ,

therefore∫
Rm+n

f =
∗

∫
Rm

(
x 7→

∗

∫
Rn

f(x, ·)
)

=
∗∫
Rm

(
x 7→

∗∫
Rn

f(x, ·)
)
.

Integrability of the function x 7→ ∗

∫
Rn f(x, ·) follows, since∫

Rm+n

f =
∗

∫
Rm

(
x 7→

∗

∫
Rn

f(x, ·)
)
≤

∗∫
Rm

(
x 7→

∗

∫
Rn

f(x, ·)
)
≤

≤
∗∫
Rm

(
x 7→

∗∫
Rn

f(x, ·)
)

=

∫
Rm+n

f .

Similarly, the function x 7→ ∗∫
Rn f(x, ·) is also integrable. Thus,∫

Rm+n

f =

∫
Rm

(
x 7→

∗

∫
Rn

f(x, ·)
)

=

∫
Rm

(
x 7→

∗∫
Rn

f(x, ·)
)
.

The other two iterated integrals are treated similarly (or via f̃(y, x) =
f(x, y)).

5d2 Exercise. Give another proof of 5d1, via sandwiching by continuous
functions.

5d3 Exercise. Generalize 5b2 to integrable functions
(a) assuming integrability of the function (x, y) 7→ f(x)g(y),
(b) deducing integrability of the function (x, y) 7→ f(x)g(y) from integra-

bility of f and g (via sandwich).

5d4 Exercise. For every integrable function f : R2 → R the function x, y 7→
f(x, y + sinx) is also integrable, and∫∫

R2

f(x, y + sinx) dxdy =

∫∫
R2

f(x, y) dxdy .

Prove it.1

1Hint: use 5b5.
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5d5 Exercise. For every integrable function f : R2 → R the function x, y 7→
f
(
x3 + x, y

3x2+1

)
is also integrable, and∫∫

R2

f
(
x3 + x,

y

3x2 + 1

)
dxdy =

∫∫
R2

f(x, y) dxdy .

Prove it.1

5e Cavalieri’s principle

5e1 Exercise. If E1 ⊂ Rm and E2 ⊂ Rn are admissible sets then the set
E = E1 × E2 ⊂ Rm+n is admissible.

Prove it.

Applying Theorem 5d1 to a function f1lE and taking 4d5 into account we
get the following.

5e2 Corollary. Let f : Rm+n → R be integrable on every box, and E ⊂
Rm+n an admissible set; then∫

E

f =

∫
Rm

(
x 7→

∫
Ex

fx

)
where Ex = {y : (x, y) ∈ E} ⊂ Rn for x ∈ Rm.

Clarification. First, note that {x : Ex 6= ∅} is bounded, and
∫
∅ fx =

0. Second: it may happen that
∫
Ex
fx is ill-defined for some x; then it is

interpreted as anything between ∗

∫
fx1lEx and

∗∫
fx1lEx .

In particular, taking f(·) = 1 we get

(5e3) vm+n(E) =

∫
Rm

vn(Ex) dx

where vk is the volume in Rk. For instance, the volume of a 3-dimensional
geometric body is the 1-dimensional integral of the area of the 2-dimensional
section of the body.

5e4 Corollary. If admissible sets E,F ⊂ R3 satisfy v2(Ex) = v2(Fx) for all
x then v3(E) = v3(F ).2

1Hint: use 5b6.
2It is sufficient to check the equality for all x of a dense subset of R (since two Riemann

integrable functions equal on a dense set must have equal integrals by 4f13).
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This is a modern formulation of Cavalieri’s principle:1,2

Suppose two regions in three-space (solids) are
included between two parallel planes. If ev-
ery plane parallel to these two planes intersects
both regions in cross-sections of equal area, then
the two regions have equal volumes.

Before emergence of the integral calculus, Cavalieri was able to calculate
some volumes by ingenious use of this principle. Here are two examples.
First, the volume of the upper half of a sphere is equal to the volume of a
cylinder minus volume of a cone:

Second, when a hole of length h is drilled straight through the center of a
sphere, the volume of the remaining material surprisingly does not depend
on the size of the sphere:

5e5 Exercise. Check the two results of Cavalieri noted above.

1Bonaventura Francesco Cavalieri (in Latin, Cavalerius) (1598–1647), Italian mathe-
matician.

2Images (and some text) from Wikipedia, “Cavalieri’s principle”.

http://en.wikipedia.org/wiki/Cavalieri's_principle
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5e6 Exercise. Check a famous result of Archimedes:1,2 a sphere inscribed
within a cylinder has two thirds of the volume of the cylinder.

Moreover, show that the volumes of a cone, sphere and cylinder of the same
radius and height are in the ratio 1 : 2 : 3.

5e7 Exercise. For f , g and E as in 4i2 prove that
(a) vn+1(E) =

∫
Rn(g − f)+;

(b)
∫
E
h =

∫
Rn dx 1lf<g(x)

∫ g(x)
f(x)

dt h(x, t) for every h : E → R integrable
on E.

5e8 Remark. Here 1lf<g is the indicator of the set {x : f(x) < g(x)}.
This set need not be admissible (it can be a dense countable set, recall
4f12).3 And nevertheless, the iterated integral is well-defined (according to
the clarifications. . . ).

5e9 Remark. Cavalieri’s principle is about parallel planes. What about
parallel surfaces or curves? Applying 5d4 to f = 1lE we get the following:
if admissible sets E,F ⊂ R2 satisfy v1(Ey) = v1(Fy) for all y then v2(E) =
v2(F ); here Ey = {x : (x, y + sinx) ∈ E} (and the same for Fy). But do not
think that v1(Ey) is the length of the sinusoid inside E; it is not.

1Archimedes (≈ 287–212 BC), a Greek mathematician, generally considered to be the
greatest mathematician of antiquity and one of the greatest of all time.
Cicero describes visiting the tomb of Archimedes, which was surmounted by a sphere in-
scribed within a cylinder. Archimedes . . . regarded this as the greatest of his mathematical
achievements.

2Images (and some text) from Wikipedia, “Volume” (section “Volume ratios for a
cone, sphere and cylinder of the same radius and height”).

3And even if f and g are continuously differentiable, still, this set is just open (not
necessarily admissible), see Sect. 2a, Footnote 2 on page 22.

http://en.wikipedia.org/wiki/Volume
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Here is another case: Er = {θ ∈ [0, 2π) : (r cos θ, r sin θ) ∈ E}; now v1(Er)
is the length of the circle inside E, multiplied by r; and in fact, the equality
v1(Er) = v1(Fr) for all r implies v2(E) = v2(F ).

Note that the parallel circles are equidistant; the parallel sinusoids are not.

However, curvilinear integration is postponed to Analysis 4.

5e10 Exercise. 1 Consider the set E = {(x, y, z) : 0 ≤ z ≤ 1−x2−y2} ⊂ R3.
(a) Find the volume of E via

∫
v2(E

z) dz.
(b) Using (a) and the equality

∫
v2(E

z) dz =
∫
v1(Ex,y) dxdy, find the

mean2 of the function (x, y) 7→ 1 − x2 − y2 on the disk {(x, y) : x2 + y2 ≤
1} ⊂ R2.

(c) Similarly to (a), (b), find the mean of the function x 7→ |x|p on the
ball {x : |x| ≤ 1} ⊂ Rn for p ∈ (0,∞).3

5e11 Exercise. Calculate the integral∫∫∫
E

(x21 + x22 + x23) dx1dx2dx3 ,

where E = {(x1, x2, x3) ∈ [0,∞)3 : x1 + x2 + x3 ≤ a} ⊂ R3.
Answer: a5/20.

5e12 Exercise. Find the volume of the intersection of two solid cylinders
in R3: {x21 + x22 ≤ 1} and {x21 + x23 ≤ 1}.

Answer: 16/3.

1Exam of 26.01.14, Question 4.
2Recall the end of Sect. 4d.
3Hint: you do not need the volume of the ball (nor the area of the disk)! And of

course, |x|p stands for (x2
1 + · · ·+ x2

n)p/2.
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5e13 Exercise. Find the volume of the solid in R3 under the paraboloid
{x21 + x22 = x3} and above the square [0, 1]2 × {0}.

Answer: 2/3.

5e14 Exercise. Let f : R→ R be a continuous function. Prove that∫ x

0

dx1

∫ x1

0

dx2 ...

∫ xn−1

0

dxn f(xn) =

∫ x

0

f(t)
(x− t)n−1
(n− 1)!

dt .

5e15 Example. Let us calculate the integral∫
[0,1]n

max(x1, . . . , xn) dx1 . . . dxn .

First of all, by symmetry, we assume that 1 ≥ x1 ≥ x2 ≥ ... ≥ xn ≥ 0, and
multiply the answer by n!. Then max(x1, ..., xn) = x1, and we get

n!

∫ 1

0

x1 dx1

∫ x1

0

dx2 ...

∫ xn−1

0

dxn = n!

∫ 1

0

xn1 dx1
(n− 1)!

=
n

n+ 1
.

5e16 Exercise. Compute the integral
∫
[0,1]n

min(x1, . . . , xn) dx1 . . . dxn.

Answer: 1
n+1

.

5e17 Exercise. Find the volume of the n-dimensional simplex

{x : x1, ..., xn ≥ 0, x1 + ...+ xn ≤ 1} .

Answer: 1
n!

.

5e18 Exercise. Suppose the function f depends only on the first coordinate.
Then ∫

V

f(x1) dx = vn−1

∫ 1

−1
f(x1)(1− x21)(n−1)/2 dx1 ,

where V is the unit ball in Rn, and vn−1 is the volume of the unit ball in
Rn−1.

The next exercises examine further a very interesting phenomenon of
“concentration of high-dimensional volume” touched before, in 4i5(b); it was
seen there that in high dimension the volume of a ball concentrates near the
sphere,1 and now we’ll see that it also concentrates near a hyperplane!2

5e19 Exercise. Let V be the unit ball in Rn, and P = {x ∈ V : |x1| < 0.01}.
What is larger, vn(P ) or vn(V \ P ), if n is sufficiently large?

1See also 5e10(c).
2Do you see a contradiction in these claims?
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5e20 Exercise. Given ε > 0, show that the quotient

vn({x ∈ V : |x1| > ε})
vn(V )

tends to zero as n→∞.1

Could you find the asymptotic behavior of the quotient above as n→∞?

Given an integrable f : Rn → R and a box B ⊂ Rn (of non-zero volume),
we introduce fB : Rn → R by

fB(x) =
1

v(B)

∫
B+x

f ;

that is, fB(x) is the mean value of f on the shifted box B+x = {b+x : b ∈ B}.

5e21 Exercise. Prove that fB is a continuous function.

5e22 Exercise. (a) Let n = 2 and B = [s1, t1]× [s2, t2]. For a continuous f
with bounded support, prove that fB ∈ C1(Rn) and

∂

∂x1
fB(x1, x2) =

1

t2 − s2

∫
[s2,t2]

1

t1 − s1
(
fx1+t1 − fx1+s1

)
;

(b) generalize (a) to arbitrary n.

5e23 Exercise. Prove that every continuous f with bounded support is the
limit of some uniformly convergent sequence of functions of C1(Rn).2

1Hint: the quotient equals
∫ 1
ε
(1−t2)(n−1)/2 dt∫ 1

0
(1−t2)(n−1)/2 dt

.
2Hint: consider fB for a small B close to 0.
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