Analysis-III

7 Linear change of variables

7a	Admissible sets in vector spaces	93
7b	Volume in Euclidean spaces	94
7c	Linear change of variables	96

7a Admissible sets in vector spaces

7a1 Proposition. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear operator. Then, for every $E \subset \mathbb{R}^n$,

A(E) is admissible $\iff E$ is admissible.

7a2 Lemma. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. Then, for every bounded set $Z \subset \mathbb{R}^n$ of volume 0, the set A(Z) has volume 0.

Proof. The image A(Q) of the cube $Q = [0,1]^n$ is bounded (think, why). We take a box B such that $A(Q) \subset B$ and get $v^*(A(Q)) \leq v(B) < \infty$. Moreover, using 4h2 and (4h6) we get¹ for all N and $k \in \mathbb{Z}^N$

$$v^*(A(2^{-N}(Q+k))) \le M \cdot 2^{-nN}$$

where M = v(B).

Using subadditivity of the outer volume,²

(7a3)
$$v^*(E \cup F) \le v^*(E) + v^*(F)$$

we get for arbitrary bounded E,

$$v^*(A(E)) \le \sum_{k:2^{-N}(Q+k)\cap E \neq \emptyset} v^*(A(2^{-N}(Q+k))) \le M \cdot 2^{-nN} \sum_{k:2^{-N}(Q+k)\cap E \neq \emptyset} 1 = MU_N(\mathbb{1}_E);$$

for $N \to \infty$ it gives $v^*(A(E)) \leq Mv^*(E)$. Thus, $v^*(Z) = 0$ implies $v^*(A(Z)) = 0$.

7a4 Remark. Let A be invertible. Then Z has volume 0 if and only if A(Z) has volume 0.

¹Since $A(2^{-N}(Q+k)) \subset 2^{-N}(B+A(k))$. ²Indeed, $\int \mathbb{1}_{E \cup F} \leq \int (\mathbb{1}_{E} + \mathbb{1}_{F}) \leq \int \mathbb{1}_{E} + \int \mathbb{1}_{F}$ by 4c7. **Proof of Prop. 7a1.** We'll prove that A(E) is admissible whenever E is admissible (then, applying it to A^{-1} , we get the converse implication). By 6b8(b), ∂E has volume 0; by 7a2, $A(\partial E)$ has volume 0; also, $A(\partial E) = \partial A(E)$, since A is a homeomorphism; thus, $\partial A(E)$ has volume 0; by 6b8(b) (again), A(E) is admissible.

Similarly to Sect. 1f we conclude.

The notion "admissible set" is insensitive to a change of basis. This notion is well-defined in every n-dimensional vector space, and preserved by isomorphisms of these spaces.

The same holds for the notion "volume 0".

7a5 Exercise. (a) Every bounded subset of a vector subspace $V_1 \subsetneq V$ has volume 0;

(b) every vector subspace $V_1 \subsetneqq V$ has measure 0. Prove it.¹

7b Volume in Euclidean spaces

7b1 Proposition. If a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ preserves the Euclidean metric (that is, |Ax| = |x| for all $x \in \mathbb{R}^n$), then it preserves volume (that is, v(A(E)) = v(E) for all admissible $E \subset \mathbb{R}^n$).

Rotation invariance of volume, at last!

7b2 Lemma. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear operator. Then there exists $C \in (0, \infty)$ such that, for every admissible $E \subset \mathbb{R}^n$,

$$v(A(E)) = Cv(E).$$

Proof. We take C = v(A(Q)) where $Q = [0, 1]^n$ (admissibility of A(Q) being ensured by 7a1, and $C \neq 0$ by 7a4). Similarly to the proof of 7a2, using 4h2 and (4h6) we get for all N and $k \in \mathbb{Z}^N$

$$v(A(2^{-N}(Q+k))) = C \cdot 2^{-nN}.$$

For $k \neq \ell$ the set $A(2^{-N}(Q+k)) \cap A(2^{-N}(Q+\ell)) = A((2^{-N}(Q+k)) \cap (2^{-N}(Q+\ell)))$ has volume 0 by 7a2. Using additivity of volume 4d3, we get

$$v(A(E)) \leq \sum_{k:2^{-N}(Q+k)\cap E\neq\emptyset} v(A(2^{-N}(Q+k))) = CU_N(\mathbb{1}_E),$$

¹Hint: change of basis.

Analysis-III

and similarly,

$$v(A(E)) \ge \sum_{k:2^{-N}(Q+k)\subset E} v(A(2^{-N}(Q+k))) = CL_N(\mathbb{1}_E);$$

for $N \to \infty$ it gives v(A(E)) = Cv(E).

If A is of the form $A(x_1, \ldots, x_n) = (a_1x_1, \ldots, a_nx_n)$ (that is, diagonal matrix), then $C = |a_1 \ldots a_n|$ by 4h4.

Proof of Prop. 7b1. The constant C given by 7b2 is equal to 1, since the ball $E = \{x : |x| \le 1\}$ (admissible by 4i4, and of non-zero volume since $E^{\circ} \neq \emptyset$) satisfies A(E) = E.

Volume is insensitive to a change of orthonormal basis. It is well-defined in every *n*-dimensional Euclidean space, and preserved by isomorphisms of these spaces.

Now we are in position to find the constant C for arbitrary A.

7b3 Theorem. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear operator. Then, for every admissible $E \subset \mathbb{R}^n$,

$$v(A(E)) = |\det A| v(E).$$

Recall the singular value decomposition (Sect. 3d).¹

Proof. By 3d2, some change of two orthonormal bases in \mathbb{R}^n turns A into a diagonal matrix whose diagonal elements are the singular values s_1, \ldots, s_n of A. The constant C, insensitive to this change of bases, is equal to $s_1 \ldots s_n$ by 4h4. It remains to prove an algebraic fact: $|\det A| = s_1 \ldots s_n$.

A change of orthonormal bases multiplies a matrix from the left and from the right by orthogonal matrices; it means, a matrix U such that |Ux| = |x|for all x. It follows that $\langle x, y \rangle = \langle Ux, Uy \rangle = \langle U^*Ux, y \rangle$, thus id $= U^*U$; $1 = \det(U^*U) = \det(U^*) \det U = (\det U)^2$; $\det U = \pm 1$. \Box

If $|\cdot|_1, |\cdot|_2$ are two Euclidean norms on an *n*-dimensional vector space, then the ratio of norms $\frac{|\cdot|_1}{|\cdot|_2}$ varies between $\min(s_1, \ldots, s_n)$ and $\max(s_1, \ldots, s_n)$ (here s_1, \ldots, s_n are the singular values), depending on the direction of a vector; but the ratio of volumes $\frac{v_1(\cdot)}{v_2(\cdot)}$ is $s_1 \ldots s_n$, invariably.

 $^{^1 \}rm Some$ linear algebra is needed here. Many authors decompose an arbitrary matrix into the product of elementary matrices (of three types). But I prefer the singular value decomposition.

On an *n*-dimensional vector space the volume is ill-defined, but admissibility is well-defined, and the ratio $\frac{v(E_1)}{v(E_2)}$ of volumes is well-defined. That is, the volume is well-defined up to a coefficient.

7b4 Exercise. Find the volume cut off from the unit ball by the plane ax + by + cz = t.

7b5 Exercise. Let vectors $h_1, \ldots, h_n \in \mathbb{R}^n$ be linearly independent, and $C = |\det(h_1, \ldots, h_n)|.$

(a) The parallelotope $E = \{u_1h_1 + \cdots + u_nh_n : 0 \le u_1, \ldots, u_n \le 1\}$ is admissible, and v(E) = C.

(b) The simplex $E = \{u_1h_1 + \dots + u_nh_n : u_1, \dots, u_n \ge 0, u_1 + \dots + u_n \le 1\}$ is admissible, and $v(E) = \frac{1}{n!}C$.

(c) The ellipsoid $E = \{u_1h_1 + \dots + u_nh_n : u_1^2 + \dots + u_n^2 \leq 1\}$ is admissible, and $\frac{1}{C}v(E)$ is equal to the volume of the *n*-dimensional unit ball $\{x \in \mathbb{R}^n : |x| \leq 1\}$. Prove it.¹

7c Linear change of variables

7c1 Theorem. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear operator. Then, for every bounded function $f : \mathbb{R}^n \to \mathbb{R}$ with bounded support,

$$|\det A| \int_{*} f \circ A = \int_{*} f \text{ and } |\det A| \int_{*} f \circ A = \int_{*} f f.$$

Thus, $f \circ A$ is integrable if and only if f is integrable, and in this case

$$|\det A| \int f \circ A = \int f.$$

Proof. First, consider the indicator $f = \mathbb{1}_E$ of an admissible set $E \subset \mathbb{R}^n$. We have $f \circ A = \mathbb{1}_{A^{-1}(E)}$ (think, why); this function is integrable by 7a1, and

$$\int f \circ A = v(A^{-1}(E)) = |\det A^{-1}|v(E) = \frac{1}{|\det A|} \int f$$

by 7b3.

In particular, it holds for indicators of boxes. Taking linear combinations we see that the equality $|\det A| \int f \circ A = \int f$ holds for all step functions f.

¹Hint: (b) use 5e17.

Tel Aviv University, 2016

Now, the general case. Given $\varepsilon > 0$, 4g6 gives a step function $h \ge f$ such that $\int h \leq \varepsilon + \int f$. We have

$$|\det A| \int f \circ A \le |\det A| \int h \circ A = \int h \le \varepsilon + \int f$$

for all $\varepsilon > 0$, thus,

$$|\det A| \int f \circ A \leq \int f.$$

Applying it to A^{-1} and $f \circ A$ we get $|\det A^{-1}|^* \int f \circ A \circ A^{-1} \leq \int f \circ A$, that is, ${}^*\!\!\int f \leq |\det A|^*\!\!\int f \circ A$. Thus, $|\det A|^*\!\!\int f \circ A = {}^*\!\!\int f$. Similarly (or using (-f), $|\det A| = \int f \circ A = \int f$.

In the exercises below you may start with changing basis, or with opening brackets. When really needed, use iterated integral (and scaling). Sometimes $5e_{10}(c)$ may help. Think, which way is shorter. A hint: in order to prove that an integral is equal to 0 it is sufficient to find a change of basis that flips the sign of the integral.

7c2 Exercise. If $a_1a_2 + b_1b_2 + c_1c_2 = 0$, then

$$\iiint_{x^2+y^2+z^2<1} (a_1x + b_1y + c_1z)(a_2x + b_2y + c_2z) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = 0$$

Prove it.

7c3 Exercise. Find the mean value of the function $(x, y, z) \mapsto (ax+by+cz)^2$ on the ball $\{(x, y, z) : x^2 + y^2 + z^2 < 1\}$.¹

7c4 Exercise. Find the mean value of the function $(x, y, z) \mapsto (a_1x + b_1y + b_2y)$ $(c_1z)(a_2x + b_2y + c_2z)$ on the ball $\{(x, y, z) : x^2 + y^2 + z^2 < 1\}$.

7c5 Exercise. Let $h_1, h_2, h_3 \in \mathbb{R}^3$ and $t_1, t_2, t_3 \in \mathbb{R}$. Find the mean value of the function $x \mapsto (\langle h_1, x \rangle + t_1)(\langle h_2, x \rangle + t_2)(\langle h_3, x \rangle + t_3)$ on the ball $\{(x, y, z) :$ $x^2 + y^2 + z^2 < 1\}.^3$

¹Answer: $\frac{1}{5}(a^2 + b^2 + c^2)$. ²Answer: $\frac{1}{5}(a_1a_2 + b_1b_2 + c_1c_2)$. ³Answer: $\frac{1}{5}(\langle h_1, h_2 \rangle t_3 + \langle h_1, h_3 \rangle t_2 + \langle h_2, h_3 \rangle t_1) + t_1t_2t_3$.