9 Improper integral

9a Introduction 109
9b Positive integrands 110
9c Special functions gamma and beta 114
9d Change of variables 116
9e Iterated integral 117
9f Multidimensional beta integrals of Dirichlet 120
9 g Non-positive (signed) integrands 122

Riemann integral and volume are generalized to unbounded functions and sets.

9a Introduction

The n-dimensional unit ball in the l_{p} metric,

$$
E=\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p} \leq 1\right\},
$$

is an admissible set, and its volume is a Riemann integral,

$$
v(E)=\int_{\mathbb{R}^{n}} \mathbb{1}_{E}
$$

of a bounded function with bounded support. In Sect. [f] we'll calculate it:

$$
v(E)=\frac{2^{n} \Gamma^{n}\left(\frac{1}{p}\right)}{p^{n} \Gamma\left(\frac{n}{p}+1\right)}
$$

where Γ is a function defined by

$$
\Gamma(t)=\int_{0}^{\infty} x^{t-1} \mathrm{e}^{-x} \mathrm{~d} x \quad \text { for } t>0
$$

here the integrand has no bounded support; and for $t=\frac{1}{p}<1$ it is also unbounded (near 0). Thus we need a more general, so-called improper integral, even for calculating the volume of a bounded body!

In relatively simple cases the improper integral may be treated via ad hoc limiting procedure adapted to the given function; for example,

$$
\int_{0}^{\infty} x^{t-1} \mathrm{e}^{-x} \mathrm{~d} x=\lim _{k \rightarrow \infty} \int_{1 / k}^{k} x^{t-1} \mathrm{e}^{-x} \mathrm{~d} x
$$

In more complicated cases it is better to have a theory able to integrate rather general functions on rather general n-dimensional sets. Different functions may tend to infinity on different subsets (points, lines, surfaces), and still, we expect $\int(a f+b g)=a \int f+b \int g$ (linearity) to hold, as well as change of variables. ${ }^{1}$

9b Positive integrands

We consider an open set $G \subset \mathbb{R}^{n}$ and functions $f: G \rightarrow[0, \infty)$ continuous almost everywhere. ${ }^{2}$ We do not assume that G is bounded. We also do not assume that G is admissible, even if it is bounded. ${ }^{3}$ "Continuous almost everywhere"means that the set $A \subset G$ of all discontinuity points of f has measure 0 (recall Sect. 6 d). We can use the function $f \cdot \mathbb{1}_{G}$ equal f on G and 0 on $\mathbb{R}^{n} \backslash G$, but must be careful: $\mathbb{1}_{G}$ and $f \cdot \mathbb{1}_{G}$ need not be continuous almost everywhere.

We define

$$
\begin{align*}
\int_{G} f=\sup \left\{\int_{\mathbb{R}^{n}} g \mid g: \mathbb{R}^{n}\right. & \rightarrow \mathbb{R} \text { integrable, } \tag{9b1}\\
& \left.0 \leq g \leq f \text { on } G, g=0 \text { on } \mathbb{R}^{n} \backslash G\right\} \in[0, \infty] .
\end{align*}
$$

The condition on g may be reformulated as $0 \leq g \leq f \cdot \mathbb{1}_{G}$. If $f \cdot \mathbb{1}_{G}$ is integrable (on \mathbb{R}^{n}), then clearly $\int_{G} f=\int_{\mathbb{R}^{n}} f \cdot \mathbb{1}_{G}$, which generalizes 4 d 5 . This happens if and only if $f \cdot \mathbb{1}_{G}$ is bounded, with bounded support, and

$$
f(x) \rightarrow f\left(x_{0}\right)=0 \quad \text { as } G \ni x \rightarrow x_{0}
$$

for almost all $x_{0} \in \partial G$ (think, why). (Void if ∂G has measure 0 .)
9b2 Exercise. (a) Without changing the supremum in (9b1) we may restrict ourselves to continuous g with bounded support; or, alternatively, to step functions g; and moreover, in both cases, WLOG, g has a compact support inside G;

[^0](b) if f is bounded (not necessarily a.e. continuous) and G is bounded, then $\int_{G} f={ }_{*} \int_{\mathbb{R}^{n}} f \cdot \mathbb{1}_{G}$, and in particular, $\int_{G} 1=v_{*}(G) ;{ }^{1}$
(c) if f is bounded and G is admissible, then the integral defined by 9b1) is equal to the integral defined by 4 d 5 .
Prove it.
There are many ways to treat the improper integral as the limit of (proper) Riemann integrals; here are some ways.
9b3 Exercise. Consider the case $G=\mathbb{R}^{n}$, and let $\|\cdot\|$ be a norm on \mathbb{R}^{n} of the form ${ }^{2}\|x\|=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}$ for $x=\left(x_{1}, \ldots, x_{n}\right)$; here $p \in[1, \infty]$ is a parameter (and $\|x\|=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$ if $p=\infty$).
(a) Prove that
$$
\int_{\mathbb{R}^{n}} f=\lim _{k \rightarrow \infty} \int_{\|x\|<k} \min (f(x), k) \mathrm{d} x .
$$
(b) For a locally bounded ${ }^{3} f$ prove that
$$
\int_{\mathbb{R}^{n}} f=\lim _{k \rightarrow \infty} \int_{\|x\|<k} f(x) \mathrm{d} x .
$$
(c) Can it happen that f is locally bounded, not bounded, and $\int_{\mathbb{R}^{n}} f<\infty$?

9b4 Example (Poisson). Consider

$$
I=\int_{\mathbb{R}^{2}} \mathrm{e}^{-|x|^{2}} \mathrm{~d} x .
$$

On one hand, by 9 b 3 for the Euclidean norm $(p=2)$,

$$
I=\lim _{k \rightarrow \infty} \iint_{\substack{2 \\ x^{2}+y^{2}<k^{2}}} \mathrm{e}^{-\left(x^{2}+y^{2}\right)} \mathrm{d} x \mathrm{~d} y=\lim _{k \rightarrow \infty} \int_{0}^{k} r \mathrm{~d} r \mathrm{e}^{-r^{2}} \int_{0}^{2 \pi} \mathrm{~d} \theta=\lim _{k \rightarrow \infty} \pi \int_{0}^{k^{2}} \mathrm{e}^{-u} \mathrm{~d} u=\pi .
$$

On the other hand, by 9 b 3 for $\|(x, y)\|=\max (|x|,|y|)(p=\infty)$,

$$
I=\lim _{\substack{k \rightarrow \infty \\|x|<k,|y|<k}} \iint_{-\infty} \mathrm{e}^{-\left(x^{2}+y^{2}\right)} \mathrm{d} x \mathrm{~d} y=\lim _{k \rightarrow \infty}\left(\int_{-k}^{k} \mathrm{e}^{-x^{2}} \mathrm{~d} x\right)\left(\int_{-k}^{k} \mathrm{e}^{-y^{2}} \mathrm{~d} y\right)=\left(\int_{-\infty}^{+\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x\right)^{2},
$$

and we obtain the celebrated Poisson formula:

$$
\int_{-\infty}^{+\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\sqrt{\pi}
$$

[^1]9b5 Exercise. Consider

$$
I=\iint_{x>0, y>0} x^{a} y^{b} \mathrm{e}^{-\left(x^{2}+y^{2}\right)} \mathrm{d} x \mathrm{~d} y \in[0, \infty]
$$

for given $a, b \in \mathbb{R}$. Prove that, on one hand,

$$
I=\left(\int_{0}^{\infty} r^{a+b+1} \mathrm{e}^{-r^{2}} \mathrm{~d} r\right)\left(\int_{0}^{\pi / 2} \cos ^{a} \theta \sin ^{b} \theta \mathrm{~d} \theta\right)
$$

and on the other hand,

$$
I=\left(\int_{0}^{\infty} x^{a} \mathrm{e}^{-x^{2}} \mathrm{~d} x\right)\left(\int_{0}^{\infty} x^{b} \mathrm{e}^{-x^{2}} \mathrm{~d} x\right)
$$

9b6 Exercise. Consider $f: \mathbb{R}^{2} \rightarrow[0, \infty)$ of the form $f(x)=g(|x|)$ for a given $g:[0, \infty) \rightarrow[0, \infty)$.
(a) If g is integrable, then f is integrable and $\int_{\mathbb{R}^{2}} f=2 \pi \int_{0}^{\infty} g(r) r \mathrm{~d} r$.
(b) If g is continuous on $(0, \infty)$, then $\int_{\mathbb{R}^{2}} f=2 \pi \int_{0}^{\infty} g(r) r \mathrm{~d} r \in[0, \infty]$.

Prove it. ${ }^{1}$
9b7 Exercise. Let $\|\cdot\|$ be as in $9 \mathrm{~b} 3 .{ }^{2}$ Consider $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ of the form $f(x)=g(\|x\|)$ for a given $g:[0, \infty) \rightarrow[0, \infty)$.
(a) If g is integrable, then f is integrable, and $\int_{\mathbb{R}^{n}} f=n V \int_{0}^{\infty} g(r) r^{n-1} \mathrm{~d} r$ where V is the volume of $\{x:\|x\|<1\}$.
(b) If g is continuous on $(0, \infty)$, then $\int_{\mathbb{R}^{n}} f=n V \int_{0}^{\infty} g(r) r^{n-1} \mathrm{~d} r \in[0, \infty]$.
c) Let g be continuous on $(0, \infty)$ and satisfy

$$
g(r) \sim r^{a} \quad \text { for } r \rightarrow 0+, \quad g(r) \sim r^{b} \quad \text { for } r \rightarrow+\infty .
$$

Then $\int f<\infty$ if and only if $b<-n<a$.
Prove it. ${ }^{3}$
9b8 Example. $\int_{\mathbb{R}^{n}} \mathrm{e}^{-\|x\|^{2}} \mathrm{~d} x=n V \int_{0}^{\infty} r^{n-1} \mathrm{e}^{-r^{2}} \mathrm{~d} r$; in particular, $\int_{\mathbb{R}^{n}} \mathrm{e}^{-|x|^{2}} \mathrm{~d} x=$ $n V_{n} \int_{0}^{\infty} r^{n-1} \mathrm{e}^{-r^{2}} \mathrm{~d} r$ where V_{n} is the volume of the (usual) n-dimensional unit ball. On the other hand, $\int_{\mathbb{R}^{n}} \mathrm{e}^{-|x|^{2}} \mathrm{~d} x=\left(\int_{\mathbb{R}} \mathrm{e}^{-x^{2}} \mathrm{~d} x\right)^{n}=\pi^{n / 2}$. Therefore

$$
V_{n}=\frac{\pi^{n / 2}}{n \int_{0}^{\infty} r^{n-1} \mathrm{e}^{-r^{2}} \mathrm{~d} r} .
$$

Not unexpectedly, $V_{2}=\frac{\pi}{2 \int_{0}^{\infty} r e^{-r^{2}} \mathrm{~d} r}=\pi$.

[^2]Clearly, $\int_{G} c f=c \int_{G} f$ for $c \in(0, \infty)$.
9b9 Proposition. $\int_{G}\left(f_{1}+f_{2}\right)=\int_{G} f_{1}+\int_{G} f_{2} \in[0, \infty]$ for all $f_{1}, f_{2} \geq 0$ on G, continuous almost everywhere.
Proof. The easy part: $\int_{G}\left(f_{1}+f_{2}\right) \geq \int_{G} f_{1}+\int_{G} f_{2} .^{1}$ Given integrable g_{1}, g_{2} such that $0 \leq g_{1} \leq f_{1} \cdot \mathbb{1}_{G}$ and $0 \leq g_{2} \leq f_{2} \cdot \mathbb{1}_{G}$, we have $\int g_{1}+\int g_{2}=\int\left(g_{1}+g_{2}\right) \leq$ $\int_{G}\left(f_{1}+f_{2}\right)$, since $g_{1}+g_{2}$ is integrable and $0 \leq g_{1}+g_{2} \leq\left(f_{1}+f_{2}\right) \cdot \mathbb{1}_{G}$. The supremum in g_{1}, g_{2} gives the claim.

The hard part: $\int_{G}\left(f_{1}+f_{2}\right) \leq \int_{G} f_{1}+\int_{G} f_{2}$, that is, $\int g \leq \int_{G} f_{1}+\int_{G} f_{2}$ for every integrable g such that $0 \leq g \leq\left(f_{1}+f_{2}\right) \cdot \mathbb{1}_{G}$. We introduce $g_{1}=\min \left(f_{1}, g\right)$, $g_{2}=\min \left(f_{2}, g\right)$ (pointwise minimum on G; and 0 on $\mathbb{R}^{n} \backslash G$) and prove that they are continuous almost everywhere (on \mathbb{R}^{n}, not just on G). For almost every $x \in G$, both f_{1} and g are continuous at x and therefore g_{1} is continuous at x. For almost every $x \in \partial G, g$ is continuous at x, which ensures continuity of g_{1} at x (irrespective of continuity of $\left.f_{1}\right)$, since $g(x)=0(x \notin G)$. Thus, g_{1} is continuous almost everywhere; the same holds for g_{2}.

By Lebesgue's criterion 6d2, the functions g_{1}, g_{2} are integrable. We have $g_{1}+g_{2} \geq \min \left(f_{1}+f_{2}, g\right)=g$, since generally, $\min (a, c)+\min (b, c) \geq \min (a+b, c)$ for all $a, b, c \in[0, \infty)$ (think, why). Thus, $\int g \leq \int\left(g_{1}+g_{2}\right)=\int g_{1}+\int g_{2} \leq$ $\int_{G} f_{1}+\int_{G} f_{2}$, since $0 \leq g_{1} \leq f_{1} \cdot \mathbb{1}_{G}, 0 \leq g_{2} \leq f_{2} \cdot \mathbb{1}_{G}$.
9b10 Proposition (exhaustion). For open sets $G, G_{1}, G_{2}, \cdots \subset \mathbb{R}^{n}$,

$$
G_{k} \uparrow G \Longrightarrow \int_{G_{k}} f \uparrow \int_{G} f \in[0, \infty]
$$

for all $f: G \rightarrow[0, \infty)$ continuous almost everywhere.
Proof. First of all, $\int_{G_{k}} f \leq \int_{G_{k+1}} f$ (since $0 \leq g \leq f \cdot \mathbb{1}_{G_{k}}$ implies $0 \leq g \leq$ $f \cdot \mathbb{1}_{G_{k+1}}$), and similarly, $\int_{G_{k}} f \leq \int_{G} f$, thus $\int_{G_{k}} f \uparrow$ and $\lim _{k} \int_{G_{k}} f \leq \int_{G} f$. We have to prove that $\int_{G} f \leq \lim _{k} \int_{G_{k}} f$.

We take an integrable g, compactly supported inside G (recall 9b2(a)), such that $g \leq f$ on G. By compactness, there exists k_{0} such that $g \leq f \cdot \mathbb{1}_{G_{k_{0}}}$. Then $\int g \leq \int_{G_{k_{0}}} f \leq \lim _{k} \int_{G_{k}} f$. The supremum in g proves the claim.
9b11 Corollary (monotone convergence for volume). For open sets $G, G_{1}, G_{2}, \cdots \subset \mathbb{R}^{n},{ }^{2}$

$$
G_{k} \uparrow G \Longrightarrow v_{*}\left(G_{k}\right) \uparrow v_{*}(G) .
$$

9b12 Remark. Let $G_{1}, G_{2}, \cdots \subset \mathbb{R}^{n}$ be (pairwise) disjoint open balls. Then

$$
\left.v_{*}\left(G_{1} \uplus G_{2} \uplus \ldots\right)=v\left(G_{1}\right)+v_{(} G_{2}\right)+\ldots
$$

even if the union is dense in \mathbb{R}^{n} (which can happen; think, why).

[^3]
9c Special functions gamma and beta

The Euler gamma function Γ is defined by ${ }^{1}$

$$
\begin{equation*}
\Gamma(t)=\int_{0}^{\infty} x^{t-1} \mathrm{e}^{-x} \mathrm{~d} x \quad \text { for } t \in(0, \infty) \tag{9c1}
\end{equation*}
$$

This integral is not proper for two reasons. First, the integrand is bounded near 0 for $t \in[1, \infty)$ but unbounded for $t \in(0,1)$. Second, the integrand has no bounded support. In every case, using 9b10,

$$
\Gamma(t)=\lim _{k \rightarrow \infty} \int_{1 / k}^{k} x^{t-1} \mathrm{e}^{-x} \mathrm{~d} x<\infty,
$$

since the integrand (for a given t) is continuous on $(0, \infty)$, is $O\left(x^{t-1}\right)$ as $x \rightarrow 0$, and (say) $O\left(\mathrm{e}^{-x / 2}\right)$ as $x \rightarrow \infty$. Thus, $\Gamma:(0, \infty) \rightarrow(0, \infty)$.

Clearly, $\Gamma(1)=1$. Integration by parts gives

$$
\begin{gather*}
\int_{1 / k}^{k} x^{t} \mathrm{e}^{-x} \mathrm{~d} x=-\left.x^{t} \mathrm{e}^{-x}\right|_{x=1 / k} ^{k}+t \int_{1 / k}^{k} x^{t-1} \mathrm{e}^{-x} \mathrm{~d} x \\
\Gamma(t+1)=t \Gamma(t) \quad \text { for } t \in(0, \infty) \tag{9c2}
\end{gather*}
$$

In particular,

$$
\begin{equation*}
\Gamma(n+1)=n!\quad \text { for } n=0,1,2, \ldots \tag{9c3}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\int_{0}^{\infty} x^{a} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\frac{1}{2} \Gamma\left(\frac{a+1}{2}\right) \quad \text { for } a \in(-1, \infty) \tag{9c4}
\end{equation*}
$$

since $\int_{0}^{\infty} x^{a} \mathrm{e}^{-x^{2}} \mathrm{~d} x=\int_{0}^{\infty} u^{a / 2} \mathrm{e}^{-u} \frac{\mathrm{~d} u}{2 \sqrt{u}}$. For $a=0$ the Poisson formula (recall 9b4) gives

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} . \tag{9c5}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\Gamma\left(\frac{2 n+1}{2}\right)=\frac{1}{2} \cdot \frac{3}{2} \cdots \cdots \cdot \frac{2 n-1}{2} \sqrt{\pi} . \tag{9c6}
\end{equation*}
$$

The volume V_{n} of the n-dimensional unit ball (recall 9b8) is thus calculated:

$$
\begin{equation*}
V_{n}=\frac{\pi^{n / 2}}{\frac{n}{2} \Gamma\left(\frac{n}{2}\right)} . \tag{9c7}
\end{equation*}
$$

[^4]Not unexpectedly, $V_{3}=\frac{\pi^{3 / 2}}{\frac{3}{2} \Gamma\left(\frac{3}{2}\right)}=\frac{\pi^{3 / 2}}{\frac{3}{2} \cdot \frac{1}{2} \sqrt{\pi}}=\frac{4}{3} \pi$.
By $9 \mathrm{~b} 5, \frac{1}{2} \Gamma\left(\frac{a+b+2}{2}\right) \int_{0}^{\pi / 2} \cos ^{a} \theta \sin ^{b} \theta \mathrm{~d} \theta=\frac{1}{2} \Gamma\left(\frac{a+1}{2}\right) \cdot \frac{1}{2} \Gamma\left(\frac{b+1}{2}\right)$ for $a, b \in(-1, \infty)$; that is,

$$
\begin{equation*}
\int_{0}^{\pi / 2} \cos ^{\alpha-1} \theta \sin ^{\beta-1} \theta \mathrm{~d} \theta=\frac{1}{2} \frac{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta}{2}\right)}{\Gamma\left(\frac{\alpha+\beta}{2}\right)} \quad \text { for } \alpha, \beta \in(0, \infty) \tag{9c8}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\int_{0}^{\pi / 2} \sin ^{\alpha-1} \theta \mathrm{~d} \theta=\int_{0}^{\pi / 2} \cos ^{\alpha-1} \theta \mathrm{~d} \theta=\frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{\alpha+1}{2}\right)} \tag{9c9}
\end{equation*}
$$

The trigonometric functions can be eliminated: $\int_{0}^{\pi / 2} \cos ^{\alpha-1} \theta \sin ^{\beta-1} \theta \mathrm{~d} \theta=$ $\frac{1}{2} \int_{0}^{\pi / 2} \cos ^{\alpha-2} \theta \sin ^{\beta-2} \theta \cdot 2 \sin \theta \cos \theta \mathrm{~d} \theta=\frac{1}{2} \int_{0}^{1}(1-u)^{\frac{\alpha-2}{2}} u^{\frac{\beta-2}{2}} \mathrm{~d} u$; thus,

$$
\begin{equation*}
\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} \mathrm{~d} x=\mathrm{B}(\alpha, \beta) \quad \text { for } \alpha, \beta \in(0, \infty) \tag{9c10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{B}(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} \quad \text { for } \alpha, \beta \in(0, \infty) \tag{9c11}
\end{equation*}
$$

is another special function, the beta function.
9c12 Exercise. Check that $\mathrm{B}(x, x)=2^{1-2 x} B\left(x, \frac{1}{2}\right) .{ }^{1}$
9c13 Exercise. Check the duplication formula: ${ }^{2}$

$$
\Gamma(2 x)=\frac{2^{2 x-1}}{\sqrt{\pi}} \Gamma(x) \Gamma\left(x+\frac{1}{2}\right) .
$$

9c14 Exercise. Calculate $\int_{0}^{1} x^{4} \sqrt{1-x^{2}} \mathrm{~d} x$.
Answer: $\frac{\pi}{32}$.
9c15 Exercise. Calculate $\int_{0}^{\infty} x^{m} \mathrm{e}^{-x^{n}} \mathrm{~d} x$.
Answer: $\frac{1}{n} \Gamma\left(\frac{m+1}{n}\right)$.
9c16 Exercise. Calculate $\int_{0}^{1} x^{m}(\ln x)^{n} \mathrm{~d} x$.
Answer: $\frac{(-1)^{n} n!}{(m+1)^{n+1}}$.

[^5]9c17 Exercise. Calculate $\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{\sqrt{\cos x}}$.
Answer: $\frac{\Gamma^{2}(1 / 4)}{2 \sqrt{2 \pi}}$.
9c18 Exercise. Check that $\Gamma(t) \Gamma(1-t)=\int_{0}^{\infty} \frac{x^{t-1}}{1+x} \mathrm{~d} x$ for $0<t<1 .{ }^{1}$
We mention without proof another useful formula

$$
\int_{0}^{\infty} \frac{x^{t-1}}{1+x} \mathrm{~d} x=\frac{\pi}{\sin \pi t} \quad \text { for } 0<t<1
$$

There is a simple proof that uses the residues theorem from the complex analysis course. This formula yields that $\Gamma(t) \Gamma(1-t)=\frac{\pi}{\sin \pi t}$ for $0<t<1$.

Is the function Γ continuous?
For every compact interval $\left[t_{0}, t_{1}\right] \subset(0, \infty)$ the given function of two variables $(t, x) \mapsto x^{t-1} \mathrm{e}^{-x}$ is continuous on $\left[t_{0}, t_{1}\right] \times\left[\frac{1}{k}, k\right]$, therefore its integral in x is continuous in t on $\left[t_{0}, t_{1}\right]$ (recall 4e6(a)). Also,

$$
\int_{1 / k}^{k} x^{t-1} \mathrm{e}^{-x} \mathrm{~d} x \rightarrow \Gamma(t) \quad \text { uniformly on }\left[t_{0}, t_{1}\right]
$$

since $\int_{0}^{1 / k} x^{t-1} \mathrm{e}^{-x} \mathrm{~d} x \leq \int_{0}^{1 / k} x^{t_{0}-1} \mathrm{~d} x \rightarrow 0$ as $k \rightarrow \infty$ and $\int_{k}^{\infty} x^{t-1} \mathrm{e}^{-x} \mathrm{~d} x \leq$ $\int_{k}^{\infty} x^{t_{1}-1} \mathrm{e}^{-x} \mathrm{~d} x \rightarrow 0$ as $k \rightarrow \infty$. It follows that Γ is continuous on arbitrary $\left[t_{0}, t_{1}\right]$, therefore, on the whole $(0, \infty)$.

In particular, $t \Gamma(t)=\Gamma(t+1) \rightarrow \Gamma(1)=1$ as $t \rightarrow 0+$; that is,

$$
\Gamma(t)=\frac{1}{t}+o\left(\frac{1}{t}\right) \quad \text { as } t \rightarrow 0+.
$$

9d Change of variables

9d1 Theorem (change of variables). Let $U, V \subset \mathbb{R}^{n}$ be open sets, $\varphi: U \rightarrow V$ a diffeomorphism, and $f: V \rightarrow[0, \infty)$. Then
(a) $(f$ is continuous almost everywhere on $V) \Longleftrightarrow$ $(f \circ \varphi$ is continuous almost everywhere on $U) \Longleftrightarrow$ $((f \circ \varphi)|\operatorname{det} D \varphi|$ is continuous almost everywhere on $U)$;
(b) if they are continuous almost everywhere, then

$$
\int_{V} f=\int_{U}(f \circ \varphi)|\operatorname{det} D \varphi| \in[0, \infty] .
$$

Item (a) follows easily from 8c1 (similarly to the proof of 8a1(a) in Sect. 8c but simpler: 8 c 4 is not needed now).

[^6]9d2 Lemma. Let U, V, φ, f be as in Th. 9d1, and in addition, f be compactly supported within V. Then 9d1(b) holds.

Proof. This is basically Prop. 8d1; there U, V are admissible, since otherwise the integrals over U and V are not defined by 4 d 5 . Now they are defined (see the paragraph after (9b1)): $\int_{V} f=\int_{\mathbb{R}^{n}} f \cdot \mathbb{1}_{V}$ (and similarly for U), and the proof of 8 d 1 given in Sect. 8d applies (check it).

Proof of Th. 9d1(b). First, we prove that

$$
\begin{equation*}
\int_{V} f \leq \int_{U}(f \circ \varphi)|\operatorname{det} D \varphi| . \tag{9d3}
\end{equation*}
$$

Assume the contrary. By 9b2(a) there exists integrable g, compactly supported within V, such that $g \leq f$ on V and $\int_{V} g>\int_{U}(f \circ \varphi)|\operatorname{det} D \varphi|$. By 9 d 2 , $\int_{V} g=\int_{U}(g \circ \varphi)|\operatorname{det} D \varphi| \leq \int_{U}(f \circ \varphi)|\operatorname{det} D \varphi| ;$ this contradiction proves (9d3).

Second, we apply (9d3) to $\varphi_{1}=\varphi^{-1}: V \rightarrow U$ and $f_{1}=(f \circ \varphi)|\operatorname{det} D \varphi|:$ $U \rightarrow[0, \infty)$:

$$
\int_{U} f_{1} \leq \int_{V}\left(f_{1} \circ \varphi_{1}\right)\left|\operatorname{det} D \varphi_{1}\right| .
$$

By the chain rule, $\varphi \circ \varphi_{1}=\operatorname{id}_{V}$ implies $\left((D \varphi) \circ \varphi_{1}\right)\left(D \varphi_{1}\right)=\mathrm{id}$, thus $((\operatorname{det} D \varphi) \circ$ $\left.\varphi_{1}\right)\left(\operatorname{det} D \varphi_{1}\right)=1$. We get

$$
f_{1} \circ \varphi_{1}=\left(f \circ \varphi \circ \varphi_{1}\right)\left|(\operatorname{det} D \varphi) \circ \varphi_{1}\right|=\frac{f}{\left|\operatorname{det} D \varphi_{1}\right|}
$$

$\left(f_{1} \circ \varphi_{1}\right)\left|\operatorname{det} D \varphi_{1}\right|=f ; \int_{U}(f \circ \varphi)|\operatorname{det} D \varphi|=\int_{U} f_{1} \leq \int_{V} f$.

9e Iterated integral

We consider an open set $G \subset \mathbb{R}^{m+n}$ and functions $f: G \rightarrow[0, \infty)$ continuous almost everywhere. Similarly to Sect. 5d, the section $f(x, \cdot)$ of f need not be continuous almost everywhere on the section $G_{x}=\{y:(x, y) \in G\}$ of G; thus, $\int_{G_{x}} f(x, \cdot)$ is generally ill-defined. Similarly to Th. 5 d 1 we need the lower integral (but no upper integral this time).

We define the lower integral by (9b1) again, but this time $f: G \rightarrow[0, \infty)$ is arbitrary (rather than continuous almost everywhere). That is, for open $G \subset \mathbb{R}^{n}$ (rather than \mathbb{R}^{m+n}, for now)
$(9 \mathrm{e} 1) \quad \int_{G} f=\sup \left\{\int_{\mathbb{R}^{n}} g \mid g: \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ integrable,

$$
\left.0 \leq g \leq f \text { on } G, g=0 \text { on } \mathbb{R}^{n} \backslash G\right\} \in[0, \infty]
$$

In particular, if f is continuous almost everywhere on G, then ${ }_{*} \int_{G} f=\int_{G} f$.
As before, the condition on g may be reformulated as $0 \leq g \leq f \cdot \mathbb{1}_{G}$. Still, 9b2(a) applies (check it). And 9b2(b) becomes: if f is bounded and G is bounded, then ${ }_{*} \int_{G} f={ }_{*} \int_{\mathbb{R}^{n}} f \cdot \mathbb{1}_{G}$, the latter integral being proper, that is, defined in Sect. 4c.

Similarly to 9b10, for open sets $G, G_{1}, G_{2}, \cdots \subset \mathbb{R}^{n}$,

$$
\begin{equation*}
G_{k} \uparrow G \Longrightarrow \int_{G_{k}} f \uparrow \int_{G} f \in[0, \infty] \tag{9e2}
\end{equation*}
$$

for arbitrary $f: G \rightarrow[0, \infty)$. Similarly to 9b3(a),

$$
G_{k} \uparrow G \Longrightarrow \int_{G_{k}} \min (f, k) \uparrow \int_{G} f \in[0, \infty] .
$$

If, in addition, G_{k} are bounded, then we may rewrite it as

$$
\begin{equation*}
\int_{* \mathbb{R}^{n}} \min (f, k) \mathbb{1}_{G_{k}} \uparrow \int_{G} f, \tag{9e3}
\end{equation*}
$$

the left-hand side integral being proper.
An increasing sequence of integrable functions can converge ${ }^{1}$ to a function that is not almost everywhere continuous (and moreover, is discontinuous everywhere). Nevertheless, a limiting procedure is possible, as follows.
$\mathbf{9 e 4}$ Proposition. If $g_{1}, g_{2}, \cdots: \mathbb{R}^{n} \rightarrow[0, \infty)$ are integrable and $g_{k} \uparrow f: \mathbb{R}^{n} \rightarrow$ $[0, \infty)$, then $\int_{\mathbb{R}^{n}} g_{k} \uparrow{ }_{*} \int_{\mathbb{R}^{n}} f .{ }^{2}$

This claim follows easily from an important theorem (to be proved in Appendix).

9e5 Theorem (monotone convergence for Riemann integral). If g, g_{1}, g_{2}, \cdots : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ are integrable and $g_{k} \uparrow g$, then $\int_{\mathbb{R}^{n}} g_{k} \uparrow \int_{\mathbb{R}^{n}} g$.

Proof that Th. $9 e 5$ implies Prop. 9e4. Clearly, $g_{k} \uparrow f$ implies $\lim _{k} \int g_{k} \leq{ }_{*} \int f$; we have to prove that $\lim _{k} \int g_{k} \geq_{*} \int f$. Given an integrable $g \leq f$, we have $\min \left(g_{k}, g\right) \uparrow \min (f, g)=g$ and, by $9 \mathrm{e} 5, \int \min \left(g_{k}, g\right) \uparrow \int g$. Thus, $\int g \leq \lim _{k} \int g_{k}$; supremum in g gives ${ }_{*} \int f \leq \lim _{k} \int g_{k}$.

We return to an open set $G \subset \mathbb{R}^{m+n}$ and its sections $G_{x} \subset \mathbb{R}^{n}$ for $x \in \mathbb{R}^{m}$.

[^7]9e6 Theorem (iterated improper integral). If a function $f: G \rightarrow[0, \infty)$ is continuous almost everywhere, then

$$
\int_{\mathbb{R}^{m}} \mathrm{~d} x \int_{G_{x}} \mathrm{~d} y f(x, y)=\iint_{G} f(x, y) \mathrm{d} x \mathrm{~d} y \in[0, \infty] .
$$

Unlike Th. 5d1, both integrals in the left-hand side are lower integrals. The function $x \mapsto{ }_{*} \int_{G_{x}} \mathrm{~d} y f(x, y)$ need not be almost everywhere continuous, even if $G=\mathbb{R}^{2}$ and f is continuous. Moreover, it can happen that $x \mapsto$ ${ }_{*} \int_{\mathbb{R}} f(x, \cdot)$ is unbounded on every interval, even if $f: \mathbb{R}^{2} \rightarrow[0, \infty)$ is bounded, continuously differentiable, $\int_{\mathbb{R}^{2}} f<\infty$, and $f(x, y) \rightarrow 0, \nabla f(x, y) \rightarrow 0$ as $x^{2}+y^{2} \rightarrow \infty$. (Can you find a counterexample? Hint: construct separately $\left.f\right|_{\mathbb{R} \times\left[2^{k}, 2^{k+1}\right]}$ for each k.)

It is easy to see (try it!) that $\int_{G} f$ does not exceed the iterated integral; but the equality needs more effort.

Proof. We take admissible open sets $G_{k} \subset \mathbb{R}^{m+n}$ such that $G_{k} \uparrow G,{ }^{1}$ and introduce $f_{k}=\min (f, k) \mathbb{1}_{G_{k}}$, that is,

$$
f_{k}(x, y)= \begin{cases}f(x, y), & \text { if }(x, y) \in G_{k} \text { and } f(x, y) \leq k, \\ k, & \text { if }(x, y) \in G_{k} \text { and } f(x, y) \geq k, \\ 0, & \text { if }(x, y) \notin G_{k} .\end{cases}
$$

By Lebesgue's criterion 6 d 2 , each f_{k} is integrable. By (9e3), $\int_{\mathbb{R}^{m+n}} f_{k} \uparrow \int_{G} f$, the left-hand side integral being proper.

Given $x \in \mathbb{R}^{m}$, we apply the same argument to the sections $f_{k}(x, \cdot), f(x, \cdot)$, $\left(G_{k}\right)_{x}, G_{x}$, taking into account that $f_{k}(x, \cdot)$ need not be integrable, and we get

$$
\int_{*} \int_{\mathbb{R}^{n}} f_{k}(x, \cdot)=\int_{*} \min (f(x, \cdot), k) \mathbb{1}_{\mathbb{R}_{k}}(x, \cdot) \uparrow_{*} \int_{G_{x}} f(x, \cdot) .
$$

By Th. 5 d 1 (applied to f_{k}), the function $x \mapsto{ }_{*} \int_{\mathbb{R}^{n}} f_{k}(x, \cdot)$ is integrable, and its integral is equal to $\int_{\mathbb{R}^{m+n}} f_{k}$. Applying Prop. 9 e 4 to these functions we get

$$
\int_{\mathbb{R}^{m+n}} f_{k}=\int_{\mathbb{R}^{m}}\left(x \mapsto \int_{\mathbb{R}^{n}} f_{k}(x, \cdot)\right) \uparrow_{*} \int_{\mathbb{R}^{m}}\left(x \mapsto \int_{G_{x}} f(x, \cdot)\right) ;
$$

but on the other hand, $\int_{\mathbb{R}^{m+n}} f_{k} \uparrow \int_{G} f$.
$\mathbf{9 e 7}$ Corollary. The volume ${ }^{2}$ of an open set $G \subset \mathbb{R}^{m+n}$ is equal to the lower integral of the volume of G_{x} (even if G is not admissible).

[^8]
9f Multidimensional beta integrals of Dirichlet

9f1 Proposition.

$$
\int_{\substack{x_{1}, \ldots x_{n}>0, x_{1}+\cdots+x_{n}<1}} x_{1}^{p_{1}-1} \ldots x_{n}^{p_{n}-1} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}=\frac{\Gamma\left(p_{1}\right) \ldots \Gamma\left(p_{n}\right)}{\Gamma\left(p_{1}+\cdots+p_{n}+1\right)}
$$

for all $p_{1}, \ldots p_{n}>0$.
For the proof, we denote

$$
I\left(p_{1}, \ldots, p_{n}\right)=\int_{\substack{x_{1}, \ldots x_{n}>0, x_{1}+\cdots+x_{n}<1}} \cdots x_{1}^{p_{1}-1} \ldots x_{n}^{p_{n}-1} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n} .
$$

This integral is improper, unless $p_{1}, \ldots, p_{n} \geq 1$.
9f2 Lemma. $I\left(p_{1}, \ldots, p_{n}\right)=\mathrm{B}\left(p_{n}, p_{1}+\cdots+p_{n-1}+1\right) I\left(p_{1}, \ldots, p_{n-1}\right)$.
Proof. The change of variables $\xi=a x$ (that is, $\xi_{1}=a x_{1}, \ldots, \xi_{n}=a x_{n}$) gives (by Theorem 9d1)

$$
\int_{\substack{\xi_{1}, \ldots, \xi_{n}>0, \xi_{1}+\ldots+\xi_{n}<a}} \ldots \xi_{1}^{p_{1}-1} \ldots \xi_{n}^{p_{n}-1} \mathrm{~d} \xi_{1} \ldots \mathrm{~d} \xi_{n}=a^{p_{1}+\ldots+p_{n}} I\left(p_{1}, \ldots, p_{n}\right) \quad \text { for } a>0 .
$$

Thus, using 9 e 6 and (9c10),

$$
\begin{aligned}
I\left(p_{1}, \ldots, p_{n}\right)= & \int_{0}^{1} \mathrm{~d} x_{n} x_{n}^{p_{n}-1} \quad \int_{\substack{x_{1}, \ldots x_{n-1}>0, x_{1}+\cdots+x_{n-1}<1-x_{n}}} x_{1}^{p_{1}-1} \ldots x_{n-1}^{p_{n-1}-1} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n-1}= \\
= & \int_{0}^{1} x_{n}^{p_{n}-1}\left(1-x_{n}\right)^{p_{1}+\cdots+p_{n-1}} I\left(p_{1}, \ldots, p_{n-1}\right) \mathrm{d} x_{n}= \\
& =I\left(p_{1}, \ldots, p_{n-1}\right) \mathrm{B}\left(p_{n}, p_{1}+\cdots+p_{n-1}+1\right)
\end{aligned}
$$

Proof of Prop. 9f1.
Induction in the dimension n. For $n=1$ the formula is obvious:

$$
\int_{0}^{1} x_{1}^{p_{1}-1} \mathrm{~d} x_{1}=\frac{1}{p_{1}}=\frac{\Gamma\left(p_{1}\right)}{\Gamma\left(p_{1}+1\right)} .
$$

[^9]From $n-1$ to n : using 9f2 (and 9c11)),

$$
\begin{aligned}
& I\left(p_{1}, \ldots, p_{n}\right)=\frac{\Gamma\left(p_{n}\right) \Gamma\left(p_{1}+\cdots+p_{n-1}+1\right)}{\Gamma\left(p_{1}+\cdots+p_{n}+1\right)} \cdot \frac{\Gamma\left(p_{1}\right) \ldots \Gamma\left(p_{n-1}\right)}{\Gamma\left(p_{1}+\cdots+p_{n-1}+1\right)}= \\
&=\frac{\Gamma\left(p_{1}\right) \ldots \Gamma\left(p_{n}\right)}{\Gamma\left(p_{1}+\cdots+p_{n}+1\right)} .
\end{aligned}
$$

A seemingly more general formula,

$$
\int_{\substack{x_{1}, \ldots, x_{n}>0, x_{1}^{1}+\ldots+x_{n}^{\gamma_{n}}<1}} x_{1}^{p_{1}-1} \ldots x_{n}^{p_{n}-1} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}=\frac{1}{\gamma_{1} \ldots \gamma_{n}} \cdot \frac{\Gamma\left(\frac{p_{1}}{\gamma_{1}}\right) \ldots \Gamma\left(\frac{p_{n}}{\gamma_{n}}\right)}{\Gamma\left(\frac{p_{1}}{\gamma_{1}}+\cdots+\frac{p_{n}}{\gamma_{n}}+1\right)}
$$

results from 9 f1 by the (nonlinear!) change of variables $y_{j}=x_{j}^{\gamma_{j}}$.
A special case: $p_{1}=\cdots=p_{n}=1, \gamma_{1}=\cdots=\gamma_{n}=p$;

$$
\int_{\substack{x_{1}, \ldots, x_{n}>0 \\ x_{1}^{p}+\cdots+x_{n}^{p}<1}} \ldots \int_{1} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}=\frac{\Gamma^{n}\left(\frac{1}{p}\right)}{p^{n} \Gamma\left(\frac{n}{p}+1\right)} .
$$

We've found the volume of the unit ball in the metric l_{p} :

$$
v\left(B_{p}(1)\right)=\frac{2^{n} \Gamma^{n}\left(\frac{1}{p}\right)}{p^{n} \Gamma\left(\frac{n}{p}+1\right)} .
$$

If $p=2$, the formula gives us (again; see (9c7) the volume of the standard unit ball:

$$
V_{n}=v\left(B_{2}(1)\right)=\frac{2 \pi^{n / 2}}{n \Gamma\left(\frac{n}{2}\right)} .
$$

We also see that the volume of the unit ball in the l_{1}-metric equals $\frac{2^{n}}{n!}$.
Question: what does the formula give in the $p \rightarrow \infty$ limit?
9f3 Exercise. Show that

$$
\int_{\substack{x_{1}+\cdots+x_{n}<1 \\ x_{1}, \ldots, x_{n}>0}} \varphi\left(x_{1}+\cdots+x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}=\frac{1}{(n-1)!} \int_{0}^{1} \varphi(s) s^{n-1} \mathrm{~d} s
$$

for every "good" function $\varphi:[0,1] \rightarrow \mathbb{R}$ and, more generally,

$$
\begin{aligned}
\int \begin{array}{c}
x_{1}+\ldots+x_{n}<1 \\
x_{1}, \ldots, x_{n}>0
\end{array} & \varphi\left(x_{1}+\cdots+x_{n}\right) x_{1}^{p_{1}-1} \ldots x_{n}^{p_{n}-1} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}= \\
& =\frac{\Gamma\left(p_{1}\right) \ldots \Gamma\left(p_{n}\right)}{\Gamma\left(p_{1}+\cdots+p_{n}\right)} \int_{0}^{1} \varphi(u) u^{p_{1}+\ldots p_{n}-1} \mathrm{~d} u .
\end{aligned}
$$

Hint: consider

$$
\int_{0}^{1} \mathrm{~d} s \varphi^{\prime}(s) \int_{\substack{x_{1}+\ldots+x_{n}<s \\ x_{1}, \ldots, x_{n}>0}} \ldots \int_{1}^{p_{1}-1} \ldots x_{n}^{p_{n}-1} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}
$$

9 g Non-positive (signed) integrands

We define

$$
\int_{G}(g-h)=\int_{G} g-\int_{G} h
$$

whenever $g, h: G \rightarrow[0, \infty)$ are continuous almost everywhere and $\int_{G} g<\infty$, $\int_{G} h<\infty$; this definition is correct, that is,

$$
\int_{G} g_{1}-\int_{G} h_{1}=\int_{G} g_{2}-\int_{G} h_{2} \quad \text { whenever } g_{1}-h_{1}=g_{2}-h_{2},
$$

due to 9b9,

$$
\begin{aligned}
g_{1}-h_{1}=g_{2}-h_{2} \Longrightarrow g_{1}+h_{2}=g_{2}+h_{1} & \Longrightarrow \int_{G}\left(g_{1}+h_{2}\right)=\int_{G}\left(g_{2}+h_{1}\right) \Longrightarrow \\
& \Longrightarrow \int_{G} g_{1}+\int_{G} h_{2}=\int_{G} g_{2}+\int_{G} h_{1} \Longrightarrow \int_{G} g_{1}-\int_{G} h_{1}=\int_{G} g_{2}-\int_{G} h_{2} .
\end{aligned}
$$

$\mathbf{9} \mathbf{g} \mathbf{1}$ Lemma. The following two conditions on a function $f: G \rightarrow \mathbb{R}$ continuous almost everywhere are equivalent:
(a) there exist $g, h: G \rightarrow[0, \infty)$, continuous almost everywhere, such that $\int_{G} g<\infty, \int_{G} h<\infty$ and $f=g-h ;$
(b) $\int_{G}|f|<\infty$.

Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b}): \int_{G}|g-h| \leq \int_{G}(|g|+|h|)=\int_{G}|g|+\int_{G}|h|<\infty$.
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$: we introduce the positive part f^{+}and the negative part f^{-}of f,

$$
\begin{align*}
f^{+}(x) & =\max (0, f(x)), \quad f^{-}(x)=\max (0,-f(x)) ; \tag{9g2}\\
f^{-} & =(-f)^{+} ; \quad f=f^{+}-f^{-} ; \quad|f|=f^{+}+f^{-} ;
\end{align*}
$$

they are continuous almost everywhere (think, why); $\int_{G} f^{+} \leq \int_{G}|f|<\infty$, $\int_{G} f^{-} \leq \int_{G}|f|<\infty ;$ and $f^{+}-f^{-}=f$.

We summarize:

$$
\begin{equation*}
\int_{G} f=\int_{G} f^{+}-\int_{G} f^{-} \tag{9g3}
\end{equation*}
$$

whenever $f: G \rightarrow \mathbb{R}$ is continuous almost everywhere and such that $\int_{G}|f|<$ ∞. Such functions will be called improperly integrable ${ }^{1}$ (on G).

9g4 Exercise. Prove linearity: $\int_{G} c f=c \int_{G} f$ for $c \in \mathbb{R}$, and $\int_{G}\left(f_{1}+f_{2}\right)=$ $\int_{G} f_{1}+\int_{G} f_{2}$.

Similarly to Sect. 4e, a function $f: G \rightarrow \mathbb{R}$ continuous almost everywhere will be called negligible if $\int_{G}|f|=0$. Functions f, g continuous almost everywhere and such that $f-g$ is negligible will be called equivalent. The equivalence class of f will be denoted $[f]$.

Improperly integrable functions $f: G \rightarrow \mathbb{R}$ are a vector space. On this space, the functional $f \mapsto \int_{G}|f|$ is a seminorm. The corresponding equivalence classes are a normed space (therefore also a metric space). The integral is a continuous linear functional on this space.

If G is admissible, then the space of improperly integrable functions on G is embedded into the space of improperly integrable functions on \mathbb{R}^{n} by $f \mapsto f \cdot \mathbb{1}_{G}$.
$\mathbf{9 g} 5$ Proposition (exhaustion). For open sets $G, G_{1}, G_{2}, \cdots \subset \mathbb{R}^{n}$,

$$
G_{k} \uparrow G \Longrightarrow \int_{G_{k}} f \rightarrow \int_{G} f \in \mathbb{R}
$$

for all improperly integrable $f: G \rightarrow \mathbb{R}$.
9g6 Theorem (change of variables). Let $U, V \subset \mathbb{R}^{n}$ be open sets, $\varphi: U \rightarrow V$ a diffeomorphism, and $f: V \rightarrow \mathbb{R}$. Then
(a) $(f$ is continuous almost everywhere on $V) \Longleftrightarrow$ $(f \circ \varphi$ is continuous almost everywhere on $U) \Longleftrightarrow$ ($(f \circ \varphi)|\operatorname{det} D \varphi|$ is continuous almost everywhere on U);
(b) if they are continuous almost everywhere, then

$$
\int_{V}|f|=\int_{U}|(f \circ \varphi) \operatorname{det} D \varphi| \in[0, \infty] ;
$$

(c) and if the integrals in (b) are finite, then

$$
\int_{V} f=\int_{U}(f \circ \varphi)|\operatorname{det} D \varphi| \in \mathbb{R} .
$$

[^10]9g7 Exercise. Prove 9g5 and 9g6.
9g8 Exercise. If $0<t_{0}<t_{1}<\infty$, then the function $(x, t) \mapsto x^{t-1} \mathrm{e}^{-x} \ln x$ is improperly integrable on $(0, \infty) \times\left(t_{0}, t_{1}\right)$, and

$$
\int_{t_{0}}^{t_{1}} \mathrm{~d} t \int_{0}^{\infty} \mathrm{d} x x^{t-1} \mathrm{e}^{-x} \ln x=\Gamma\left(t_{1}\right)-\Gamma\left(t_{0}\right) .
$$

Prove it. ${ }^{1}$
9g9 Exercise. (a) The function $t \mapsto \int_{0}^{\infty} x^{t-1} \mathrm{e}^{-x} \ln x \mathrm{~d} x$ is continuous on ($0, \infty$);
(b) the gamma function is continuously differentiable on $(0, \infty)$, and

$$
\Gamma^{\prime}(t)=\int_{0}^{\infty} x^{t-1} \mathrm{e}^{-x} \ln x \mathrm{~d} x \quad \text { for } 0<t<\infty ;
$$

(c) the gamma function is convex on $(0, \infty)$.

Prove it.

Index

beta function, 115
change of variables, 116, 123
equivalent, 123
exhaustion, 113,123
gamma function, 114
improper integral
signed, 122, 123
unsigned, 110
improperly integrable, 123
iterated improper integral, 119
linearity, 123
lower integral, 117
monotone convergence
for integral, 118
for volume, 113
negligible, 123
Poisson formula, 111
volume of ball, 114,121
B, 115
[f], 123
$f \cdot \mathbb{1}_{G}, 110$
$f^{+}, f^{-}, 122$
$\Gamma, 114$

[^11]
[^0]: ${ }^{1}$ Additional literature (for especially interested):
 M. Pascu (2006) "On the definition of multidimensional generalized Riemann integral" Bul. Univ. Petrol LVIII:2, 9-16.
 (Research level) D. Maharam (1988) "Jordan fields and improper integrals", J. Math. Anal. Appl. 133, 163-194.
 ${ }^{2}$ This condition will be used in 9 b 9
 ${ }^{3}$ A bounded open set need not be admissible, even if it is diffeomorphic to a disk.

[^1]: ${ }^{1}$ In fact, $v_{*}(G)$ is Lebesgue's measure of G.
 ${ }^{2}$ But in fact, the same holds for arbitrary norm.
 ${ }^{3}$ That is, bounded on every bounded subset of \mathbb{R}^{n}.

[^2]: ${ }^{1}$ Hint: (a) polar coordinates; (b) use (a).
 ${ }^{2}$ But in fact, the same holds for arbitrary norm.
 ${ }^{3}$ Hint: (a) first, $g=\mathbb{1}_{[0, a]}$, second, a step function g, and third, sandwich; also, $(\mathrm{a}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{c})$.

[^3]: ${ }^{1}$ Compare it with 4 c 7 : ${ }_{*} \int(f+g) \geq{ }_{*} \int f+{ }_{*} \int g$.
 ${ }^{2}$ Really, this is easy to prove without 9 b 10 (try it).

[^4]: ${ }^{1}$ This is rather $\left.\Gamma\right|_{(0, \infty)}$.

[^5]: ${ }^{1}$ Hint: $\int_{0}^{\pi / 2}\left(\frac{2 \sin \theta \cos \theta}{2}\right)^{2 x-1} \mathrm{~d} \theta$.
 ${ }^{2}$ Hint: use 9 c12 ${ }^{2}$

[^6]: ${ }^{1}$ Hint: change x to y via $(1+x)(1-y)=1$.

[^7]: ${ }^{1}$ Pointwise, not uniformly.
 ${ }^{2}$ Do you think that ${ }_{*} \int g_{k} \uparrow{ }_{*} \int f$ for arbitrary (not integrable) g_{k} ? No, this is wrong. Recall f_{k} of 4 e 7 and consider $1-f_{k}$.

[^8]: ${ }^{1}$ For example, we may use the interior of the union of all N-pixels contained in $G \cap$ $[-N, N]^{n}$.
 ${ }^{2}$ That is, $v_{*}(G)$ if G is bounded; and $\int_{G} 1$ (in fact, the Lebesgue measure of G) in general.

[^9]: ${ }^{1}$ But a linear change of variables does not really need 9 d 1 it is a simple generalization of 7 c 1 or even (4h5).

[^10]: ${ }^{1}$ In one dimension they are usually called absolutely (improperly) integrable.

[^11]: ${ }^{1}$ Hint: apply 9 e 6 twice, to f^{+}and f^{-}.

