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Riemann integral and volume are generalized to unbounded functions and
sets.

9a Introduction

The n-dimensional unit ball in the lp metric,

E = {(x1, . . . , xn) ∶ ∣x1∣
p + ⋅ ⋅ ⋅ + ∣xn∣

p ≤ 1} ,

is an admissible set, and its volume is a Riemann integral,

v(E) = ∫
Rn

1lE ,

of a bounded function with bounded support. In Sect. 9f we’ll calculate it:

v(E) =
2nΓn(1

p
)

pnΓ(n
p + 1)

where Γ is a function defined by

Γ(t) = ∫
∞

0
xt−1e−x dx for t > 0 ;

here the integrand has no bounded support; and for t = 1
p < 1 it is also un-

bounded (near 0). Thus we need a more general, so-called improper integral,
even for calculating the volume of a bounded body!

In relatively simple cases the improper integral may be treated via ad hoc
limiting procedure adapted to the given function; for example,

∫

∞

0
xt−1e−x dx = lim

k→∞∫
k

1/k
xt−1e−x dx .
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In more complicated cases it is better to have a theory able to integrate rather
general functions on rather general n-dimensional sets. Different functions
may tend to infinity on different subsets (points, lines, surfaces), and still,
we expect ∫ (af + bg) = a ∫ f + b ∫ g (linearity) to hold, as well as change of
variables.1

9b Positive integrands

We consider an open set G ⊂ Rn and functions f ∶ G → [0,∞) continuous
almost everywhere.2 We do not assume that G is bounded. We also do not
assume that G is admissible, even if it is bounded.3 “Continuous almost
everywhere”means that the set A ⊂ G of all discontinuity points of f has
measure 0 (recall Sect. 6d). We can use the function f ⋅ 1lG equal f on G
and 0 on Rn ∖G, but must be careful: 1lG and f ⋅ 1lG need not be continuous
almost everywhere.

We define

(9b1) ∫
G
f = sup{∫

Rn
g ∣ g ∶ Rn → R integrable,

0 ≤ g ≤ f on G, g = 0 on Rn ∖G} ∈ [0,∞] .

The condition on g may be reformulated as 0 ≤ g ≤ f ⋅ 1lG. If f ⋅ 1lG is
integrable (on Rn), then clearly ∫G f = ∫Rn f ⋅1lG, which generalizes 4d5. This
happens if and only if f ⋅ 1lG is bounded, with bounded support, and

f(x) → f(x0) = 0 as G ∋ x→ x0

for almost all x0 ∈ ∂G (think, why). (Void if ∂G has measure 0.)

9b2 Exercise. (a) Without changing the supremum in (9b1) we may restrict
ourselves to continuous g with bounded support; or, alternatively, to step
functions g; and moreover, in both cases, WLOG, g has a compact support
inside G;

1Additional literature (for especially interested):
M. Pascu (2006) “On the definition of multidimensional generalized Riemann integral”,
Bul. Univ. Petrol LVIII:2, 9–16.
(Research level) D. Maharam (1988) “Jordan fields and improper integrals”, J. Math.
Anal. Appl. 133, 163–194.

2This condition will be used in 9b9.
3A bounded open set need not be admissible, even if it is diffeomorphic to a disk.

http://bmif.unde.ro/docs/20062/2%20PascuM.pdf
http://www.sciencedirect.com/science/article/pii/0022247X88903733
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(b) if f is bounded (not necessarily a.e. continuous) and G is bounded,
then ∫G f = ∗∫ Rn f ⋅ 1lG, and in particular, ∫G 1 = v∗(G);1

(c) if f is bounded and G is admissible, then the integral defined by (9b1)
is equal to the integral defined by 4d5.
Prove it.

There are many ways to treat the improper integral as the limit of
(proper) Riemann integrals; here are some ways.

9b3 Exercise. Consider the case G = Rn, and let ∥ ⋅ ∥ be a norm on Rn of
the form2 ∥x∥ = (∣x1∣

p + ⋅ ⋅ ⋅ + ∣xn∣p)1/p for x = (x1, . . . , xn); here p ∈ [1,∞] is a
parameter (and ∥x∥ = max(∣x1∣, . . . , ∣xn∣) if p = ∞).

(a) Prove that

∫
Rn
f = lim

k→∞∫∥x∥<k
min(f(x), k)dx .

(b) For a locally bounded3 f prove that

∫
Rn
f = lim

k→∞∫∥x∥<k
f(x)dx .

(c) Can it happen that f is locally bounded, not bounded, and ∫Rn f < ∞?

9b4 Example (Poisson). Consider

I = ∫
R2

e−∣x∣
2

dx .

On one hand, by 9b3 for the Euclidean norm (p = 2),

I = lim
k→∞∬
x2+y2<k2

e−(x
2+y2) dxdy = lim

k→∞

k

∫
0

r dr e−r
2

2π

∫
0

dθ = lim
k→∞

π

k2

∫
0

e−u du = π .

On the other hand, by 9b3 for ∥(x, y)∥ = max(∣x∣, ∣y∣) (p = ∞),

I = lim
k→∞∬

∣x∣<k,∣y∣<k

e−(x
2+y2) dxdy = lim

k→∞
(

k

∫

−k

e−x
2

dx)(

k

∫

−k

e−y
2

dy) = (

+∞

∫
−∞

e−x
2

dx)

2

,

and we obtain the celebrated Poisson formula:

+∞

∫
−∞

e−x
2

dx =
√
π .

1In fact, v∗(G) is Lebesgue’s measure of G.
2But in fact, the same holds for arbitrary norm.
3That is, bounded on every bounded subset of Rn.
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9b5 Exercise. Consider

I = ∬
x>0,y>0

xaybe−(x
2+y2) dxdy ∈ [0,∞]

for given a, b ∈ R. Prove that, on one hand,

I = (∫

∞

0
ra+b+1e−r

2

dr)(∫
π/2

0
cosa θ sinb θ dθ) ,

and on the other hand,

I = (∫

∞

0
xae−x

2

dx)(∫
∞

0
xbe−x

2

dx) .

9b6 Exercise. Consider f ∶ R2 → [0,∞) of the form f(x) = g(∣x∣) for a given
g ∶ [0,∞) → [0,∞).

(a) If g is integrable, then f is integrable and ∫R2 f = 2π ∫
∞

0 g(r) r dr.
(b) If g is continuous on (0,∞), then ∫R2 f = 2π ∫

∞
0 g(r) r dr ∈ [0,∞].

Prove it.1

9b7 Exercise. Let ∥ ⋅ ∥ be as in 9b3.2 Consider f ∶ Rn → [0,∞) of the form
f(x) = g(∥x∥) for a given g ∶ [0,∞) → [0,∞).

(a) If g is integrable, then f is integrable, and ∫Rn f = nV ∫
∞

0 g(r) rn−1 dr
where V is the volume of {x ∶ ∥x∥ < 1}.

(b) If g is continuous on (0,∞), then ∫Rn f = nV ∫
∞

0 g(r) rn−1 dr ∈ [0,∞].
c) Let g be continuous on (0,∞) and satisfy

g(r) ∼ ra for r → 0+ , g(r) ∼ rb for r → +∞ .

Then ∫ f < ∞ if and only if b < −n < a.
Prove it.3

9b8 Example. ∫Rn e−∥x∥
2
dx = nV ∫

∞
0 rn−1e−r

2
dr; in particular, ∫Rn e−∣x∣

2
dx =

nVn ∫
∞

0 rn−1e−r
2
dr where Vn is the volume of the (usual) n-dimensional unit

ball. On the other hand, ∫Rn e−∣x∣
2
dx = (∫R e−x

2
dx)n = πn/2. Therefore

Vn =
πn/2

n ∫
∞

0 rn−1e−r2 dr
.

Not unexpectedly, V2 =
π

2 ∫ ∞0 re−r2 dr
= π.

1Hint: (a) polar coordinates; (b) use (a).
2But in fact, the same holds for arbitrary norm.
3Hint: (a) first, g = 1l[0,a], second, a step function g, and third, sandwich; also,

(a)Ô⇒(b)Ô⇒(c).



Tel Aviv University, 2016 Analysis-III 113

Clearly, ∫G cf = c ∫G f for c ∈ (0,∞).

9b9 Proposition. ∫G(f1 + f2) = ∫G f1 + ∫G f2 ∈ [0,∞] for all f1, f2 ≥ 0 on G,
continuous almost everywhere.

Proof. The easy part: ∫G(f1 + f2) ≥ ∫G f1 + ∫G f2.1 Given integrable g1, g2

such that 0 ≤ g1 ≤ f1 ⋅1lG and 0 ≤ g2 ≤ f2 ⋅1lG, we have ∫ g1+∫ g2 = ∫ (g1+g2) ≤

∫G(f1 + f2), since g1 + g2 is integrable and 0 ≤ g1 + g2 ≤ (f1 + f2) ⋅ 1lG. The
supremum in g1, g2 gives the claim.

The hard part: ∫G(f1 + f2) ≤ ∫G f1 + ∫G f2, that is, ∫ g ≤ ∫G f1 + ∫G f2 for
every integrable g such that 0 ≤ g ≤ (f1+f2)⋅1lG. We introduce g1 = min(f1, g),
g2 = min(f2, g) (pointwise minimum on G; and 0 on Rn ∖G) and prove that
they are continuous almost everywhere (on Rn, not just on G). For almost
every x ∈ G, both f1 and g are continuous at x and therefore g1 is continuous
at x. For almost every x ∈ ∂G, g is continuous at x, which ensures continuity
of g1 at x (irrespective of continuity of f1), since g(x) = 0 (x ∉ G). Thus, g1

is continuous almost everywhere; the same holds for g2.
By Lebesgue’s criterion 6d2, the functions g1, g2 are integrable. We have

g1+g2 ≥ min(f1+f2, g) = g, since generally, min(a, c)+min(b, c) ≥ min(a+b, c)
for all a, b, c ∈ [0,∞) (think, why). Thus, ∫ g ≤ ∫ (g1 + g2) = ∫ g1 + ∫ g2 ≤

∫G f1 + ∫G f2, since 0 ≤ g1 ≤ f1 ⋅ 1lG, 0 ≤ g2 ≤ f2 ⋅ 1lG.

9b10 Proposition (exhaustion). For open sets G,G1,G2, ⋅ ⋅ ⋅ ⊂ Rn,

Gk ↑ G Ô⇒ ∫
Gk
f

Õ
×
× ∫G

f ∈ [0,∞]

for all f ∶ G→ [0,∞) continuous almost everywhere.

Proof. First of all, ∫Gk f ≤ ∫Gk+1 f (since 0 ≤ g ≤ f ⋅ 1lGk implies 0 ≤ g ≤

f ⋅ 1lGk+1), and similarly, ∫Gk f ≤ ∫G f , thus ∫Gk f ↑ and limk ∫Gk
f ≤ ∫G f . We

have to prove that ∫G f ≤ limk ∫Gk
f .

We take an integrable g, compactly supported inside G (recall 9b2(a)),
such that g ≤ f on G. By compactness, there exists k0 such that g ≤ f ⋅ 1lGk0 .
Then ∫ g ≤ ∫Gk0

f ≤ limk ∫Gk
f . The supremum in g proves the claim.

9b11 Corollary (monotone convergence for volume). For open sets
G,G1,G2, ⋅ ⋅ ⋅ ⊂ Rn, 2

Gk ↑ G Ô⇒ v∗(Gk) ↑ v∗(G) .

9b12 Remark. Let G1,G2, ⋅ ⋅ ⋅ ⊂ Rn be (pairwise) disjoint open balls. Then

v∗(G1 ⊎G2 ⊎ . . . ) = v(G1) + v(G2) + . . .

even if the union is dense in Rn (which can happen; think, why).

1Compare it with 4c7: ∗∫ (f + g) ≥ ∗∫ f + ∗∫ g.
2Really, this is easy to prove without 9b10 (try it).



Tel Aviv University, 2016 Analysis-III 114

9c Special functions gamma and beta

The Euler gamma function Γ is defined by1

(9c1) Γ(t) = ∫
∞

0
xt−1e−x dx for t ∈ (0,∞) .

This integral is not proper for two reasons. First, the integrand is bounded
near 0 for t ∈ [1,∞) but unbounded for t ∈ (0,1). Second, the integrand has
no bounded support. In every case, using 9b10,

Γ(t) = lim
k→∞∫

k

1/k
xt−1e−x dx < ∞ ,

since the integrand (for a given t) is continuous on (0,∞), is O(xt−1) as
x→ 0, and (say) O(e−x/2) as x→∞. Thus, Γ ∶ (0,∞) → (0,∞).

Clearly, Γ(1) = 1. Integration by parts gives

∫

k

1/k
xte−x dx = −xte−x∣

k

x=1/k + t∫
k

1/k
xt−1e−x dx ;

Γ(t + 1) = tΓ(t) for t ∈ (0,∞) .(9c2)

In particular,

(9c3) Γ(n + 1) = n! for n = 0,1,2, . . .

We note that

(9c4) ∫

∞

0
xae−x

2

dx =
1

2
Γ(
a + 1

2
) for a ∈ (−1,∞) ,

since ∫
∞

0 xae−x
2
dx = ∫

∞
0 ua/2e−u du

2
√
u
. For a = 0 the Poisson formula (recall

9b4) gives

(9c5) Γ(
1

2
) =

√
π .

Thus,

(9c6) Γ(
2n + 1

2
) =

1

2
⋅
3

2
⋅ ⋅ ⋅ ⋅ ⋅

2n − 1

2

√
π .

The volume Vn of the n-dimensional unit ball (recall 9b8) is thus calculated:

(9c7) Vn =
πn/2

n
2 Γ(n2 )

.

1This is rather Γ∣(0,∞).
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Not unexpectedly, V3 =
π3/2

3
2

Γ( 3
2
) =

π3/2
3
2
⋅ 1
2

√
π
= 4

3π.

By 9b5, 1
2Γ(a+b+2

2
) ∫

π/2
0 cosa θ sinb θ dθ = 1

2Γ(a+1
2

)⋅12Γ( b+1
2
) for a, b ∈ (−1,∞);

that is,

(9c8) ∫

π/2

0
cosα−1 θ sinβ−1 θ dθ =

1

2

Γ(α2 )Γ(
β
2 )

Γ(
α+β

2 )
for α,β ∈ (0,∞) .

In particular,

(9c9) ∫

π/2

0
sinα−1 θ dθ = ∫

π/2

0
cosα−1 θ dθ =

√
π

2
⋅

Γ(α
2
)

Γ(α+1
2

)
.

The trigonometric functions can be eliminated: ∫
π/2

0 cosα−1 θ sinβ−1 θ dθ =
1
2 ∫

π/2
0 cosα−2 θ sinβ−2 θ ⋅ 2 sin θ cos θ dθ = 1

2 ∫
1

0 (1 − u)
α−2
2 u

β−2
2 du; thus,

(9c10) ∫

1

0
xα−1(1 − x)β−1 dx = B(α,β) for α,β ∈ (0,∞) ,

where

(9c11) B(α,β) =
Γ(α)Γ(β)

Γ(α + β)
for α,β ∈ (0,∞)

is another special function, the beta function.

9c12 Exercise. Check that B(x,x) = 21−2xB(x, 1
2).

1

9c13 Exercise. Check the duplication formula:2

Γ(2x) =
22x−1

√
π

Γ(x)Γ(x +
1

2
) .

9c14 Exercise. Calculate ∫
1

0 x
4
√

1 − x2 dx.
Answer: π

32 .

9c15 Exercise. Calculate ∫
∞

0 xme−x
n

dx.
Answer: 1

nΓ(m+1
n

).

9c16 Exercise. Calculate ∫
1

0 x
m(lnx)n dx.

Answer: (−1)nn!
(m+1)n+1 .

1Hint: ∫
π/2
0 (

2 sin θ cos θ
2

)
2x−1 dθ.

2Hint: use 9c12.
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9c17 Exercise. Calculate ∫
π/2

0
dx√
cosx

.

Answer: Γ2(1/4)
2
√

2π
.

9c18 Exercise. Check that Γ(t)Γ(1 − t) = ∫
∞

0
xt−1
1+x dx for 0 < t < 1.1

We mention without proof another useful formula

∫

∞

0

xt−1

1 + x
dx =

π

sinπt
for 0 < t < 1 .

There is a simple proof that uses the residues theorem from the complex
analysis course. This formula yields that Γ(t)Γ(1 − t) = π

sinπt for 0 < t < 1.

Is the function Γ continuous?
For every compact interval [t0, t1] ⊂ (0,∞) the given function of two

variables (t, x) ↦ xt−1e−x is continuous on [t0, t1]×[
1
k , k], therefore its integral

in x is continuous in t on [t0, t1] (recall 4e6(a)). Also,

∫

k

1/k
xt−1e−x dx→ Γ(t) uniformly on [t0, t1] ,

since ∫
1/k

0 xt−1e−x dx ≤ ∫
1/k

0 xt0−1 dx → 0 as k → ∞ and ∫
∞
k xt−1e−x dx ≤

∫
∞
k xt1−1e−x dx → 0 as k → ∞. It follows that Γ is continuous on arbitrary

[t0, t1], therefore, on the whole (0,∞).
In particular, tΓ(t) = Γ(t + 1) → Γ(1) = 1 as t→ 0+; that is,

Γ(t) =
1

t
+ o(

1

t
) as t→ 0 + .

9d Change of variables

9d1 Theorem (change of variables). Let U,V ⊂ Rn be open sets, ϕ ∶ U → V
a diffeomorphism, and f ∶ V → [0,∞). Then

(a) (f is continuous almost everywhere on V ) ⇐⇒
(f ○ ϕ is continuous almost everywhere on U) ⇐⇒
((f ○ ϕ)∣detDϕ∣ is continuous almost everywhere on U);

(b) if they are continuous almost everywhere, then

∫
V
f = ∫

U
(f ○ ϕ)∣detDϕ∣ ∈ [0,∞] .

Item (a) follows easily from 8c1 (similarly to the proof of 8a1(a) in Sect. 8c
but simpler: 8c4 is not needed now).

1Hint: change x to y via (1 + x)(1 − y) = 1.
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9d2 Lemma. Let U,V,ϕ, f be as in Th. 9d1, and in addition, f be compactly
supported within V . Then 9d1(b) holds.

Proof. This is basically Prop. 8d1; there U,V are admissible, since otherwise
the integrals over U and V are not defined by 4d5. Now they are defined
(see the paragraph after (9b1)): ∫V f = ∫Rn f ⋅ 1lV (and similarly for U), and
the proof of 8d1 given in Sect. 8d applies (check it).

Proof of Th. 9d1(b). First, we prove that

(9d3) ∫
V
f ≤ ∫

U
(f ○ ϕ)∣detDϕ∣ .

Assume the contrary. By 9b2(a) there exists integrable g, compactly sup-
ported within V , such that g ≤ f on V and ∫V g > ∫U(f ○ϕ)∣detDϕ∣. By 9d2,

∫V g = ∫U(g ○ϕ)∣detDϕ∣ ≤ ∫U(f ○ϕ)∣detDϕ∣; this contradiction proves (9d3).
Second, we apply (9d3) to ϕ1 = ϕ−1 ∶ V → U and f1 = (f ○ ϕ)∣detDϕ∣ ∶

U → [0,∞):

∫
U
f1 ≤ ∫

V
(f1 ○ ϕ1)∣detDϕ1∣ .

By the chain rule, ϕ○ϕ1 = idV implies ((Dϕ)○ϕ1)(Dϕ1) = id, thus ((detDϕ)○

ϕ1)(detDϕ1) = 1. We get

f1 ○ ϕ1 = (f ○ ϕ ○ ϕ1)∣(detDϕ) ○ ϕ1∣ =
f

∣detDϕ1∣
;

(f1 ○ ϕ1)∣detDϕ1∣ = f ; ∫U(f ○ ϕ)∣detDϕ∣ = ∫U f1 ≤ ∫V f .

9e Iterated integral

We consider an open set G ⊂ Rm+n and functions f ∶ G → [0,∞) continuous
almost everywhere. Similarly to Sect. 5d, the section f(x, ⋅) of f need not be
continuous almost everywhere on the section Gx = {y ∶ (x, y) ∈ G} of G; thus,

∫Gx f(x, ⋅) is generally ill-defined. Similarly to Th. 5d1 we need the lower
integral (but no upper integral this time).

We define the lower integral by (9b1) again, but this time f ∶ G→ [0,∞)

is arbitrary (rather than continuous almost everywhere). That is, for open
G ⊂ Rn (rather than Rm+n, for now)

(9e1)
∗
∫
G
f = sup{∫

Rn
g ∣ g ∶ Rn → R integrable,

0 ≤ g ≤ f on G, g = 0 on Rn ∖G} ∈ [0,∞] .
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In particular, if f is continuous almost everywhere on G, then ∗∫G f = ∫G f .
As before, the condition on g may be reformulated as 0 ≤ g ≤ f ⋅ 1lG. Still,

9b2(a) applies (check it). And 9b2(b) becomes: if f is bounded and G is
bounded, then ∗∫G f = ∗∫ Rn f ⋅ 1lG, the latter integral being proper, that is,
defined in Sect. 4c.

Similarly to 9b10, for open sets G,G1,G2, ⋅ ⋅ ⋅ ⊂ Rn,

(9e2) Gk ↑ G Ô⇒
∗
∫
Gk
f

Õ
×
× ∗
∫
G
f ∈ [0,∞]

for arbitrary f ∶ G→ [0,∞). Similarly to 9b3(a),

Gk ↑ G Ô⇒
∗
∫
Gk

min(f, k)
Õ
×
× ∗
∫
G
f ∈ [0,∞] .

If, in addition, Gk are bounded, then we may rewrite it as

(9e3)
∗
∫
Rn

min(f, k)1lGk
Õ
×
× ∗
∫
G
f ,

the left-hand side integral being proper.
An increasing sequence of integrable functions can converge1 to a function

that is not almost everywhere continuous (and moreover, is discontinuous
everywhere). Nevertheless, a limiting procedure is possible, as follows.

9e4 Proposition. If g1, g2, ⋅ ⋅ ⋅ ∶ Rn → [0,∞) are integrable and gk ↑ f ∶ Rn →

[0,∞), then ∫Rn gk ↑ ∗∫ Rn f . 2

This claim follows easily from an important theorem (to be proved in
Appendix).

9e5 Theorem (monotone convergence for Riemann integral). If g, g1, g2, ⋅ ⋅ ⋅ ∶
Rn → R are integrable and gk ↑ g, then ∫Rn gk ↑ ∫Rn g.

Proof that Th. 9e5 implies Prop. 9e4. Clearly, gk ↑ f implies limk ∫ gk ≤ ∗∫ f ;
we have to prove that limk ∫ gk ≥ ∗∫ f . Given an integrable g ≤ f , we
have min(gk, g) ↑ min(f, g) = g and, by 9e5, ∫ min(gk, g) ↑ ∫ g. Thus,

∫ g ≤ limk ∫ gk; supremum in g gives ∗∫ f ≤ limk ∫ gk.

We return to an open set G ⊂ Rm+n and its sections Gx ⊂ Rn for x ∈ Rm.

1Pointwise, not uniformly.
2Do you think that ∗∫ gk ↑ ∗∫ f for arbitrary (not integrable) gk? No, this is wrong.

Recall fk of 4e7 and consider 1 − fk.
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9e6 Theorem (iterated improper integral). If a function f ∶ G → [0,∞) is
continuous almost everywhere, then

∗
∫
Rm

dx
∗
∫
Gx

dy f(x, y) = ∬
G

f(x, y)dxdy ∈ [0,∞] .

Unlike Th. 5d1, both integrals in the left-hand side are lower integrals.
The function x↦ ∗∫Gx dy f(x, y) need not be almost everywhere continuous,
even if G = R2 and f is continuous. Moreover, it can happen that x ↦

∗∫ R f(x, ⋅) is unbounded on every interval, even if f ∶ R2 → [0,∞) is bounded,
continuously differentiable, ∫R2 f < ∞, and f(x, y) → 0, ∇f(x, y) → 0 as
x2 + y2 → ∞. (Can you find a counterexample? Hint: construct separately
f ∣R×[2k,2k+1] for each k.)

It is easy to see (try it!) that ∫G f does not exceed the iterated integral;
but the equality needs more effort.

Proof. We take admissible open sets Gk ⊂ Rm+n such that Gk ↑ G, 1 and
introduce fk = min(f, k)1lGk , that is,

fk(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f(x, y), if (x, y) ∈ Gk and f(x, y) ≤ k,

k, if (x, y) ∈ Gk and f(x, y) ≥ k,

0, if (x, y) ∉ Gk.

By Lebesgue’s criterion 6d2, each fk is integrable. By (9e3), ∫Rm+n fk ↑ ∫G f ,
the left-hand side integral being proper.

Given x ∈ Rm, we apply the same argument to the sections fk(x, ⋅), f(x, ⋅),
(Gk)x, Gx, taking into account that fk(x, ⋅) need not be integrable, and we
get

∗
∫
Rn
fk(x, ⋅) =

∗
∫
Rn

min(f(x, ⋅), k)1lGk(x, ⋅)
Õ
×
× ∗
∫
Gx
f(x, ⋅) .

By Th. 5d1 (applied to fk), the function x↦ ∗∫ Rn fk(x, ⋅) is integrable, and
its integral is equal to ∫Rm+n fk. Applying Prop. 9e4 to these functions we get

∫
Rm+n

fk = ∫
Rm

(x↦
∗
∫
Rn
fk(x, ⋅))

Õ
×
× ∗
∫
Rm

(x↦
∗
∫
Gx
f(x, ⋅)) ;

but on the other hand, ∫Rm+n fk ↑ ∫G f .

9e7 Corollary. The volume2 of an open set G ⊂ Rm+n is equal to the lower
integral of the volume of Gx (even if G is not admissible).

1For example, we may use the interior of the union of all N -pixels contained in G ∩

[−N,N]
n.

2That is, v∗(G) if G is bounded; and ∫G 1 (in fact, the Lebesgue measure of G) in
general.
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9f Multidimensional beta integrals of Dirichlet

9f1 Proposition.

[
x1,...xn>0,
x1+⋅⋅⋅+xn<1

xp1−1
1 . . . xpn−1

n dx1 . . .dxn =
Γ(p1) . . .Γ(pn)

Γ(p1 + ⋅ ⋅ ⋅ + pn + 1)

for all p1, . . . pn > 0.

For the proof, we denote

I(p1, . . . , pn) = [
x1,...xn>0,
x1+⋅⋅⋅+xn<1

xp1−1
1 . . . xpn−1

n dx1 . . .dxn .

This integral is improper, unless p1, . . . , pn ≥ 1.

9f2 Lemma. I(p1, . . . , pn) = B(pn, p1 + ⋅ ⋅ ⋅ + pn−1 + 1)I(p1, . . . , pn−1).

Proof. The change of variables ξ = ax (that is, ξ1 = ax1, . . . , ξn = axn) gives
(by Theorem 9d11)

[

ξ1,...ξn>0,
ξ1+⋅⋅⋅+ξn<a

ξp1−1
1 . . . ξpn−1

n dξ1 . . .dξn = a
p1+⋅⋅⋅+pnI(p1, . . . , pn) for a > 0 .

Thus, using 9e6 and (9c10),

I(p1, . . . , pn) = ∫
1

0
dxn x

pn−1
n [

x1,...xn−1>0,
x1+⋅⋅⋅+xn−1<1−xn

xp1−1
1 . . . xpn−1−1

n−1 dx1 . . .dxn−1 =

= ∫

1

0
xpn−1
n (1 − xn)

p1+⋅⋅⋅+pn−1I(p1, . . . , pn−1)dxn =

= I(p1, . . . , pn−1)B(pn, p1 + ⋅ ⋅ ⋅ + pn−1 + 1) .

Proof of Prop. 9f1.
Induction in the dimension n. For n = 1 the formula is obvious:

∫

1

0
xp1−1

1 dx1 =
1

p1

=
Γ(p1)

Γ(p1 + 1)
.

1But a linear change of variables does not really need 9d1; it is a simple generalization
of 7c1 or even (4h5).
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From n − 1 to n: using 9f2 (and (9c11)),

I(p1, . . . , pn) =
Γ(pn)Γ(p1 + ⋅ ⋅ ⋅ + pn−1 + 1)

Γ(p1 + ⋅ ⋅ ⋅ + pn + 1)
⋅

Γ(p1) . . .Γ(pn−1)

Γ(p1 + ⋅ ⋅ ⋅ + pn−1 + 1)
=

=
Γ(p1) . . .Γ(pn)

Γ(p1 + ⋅ ⋅ ⋅ + pn + 1)
.

A seemingly more general formula,

[
x1,...,xn>0,
x
γ1
1 +⋅⋅⋅+xγnn <1

xp1−1
1 . . . xpn−1

n dx1 . . .dxn =
1

γ1 . . . γn
⋅

Γ(
p1
γ1
) . . .Γ(

pn
γn

)

Γ(
p1
γ1
+ ⋅ ⋅ ⋅ +

pn
γn
+ 1)

,

results from 9f1 by the (nonlinear!) change of variables yj = x
γj
j .

A special case: p1 = ⋅ ⋅ ⋅ = pn = 1, γ1 = ⋅ ⋅ ⋅ = γn = p;

[
x1,...,xn>0
xp1+⋅⋅⋅+x

p
n<1

dx1 . . .dxn =
Γn(1

p
)

pnΓ(n
p + 1)

.

We’ve found the volume of the unit ball in the metric lp:

v(Bp(1)) =
2nΓn(1

p
)

pnΓ(n
p + 1)

.

If p = 2, the formula gives us (again; see (9c7)) the volume of the standard
unit ball:

Vn = v(B2(1)) =
2πn/2

nΓ(n
2
)
.

We also see that the volume of the unit ball in the l1-metric equals 2n

n! .
Question: what does the formula give in the p→∞ limit?

9f3 Exercise. Show that

[
x1+⋅⋅⋅+xn<1
x1,...,xn>0

ϕ(x1 + ⋅ ⋅ ⋅ + xn)dx1 . . .dxn =
1

(n − 1)! ∫
1

0
ϕ(s)sn−1 ds
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for every “good” function ϕ ∶ [0,1] → R and, more generally,

[
x1+⋅⋅⋅+xn<1
x1,...,xn>0

ϕ(x1 + ⋅ ⋅ ⋅ + xn)x
p1−1
1 . . . xpn−1

n dx1 . . .dxn =

=
Γ(p1) . . .Γ(pn)

Γ(p1 + ⋅ ⋅ ⋅ + pn)
∫

1

0
ϕ(u)up1+...pn−1 du .

Hint: consider

∫

1

0
dsϕ′(s) [

x1+⋅⋅⋅+xn<s
x1,...,xn>0

xp1−1
1 . . . xpn−1

n dx1 . . .dxn .

9g Non-positive (signed) integrands

We define

∫
G
(g − h) = ∫

G
g − ∫

G
h

whenever g, h ∶ G → [0,∞) are continuous almost everywhere and ∫G g < ∞,

∫G h < ∞; this definition is correct, that is,

∫
G
g1 − ∫

G
h1 = ∫

G
g2 − ∫

G
h2 whenever g1 − h1 = g2 − h2 ,

due to 9b9:

g1 − h1 = g2 − h2 Ô⇒ g1 + h2 = g2 + h1 Ô⇒ ∫
G
(g1 + h2) = ∫

G
(g2 + h1) Ô⇒

Ô⇒ ∫
G
g1 + ∫

G
h2 = ∫

G
g2 + ∫

G
h1 Ô⇒ ∫

G
g1 − ∫

G
h1 = ∫

G
g2 − ∫

G
h2 .

9g1 Lemma. The following two conditions on a function f ∶ G→ R contin-
uous almost everywhere are equivalent:

(a) there exist g, h ∶ G→ [0,∞), continuous almost everywhere, such that

∫G g < ∞, ∫G h < ∞ and f = g − h;
(b) ∫G ∣f ∣ < ∞.

Proof. (a)Ô⇒(b): ∫G ∣g − h∣ ≤ ∫G(∣g∣ + ∣h∣) = ∫G ∣g∣ + ∫G ∣h∣ < ∞.
(b)Ô⇒(a): we introduce the positive part f+ and the negative part f− of

f ,

(9g2)
f+(x) = max(0, f(x)) , f−(x) = max(0,−f(x)) ;

f− = (−f)+ ; f = f+ − f− ; ∣f ∣ = f+ + f− ;

they are continuous almost everywhere (think, why); ∫G f
+ ≤ ∫G ∣f ∣ < ∞,

∫G f
− ≤ ∫G ∣f ∣ < ∞; and f+ − f− = f .
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We summarize:

(9g3) ∫
G
f = ∫

G
f+ − ∫

G
f−

whenever f ∶ G → R is continuous almost everywhere and such that ∫G ∣f ∣ <
∞. Such functions will be called improperly integrable1 (on G).

9g4 Exercise. Prove linearity: ∫G cf = c ∫G f for c ∈ R, and ∫G(f1 + f2) =

∫G f1 + ∫G f2.

Similarly to Sect. 4e, a function f ∶ G→ R continuous almost everywhere
will be called negligible if ∫G ∣f ∣ = 0. Functions f, g continuous almost ev-
erywhere and such that f − g is negligible will be called equivalent. The
equivalence class of f will be denoted [f].

Improperly integrable functions f ∶ G → R are a vector space. On this
space, the functional f ↦ ∫G ∣f ∣ is a seminorm. The corresponding equiva-
lence classes are a normed space (therefore also a metric space). The integral
is a continuous linear functional on this space.

If G is admissible, then the space of improperly integrable functions on
G is embedded into the space of improperly integrable functions on Rn by
f ↦ f ⋅ 1lG.

9g5 Proposition (exhaustion). For open sets G,G1,G2, ⋅ ⋅ ⋅ ⊂ Rn,

Gk ↑ G Ô⇒ ∫
Gk
f → ∫

G
f ∈ R

for all improperly integrable f ∶ G→ R.

9g6 Theorem (change of variables). Let U,V ⊂ Rn be open sets, ϕ ∶ U → V
a diffeomorphism, and f ∶ V → R. Then

(a) (f is continuous almost everywhere on V ) ⇐⇒
(f ○ ϕ is continuous almost everywhere on U) ⇐⇒
((f ○ ϕ)∣detDϕ∣ is continuous almost everywhere on U);

(b) if they are continuous almost everywhere, then

∫
V
∣f ∣ = ∫

U
∣(f ○ ϕ)detDϕ∣ ∈ [0,∞] ;

(c) and if the integrals in (b) are finite, then

∫
V
f = ∫

U
(f ○ ϕ)∣detDϕ∣ ∈ R .

1In one dimension they are usually called absolutely (improperly) integrable.
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9g7 Exercise. Prove 9g5 and 9g6.

9g8 Exercise. If 0 < t0 < t1 < ∞, then the function (x, t) ↦ xt−1e−x lnx is
improperly integrable on (0,∞) × (t0, t1), and

∫

t1

t0
dt∫

∞

0
dxxt−1e−x lnx = Γ(t1) − Γ(t0) .

Prove it.1

9g9 Exercise. (a) The function t ↦ ∫
∞

0 xt−1e−x lnxdx is continuous on
(0,∞);

(b) the gamma function is continuously differentiable on (0,∞), and

Γ′(t) = ∫
∞

0
xt−1e−x lnxdx for 0 < t < ∞ ;

(c) the gamma function is convex on (0,∞).
Prove it.

Index

beta function, 115

change of variables, 116, 123

equivalent, 123
exhaustion, 113, 123

gamma function, 114

improper integral
signed, 122, 123
unsigned, 110

improperly integrable, 123
iterated improper integral, 119

linearity, 123
lower integral, 117

monotone convergence

for integral, 118

for volume, 113

negligible, 123

Poisson formula, 111

volume of ball, 114, 121

B, 115

[f], 123

f ⋅ 1lG, 110

f+, f−, 122

Γ, 114

1Hint: apply 9e6 twice, to f+ and f−.
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