Some solutions

Question 1

Assuming that the given extremum is a maximum, we have a neighborhood $U \subset \mathbb{R}^n$ of x_0 such that

$$\forall x \in Z \cap U \ f(x) \le f(x_0) \,.$$

Similarly to the proof of Theorem 3a1, it follows from 3a2 that the mapping $\varphi : \mathbb{R}^n \to \mathbb{R}^{16}$, defined by $\varphi(x) = (\varphi_1(x), \ldots, \varphi_{16}(x))$, is open at x_0 . Thus (according to 2a6(b)) we have a neighborhood $V \subset \mathbb{R}^{16}$ of the point $y_0 = \varphi(x_0)$ such that $\varphi(U) \supset V$. WLOG, $V = V_1 \times V_2$ where $V_1 \subset \mathbb{R}^{10}$ is a neighborhood of $(\varphi_1(x_0), \ldots, \varphi_{10}(x_0)) = 0$ and $V_2 \subset \mathbb{R}^6$ is a neighborhood of $(\varphi_{11}(x_0), \ldots, \varphi_{16}(x_0))$.

For every $y \in V_2$ there exists $x \in U$ such that $\varphi(x) = (0, y)$, that is, $(\varphi_1(x), \ldots, \varphi_{10}(x)) = 0$ and $(\varphi_{11}(x), \ldots, \varphi_{16}(x)) = y$. We have $x \in Z$ and f(x) = g(y). Taking into account that $f(x) \leq f(x_0)$ we get

$$g(y) \le f(x_0)$$
 for all $y \in V_2$.

For every $x \in \mathbb{R}^n$ close enough to x_0 we have $\varphi(x) \in V$, that is, $\varphi(x) = (u, y)$ where $u \in V_1$ and $y \in V_2$. Thus, $f(x) = g(y) \leq f(x_0)$.

Question 2

ONE SOLUTION

For every box $B = [a, b] \times [c, d]$, its image $\varphi(B) = \{(x, y) : a \le x \le b, c + f(x) \le y \le d + f(x)\}$ is admissible; therefore the set

$$E = \{(x, y) : a \le x \le b, 0 \le y \le d + f(x)\} = \varphi(B) \cap ([a, b] \times [0, d + M])$$

is also admissible (being the intersection of two admissible sets), provided that $c \leq -M$ and $d \geq M$ where $M = \sup_{x} |f(x)|$.

It follows that¹

$$\int_a^b v_1(E_x) \,\mathrm{d}x = v_2(E)$$

by (5e3), which also ensures integrability of the function $x \mapsto v_1(E_x) = d + f(x)$ on [a, b]. Being integrable on every interval, f is continuous almost everywhere by 6d2 (and 6c2).

¹A similar argument was used in 5e7(a).

ANOTHER SOLUTION

Analysis-III

For every box $B = [a, b] \times [c, d]$, its image $\varphi(B) = \{(x, y) : a \le x \le b, d\}$ $c + f(x) \le y \le d + f(x)$ is admissible; therefore its boundary $E = \partial(\varphi(B))$ has area 0 by 6b8(b).

It follows that

$$\int_a^b v_1(E_x) \,\mathrm{d}x = 0$$

by (5e3). We note that $v_1(E_x) = 2 \operatorname{Osc}_f(x)$, since $E_x = [c + f_*(x), c +$ $f^*(x)] \cup [d + f_*(x), d + f^*(x)]$, provided that c < -M and d > M where $M = \sup_{x} |f(x)|$. The equality $\int_{a}^{b} \operatorname{Osc}_{f} = 0$ shows that f is continuous almost everywhere on [a, b] (and therefore on the whole \mathbb{R}).

A DIFFERENT APPROACH INSPIRED BY THE WORK OF A STUDENT

1. Using (5e3), prove that $v_2(\varphi(B)) = v_2(B)$ for every box $B \subset \mathbb{R}^2$.¹

2. Using linear combination of indicators, prove that for every step function $g: \mathbb{R}^2 \to \mathbb{R}$ the function $g \circ \varphi^{-1}$ is integrable, and $\int g \circ \varphi^{-1} = \int g$. 3. Using sandwich, generalize it for all integrable g.²

4. Applying it to q(x,y) = y (on a large box) we see that the function $(x, y) \mapsto y - f(x)$ is integrable on every box.

5. It follows that the function $(x, y) \mapsto f(x)$ is integrable on every box.

6. Using 5d1 prove that the function f is integrable on every box (and therefore, continuous almost everywhere).

A BRILLIANT SOLUTION (SKETCH) FOUND BY A STUDENT

For $B = [0, 1] \times [0, 1]$ we have such inequality on Darboux sums:

$$U_N(f) - L_N(f) \le U_N(\mathbb{1}_{\varphi(B)}) - L_N(\mathbb{1}_{\varphi(B)}).$$

(Draw a picture and see, why.) The claim follows easily!

¹Though, the same argument gives it for all admissible sets.

 $^{^{2}}$ Similar to 5d4.