## Some solutions

## Question 1

Assuming that the given extremum is a maximum, we have a neighborhood $U \subset \mathbb{R}^{n}$ of $x_{0}$ such that

$$
\forall x \in Z \cap U \quad f(x) \leq f\left(x_{0}\right)
$$

Similarly to the proof of Theorem 3a1, it follows from 3a2 that the mapping $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{16}$, defined by $\varphi(x)=\left(\varphi_{1}(x), \ldots, \varphi_{16}(x)\right)$, is open at $x_{0}$. Thus (according to $2 \mathrm{a} 6(\mathrm{~b})$ ) we have a neighborhood $V \subset \mathbb{R}^{16}$ of the point $y_{0}=$ $\varphi\left(x_{0}\right)$ such that $\varphi(U) \supset V$. WLOG, $V=V_{1} \times V_{2}$ where $V_{1} \subset \mathbb{R}^{10}$ is a neighborhood of $\left(\varphi_{1}\left(x_{0}\right), \ldots, \varphi_{10}\left(x_{0}\right)\right)=0$ and $V_{2} \subset \mathbb{R}^{6}$ is a neighborhood of $\left(\varphi_{11}\left(x_{0}\right), \ldots, \varphi_{16}\left(x_{0}\right)\right)$.

For every $y \in V_{2}$ there exists $x \in U$ such that $\varphi(x)=(0, y)$, that is, $\left(\varphi_{1}(x), \ldots, \varphi_{10}(x)\right)=0$ and $\left(\varphi_{11}(x), \ldots, \varphi_{16}(x)\right)=y$. We have $x \in Z$ and $f(x)=g(y)$. Taking into account that $f(x) \leq f\left(x_{0}\right)$ we get

$$
g(y) \leq f\left(x_{0}\right) \quad \text { for all } y \in V_{2} .
$$

For every $x \in \mathbb{R}^{n}$ close enough to $x_{0}$ we have $\varphi(x) \in V$, that is, $\varphi(x)=(u, y)$ where $u \in V_{1}$ and $y \in V_{2}$. Thus, $f(x)=g(y) \leq f\left(x_{0}\right)$.

## Question 2

## One solution

For every box $B=[a, b] \times[c, d]$, its image $\varphi(B)=\{(x, y): a \leq x \leq b$, $c+f(x) \leq y \leq d+f(x)\}$ is admissible; therefore the set

$$
E=\{(x, y): a \leq x \leq b, 0 \leq y \leq d+f(x)\}=\varphi(B) \cap([a, b] \times[0, d+M])
$$

is also admissible (being the intersection of two admissible sets), provided that $c \leq-M$ and $d \geq M$ where $M=\sup _{x}|f(x)|$.

It follows that ${ }^{1}$

$$
\int_{a}^{b} v_{1}\left(E_{x}\right) \mathrm{d} x=v_{2}(E)
$$

by (5e3), which also ensures integrability of the function $x \mapsto v_{1}\left(E_{x}\right)=$ $d+f(x)$ on $[a, b]$. Being integrable on every interval, $f$ is continuous almost everywhere by 6 d 2 (and 6 c 2 ).

[^0]
## Another solution

For every box $B=[a, b] \times[c, d]$, its image $\varphi(B)=\{(x, y): a \leq x \leq b$, $c+f(x) \leq y \leq d+f(x)\}$ is admissible; therefore its boundary $E=\partial(\varphi(B))$ has area 0 by 6b8(b).

It follows that

$$
\int_{a}^{b} v_{1}\left(E_{x}\right) \mathrm{d} x=0
$$

by (5e3). We note that $v_{1}\left(E_{x}\right)=2 \operatorname{Osc}_{f}(x)$, since $E_{x}=\left[c+f_{*}(x), c+\right.$ $\left.f^{*}(x)\right] \cup\left[d+f_{*}(x), d+f^{*}(x)\right]$, provided that $c<-M$ and $d>M$ where $M=\sup _{x}|f(x)|$. The equality $\int_{a}^{b} \operatorname{Osc}_{f}=0$ shows that $f$ is continuous almost everywhere on $[a, b]$ (and therefore on the whole $\mathbb{R}$ ).

## A different approach

 INSPIRED BY THE WORK OF A STUDENT1. Using (5e3), prove that $v_{2}(\varphi(B))=v_{2}(B)$ for every box $B \subset \mathbb{R}^{2} .^{1}$
2. Using linear combination of indicators, prove that for every step function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ the function $g \circ \varphi^{-1}$ is integrable, and $\int g \circ \varphi^{-1}=\int g$.
3. Using sandwich, generalize it for all integrable $g$. ${ }^{2}$
4. Applying it to $g(x, y)=y$ (on a large box) we see that the function $(x, y) \mapsto y-f(x)$ is integrable on every box.
5. It follows that the function $(x, y) \mapsto f(x)$ is integrable on every box.
6. Using 5 d 1 prove that the function $f$ is integrable on every box (and therefore, continuous almost everywhere).

## A brilliant solution (Sketch) found by a student

For $B=[0,1] \times[0,1]$ we have such inequality on Darboux sums:

$$
U_{N}(f)-L_{N}(f) \leq U_{N}\left(\mathbb{1}_{\varphi(B)}\right)-L_{N}\left(\mathbb{1}_{\varphi(B)}\right)
$$

(Draw a picture and see, why.) The claim follows easily!

[^1]
[^0]:    ${ }^{1} \mathrm{~A}$ similar argument was used in $5 \mathrm{e} 7(\mathrm{a})$.

[^1]:    ${ }^{1}$ Though, the same argument gives it for all admissible sets.
    ${ }^{2}$ Similar to 5 d 4 .

