## Corrections to Sect. 2

## To Sect. 2b

Exercise 2 b 7 should be formulated as follows:
The random continuous function $t \mapsto B(L+t)-B(L)$ is not a Brownian motion.

The hint to 2 b 7 fits to the formulation above. The claim of 2 b 7 , as is, is also true, but needs more effort to prove.

## To Sect. 2d

The proof of Lemma 2c3, given in Sect. 2d, is incomplete. The following additional argument is needed,

Given two Brownian motions $B_{1}, B_{2}$ on two probability spaces $\Omega_{1}, \Omega_{2}$ respectively, we construct a random continuous function $Z$ on $\Omega=\Omega_{1} \times \Omega_{2}$ as follows:

$$
Z(t)\left(\omega_{1}, \omega_{2}\right)= \begin{cases}B_{1}(t)\left(\omega_{1}\right) & \text { if } t \leq \tau_{0}\left(\omega_{1}\right) \\ B_{1}\left(\tau_{0}\left(\omega_{1}\right)\right)\left(\omega_{1}\right)+B_{2}\left(t-\tau_{0}\left(\omega_{1}\right)\right)\left(\omega_{2}\right) & \text { if } t \geq \tau_{0}\left(\omega_{1}\right)\end{cases}
$$

here

$$
\tau_{0}\left(\omega_{1}\right)= \begin{cases}1 & \text { if } \max _{[0,1]} B_{1}(\cdot)\left(\omega_{1}\right) \geq 1 \\ \infty & \text { if } \max _{[0,1]} B_{1}(\cdot)\left(\omega_{1}\right)<1\end{cases}
$$

Lemma A. The distribution of $Z$ does not depend on the choice of $B_{1}, B_{2}$ (and $\Omega_{1}, \Omega_{2}$ ).
(Compare it with 2a4(b).)
Proof. Let $B_{1}^{\prime}, B_{2}^{\prime}$ be Brownian motions on $\Omega_{1}^{\prime}, \Omega_{2}^{\prime}$, and $Z^{\prime}$ constructed from $B_{1}^{\prime}, B_{2}^{\prime}$ in the same way as $Z$ from $B_{1}, B_{2}$. We have to prove that

$$
\left(Z^{\prime}\left(t_{1}\right), \ldots, Z^{\prime}\left(t_{j}\right)\right) \sim\left(Z\left(t_{1}\right), \ldots, Z\left(t_{j}\right)\right)
$$

(identically distributed random vectors) for all $j$ and $t_{1}, \ldots, t_{j} \in[0, \infty)$. We may assume that $t_{1}<\cdots<t_{j}$ and $t_{i}=1$ (for some $i$ ). We have

$$
\left(Z\left(t_{1}\right), \ldots, Z\left(t_{j}\right)\right)=f\left(\tau_{0} ; B_{1}\left(t_{1}\right), \ldots, B_{1}\left(t_{j}\right) ; B_{2}\left(t_{i+1}-1\right), \ldots, B_{2}\left(t_{j}-1\right)\right)
$$

for some $f:\{1, \infty\} \times \mathbb{R}^{j} \rightarrow \mathbb{R}^{j}$, namely,

$$
\begin{aligned}
f\left(1 ; x_{1}, \ldots, x_{j} ; y_{i+1}, \ldots, y_{j}\right) & =\left(x_{1}, \ldots, x_{i} ; x_{i}+y_{i+1}, \ldots, x_{i}+y_{j}\right), \\
f\left(\infty ; x_{1}, \ldots, x_{j} ; y_{i+1}, \ldots, y_{j}\right) & =\left(x_{1}, \ldots, x_{j}\right) .
\end{aligned}
$$

Also,

$$
\left(Z^{\prime}\left(t_{1}\right), \ldots, Z^{\prime}\left(t_{j}\right)\right)=f\left(\tau_{0}^{\prime} ; B_{1}^{\prime}\left(t_{1}\right), \ldots, B_{1}^{\prime}\left(t_{j}\right) ; B_{2}^{\prime}\left(t_{i+1}-1\right), \ldots, B_{2}^{\prime}\left(t_{j}-1\right)\right)
$$

(with the same $f$ ). Of course, $f$ is Borel measurable. Thus, it is sufficient to prove that

$$
\begin{aligned}
& \left(\tau_{0} ; B_{1}\left(t_{1}\right), \ldots, B_{1}\left(t_{j}\right) ; B_{2}\left(t_{i+1}-1\right), \ldots, B_{2}\left(t_{j}-1\right)\right) \sim \\
& \quad\left(\tau_{0}^{\prime} ; B_{1}^{\prime}\left(t_{1}\right), \ldots, B_{1}^{\prime}\left(t_{j}\right) ; B_{2}^{\prime}\left(t_{i+1}-1\right), \ldots, B_{2}^{\prime}\left(t_{j}-1\right)\right) .
\end{aligned}
$$

By independence, it is sufficient to prove that

$$
\begin{aligned}
\left(\tau_{0} ; B_{1}\left(t_{1}\right), \ldots, B_{1}\left(t_{j}\right)\right) & \sim\left(\tau_{0}^{\prime} ; B_{1}^{\prime}\left(t_{1}\right), \ldots, B_{1}^{\prime}\left(t_{j}\right)\right), \\
\left(B_{2}\left(t_{i+1}-1\right), \ldots, B_{2}\left(t_{j}-1\right)\right) & \sim\left(B_{2}^{\prime}\left(t_{i+1}-1\right), \ldots, B_{2}^{\prime}\left(t_{j}-1\right)\right) .
\end{aligned}
$$

The latter is evident. The former is similar to 2a4(b).

## To Sect. 2f

Here we are in position to generalize Lemma A.
Lemma B. Let a function $T: C[0, \infty) \rightarrow[0, \infty]$ be measurable. $(C[0, \infty)$ is endowed with $\mathcal{B}_{\infty}$.) Then the following formula defines a measurable map $C[0, \infty) \times C[0, \infty) \rightarrow C[0, \infty):$

$$
h(t)= \begin{cases}f(t) & \text { if } t \leq T(f) \\ f(T(f))+g(t-T(f))-g(0) & \text { if } t \geq T(f)\end{cases}
$$

The proof is left to the reader.
It follows that the distribution of $h$ (if random...) depends only on the distribution of the pair $(f, g)$, which boils down to the distribution of $f$ and the distribution of $g$ when $f, g$ are independent.

