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1a Three convolution semigroups

A family (µt)t∈[0,∞) of probability measures on R is called a convolution semi-

group, if
µs+t = µs ∗ µt for all s, t ∈ [0,∞) .

In terms of characteristic functions ϕt(u) =
∫

eiux µt(dx) it means ϕs+t(u) =
ϕs(u)ϕt(u). In terms of densities pt(x) = dµt(x)/dx, if they exist, it means
ps+t(x) =

∫
ps(y)pt(x − y) dy. Three examples are especially interesting.1

Normal distribution:

pt(x) =
1√
2πt

exp
(

− x2

2t

)

;

ϕt(u) = exp
(

− 1

2
tu2

)

.

Cauchy distribution:

pt(x) =
t

π(t2 + x2)
;

ϕt(u) = exp(−t|u|) .

Lévy distribution:

pt(x) =
t√

2πx3/2
exp

(

− t2

2x

)

;

ϕt(u) = exp
(
−t|u|1/2(1 − i sgn u)

)
= exp

(
−t

√
−2iu

)
.

Note that pt(x) = t−1/αp1(xt−1/α) where α (called the index) equals 2 for
the normal case, 1 for Cauchy, and 1/2 for Lévy.

1These are the only cases of so-called stable laws in which the density is known explicitly.
See also [1, Sect. 2.7].
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1b Independent increments

Let (µt)t be any one of the three convolution semigroups. We’ll construct
the corresponding probability measure on a space of functions. First, we
consider the functions X on {0, 1, 2, . . .} and require X(0) = 0 and

(1b1) the increments X(t+1)−X(t) are independent, distributed µ1 each.

That is,

(1b2) E f
(
X(0), X(1), . . . , X(n)

)
=

=

∫

· · ·
∫

f(0, x1, . . . , xn)p1(x1)p1(x2 − x1) . . . p1(xn − xn−1) dx1 . . .dxn

for every n and every bounded continuous (or just Borel measurable) function
f : R

n+1 → R. The distribution of X is the image of a product measure on
R

∞.
Second, we consider the functions X on {0, 0.5, 1, 1.5, . . .} and require

X(0) = 0 and
(1b3)

the increments X(t + 0.5) − X(t) are independent, distributed µ0.5 each.

Clearly, (1b3) implies (1b1). Continuing this way we get a consistent family
of probability measures. Now, Kolmogorov’s extension theorem (see [1, A.7])
gives us a probability measure on the space R

T of all functions on the set T
of dyadic rationals (k/2n).

Alternatively, we may introduce conditional distributions (and densities):

E
(
f(Xn+0.5)

∣
∣Xn = x, Xn+1 = z

)
=

∫

f(y)
p0.5(y − x)p0.5(z − y)

p1(z − x)
︸ ︷︷ ︸

q(x,y,z)

and let

E f
(
X(0), X(0.5), . . . , X(n − 0.5), X(n)

)
=

∫

· · ·
∫

dx1 . . .dxnp1(x1)p1(x2−x1) . . . p1(xn−xn−1)

∫

· · ·
∫

dx0.5 . . .dxn−0.5·

· q(x0, x0.5, x1) . . . q(xn−1, xn−0.5, xn)f(0, x0.5, x1, . . . , xn−0.5, xn) .

And similarly for all dyadic rationals. This way we avoid Kolmogorov’s
extension theorem. The needed distribution on R

T is the image of (say) the
product Lebesgue measure on [0, 1]∞ under a rather explicit map. . .
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We use both notations, X(t) and Xt.
One way or another, we get a family (Xt)t∈T (T = dyadic rationals) of

random variables Xt : Ω → R defined on some probability space (Ω,F , P )
(be it R

T with the constructed measure, or the [0, 1]∞, or just [0, 1] with
Lebesgue measure; both [0, 1]∞ and [0, 1] may be thought of as a countable
collection of independent binary digits), and these Xt satisfy X(0) = 0 and
for every n,

the increments X
(k + 1

2n

)

−X
( k

2n

)

are independent, distributed µ2−n each.

Now we forget the constructions and remember only these properties of the
random variables Xt.

1b4 Exercise. (a) X(t)−X(s) is distributed µt−s whenever s, t ∈ T , s < t;
(b) X(t1), X(t2)−X(t1), . . . , X(tn)−X(tn−1) are independent whenever

t1, . . . , tn ∈ T , t1 < · · · < tn.
Prove it.

1c Continuous time

We note that
X(s + t) − X(s) ∼ X(t) ∼ t1/αX(1)

(here ‘∼’ means: ‘is distributed like’) and conclude that the map t 7→ Xt,
from the dyadic rationals to L0(Ω), is uniformly continuous. It can be ex-
tended to [0,∞) by continuity (since L0(Ω) is complete).1 If tn → t fast
enough then Xtn → Xt a.s. (use the first Borel-Cantelli lemma. . . )2

1c1 Exercise. Generalize 1b4 from T = (dyadic rationals) to T = [0,∞).

Note that each random variable Xt ∈ L0(Ω) is an equivelence class (rather
than a function). Accordingly, we cannot introduce sample functions t 7→
X(t, ω).3 However, we may consider sample functions over dyadic rationals
(or another countable subset of [0,∞)).

We have three random processes with stationary independent increments:
the Brownian motion, the Cauchy process, and the special Lévy process.4

1For the Brownian motion, the space L2(Ω) may be used instead.
2Do you think that it holds whenever tn → t?
3Do you believe that this is possible?
4‘Special’, since the term ‘Lévy process’ stands for an arbitrary process with stationary

independent increments.
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For now they are treated just as continuous maps [0,∞) → L0(Ω),1 however,
in Sect. 1e they’ll be upgraded to random functions.

Scaling relation: for every c ∈ (0,∞),

(Xct)t ∼ (c1/αXt)t ; (α = 2, 1, 0.5)

that is, these two processes are identically distributed, which means that for
all n and t1, . . . , tn ∈ [0,∞),

(
X(ct1), . . . , X(ctn)

)
∼

(
c1/αX(t1), . . . , c

1/αX(tn)
)
.

1c2 Exercise. Prove the scaling relation.

Equivalently we may say that the process

Y (t) = e−t/αX(et) for t ∈ R

is stationary, that is, for every s ∈ R,

(Ys+t)t ∼ (Yt)t .

1c3 Exercise. Prove that for every s ∈ (0,∞),

(Xt)t ∼ (Xt+s − Xs)t .

1c4 Exercise. Prove the following relation (sometimes called time reversal)

(Xt)t∈[0,1] ∼ (X1 − X1−t)t∈[0,1] .

1d Bad behavior

Let (Xt)t be the Cauchy process.

1d1 Exercise. For every c ∈ (0,∞),

P
(
|X(t)| > c

)
∼ 2

π

t

c
as t → 0 + .

(This time ‘∼’ means: ‘their ratio tends to 1’.)
Prove it.

1It does not mean continuous sample functions! A counterexample: Ω = [0, 1], T =
[0, 1], X(t, ω) = sgn(t − ω).
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1d2 Exercise. For every c ∈ (0,∞),

lim sup
n→∞

P

(

∀k = 1, . . . , n
∣
∣
∣X

(k

n

)

− X
(k + 1

n

)∣
∣
∣ ≤ c

)

≤ exp
(

− 2

πc

)

.

Prove it.

1d3 Exercise. For every c ∈ (0,∞),

P

(

lim
ε→0+

sup
|s−t|≤ε

|X(s) − X(t)| ≤ c
)

≤ exp
(

− 2

πc

)

;

here s, t run over dyadic rationals of [0, 1].
Prove it.

1d4 Exercise. Almost surely, the sample function (of the Cauchy process)
on dyadic rationals of [0, 1] is not a uniformly continuous function (and there-
fore cannot be extended to [0, 1] by continuity).

Prove it.

1d5 Exercise. Prove the same (as in 1d4) for the special Lévy process.1

Let (Xt)t be any one of the three processes.

1d6 Exercise. If 0 ≤ s < t < ∞ and T1, T2 ⊂ [s, t] are dense countable sets
then

sup
T1

X = sup
T2

X ∈ [0,∞] a.s.

Prove it.

The same holds for inf X. We introduce

Osc(s, t) = sup
T

X − inf
T

X ;

it is an equivalence class of functions Ω → [0,∞];2 the choice of a dense
countable set T ⊂ [s, t] does not matter.

1d7 Exercise. For every n,

P
(
Osc(0, 1) ≤ ε

)
= O(εn) as ε → 0 + .

Prove it.3

1Could you do the same for the Brownian motion?
2Do you think that Osc(0, 1) < ∞ a.s.? Wait for Sect. 1e.
3By the way, optimization in n gives a stronger result: P

(
Osc(0, 1) ≤ ε

)
≤ exp(−const·

ε−α).
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1d8 Exercise. Osc(s, t) ∼ Osc(0, t− s) ∼ t1/α Osc(0, 1).
Prove it.

1d9 Exercise. For every ε > 0 and C < ∞,

P

(

∃k ∈ {1, . . . , n} n
1

α
+ε Osc

(
k−1
n

, k
n

)
≤ 1

)

= O(n−C)

as n → ∞.
Prove it.

The first Borel-Cantelli lemma gives

∀k ∈ {1, . . . , n} Osc
(

k−1
n

, k
n

)
> n− 1

α
−ε

for all n large enough, a.s.

1d10 Exercise. For every ε > 0 and every dense countable set T ⊂ [0, 1],

P

(

∃s ∈ (0, 1) ∃x ∈ R (t − s)−
1

α
−ε|Xt − x| → 0 as t → s+, t ∈ T

)

= 0.

Prove it.

A wonder: the set is the union of a continuum of sets, and nevertheless
we are able to prove that it is negligible.

It follows immediately that sample functions of the Brownian motion, if
they exist, must be nowhere differentiable. This claim is much stronger than
a.s. nondifferentiability at every point separately.

1e Good behavior

1e1 Exercise. Let (Xt)t be the special Lévy process, and T ⊂ [0, 1] a dense
countable set. Then X(t) → 0 a.s. as t → 0, t ∈ T .

Prove it.1

Let (Xt)t be any one of the three processes.
We introduce

M(0, 1) = sup
T

|X| ,

where T ⊂ [0, 1] is a dense countable set (no matter which one, recall 1d6);
once again, M(0, 1) is an equivalence class of functions Ω → [0,∞].

1(a) Does it contradict 1d5? (b) Do you think that 1e1 holds also for the Brownian
motion? For the Cauchy process?
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1e2 Lemma. For every c ∈ (0,∞),

P
(
M(0, 1) > c

)
≤ 2P

(
|X1| > c

)
.

A wonder: the union of many events is roughly of the same probability
as every one separately!

Proof. First, Ln ↑ M(0, 1) a.s., where

Ln = max

(∣
∣
∣X

( 1

2n

)∣
∣
∣, . . . ,

∣
∣
∣X

(2n − 1

2n

)∣
∣
∣, |X(1)|

)

.

Therefore P
(
Ln > c

)
↑ P

(
M(0, 1) > c

)
;1 it is sufficient to prove that P

(
Ln >

c
)
≤ 2P

(
|X1| > c

)
for all n.

We define measurable Ak ⊂ Ω for k = 1, . . . , 2n by

Ak =

{

ω :
∣
∣
∣X

( 1

2n

)∣
∣
∣ ≤ c, . . . ,

∣
∣
∣X

(k − 1

2n

)∣
∣
∣ ≤ c,

∣
∣
∣X

( k

2n

)∣
∣
∣ > c

}

and get

P
(
Ln > c

)
= P

(
A1 ∪ · · · ∪ A2n

)
= P

(
A1

)
+ · · · + P

(
A2n

)

(think, why). We introduce B = {ω : |X1| > c} and note that

P
(
Ak ∩ B

)
≥ 1

2
P

(
Ak

)
for all k

(think, why). Thus,
∑

k P
(
Ak

)
≤ 2

∑

k P
(
Ak ∩ B

)
≤ 2P

(
B

)
.

It follows that M(0, 1) < ∞ a.s.
We note that Osc(0, 1) ≤ 2M(0, 1) and conclude that

Osc(s, t) < ∞ a.s.

1e3 Exercise. For every ε ∈ (0,∞),

(1e4) P
(
Osc(0, t) > ε

)
= O(t) as t → 0+ ,

and for the Brownian motion, moreover,

(1e5) P
(
Osc(0, t) > ε

)
= o(t) as t → 0+ ,

Prove it.

1Do you think that also P
(
Ln ≥ c

)
↑ P

(
M(0, 1) ≥ c

)
?
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1e6 Exercise. For the Brownian motion,

max
k=1,...,2n−1

Osc
(k − 1

2n
,
k + 1

2n

)

→ 0 a.s.

Prove it.

It follows that almost surely, the sample function of the Brownian motion
on dyadic rationals of [0, 1] (or another dense countable T ⊂ [0, 1]) is a
uniformly continuous function (in contrast to the other two processes, recall
1d4, 1d5), and therefore it can be extended to [0, 1] by continuity. On the
whole [0,∞) it need not be uniformly continuous, but still, can be extended
by continuity.

Doing so, we upgrade the family (Xt)t of equivalence classes to a random
function, — an equivalence class of maps Ω → R

[0,∞). The latter object is
what is called the Brownian motion, and denoted (Bt)t.

Brownian sample functions are continuous.

Taking 1d10 into account we conclude that a Brownian sample function is
everywhere continuous, but nowhere differentiable. Therefore, such functions
exist!

For the special Lévy process the situation is different. Its sample functions
on T are increasing, therefore they have (finite) left limits and right limits,

X−(t) = lim
s→t−
s∈T

X(s) for t ∈ (0,∞) , X+(t) = lim
s→t+
s∈T

X(s) for t ∈ [0,∞) .

1e7 Exercise. For the special Lévy process,

∀t ∈ (0,∞) P
(
X−(t) = X+(t)

)
= 1 ,(1e8)

P
(
∀t ∈ (0,∞) X−(t) = X+(t)

)
= 0 .(1e9)

Prove it.

It follows that X−(t), X+(t) and X(t) are in the same equivalence class.
We have at least two reasonable ways of upgrading the family of equivalence
classes to a random function: by left continuity, or by right continuity. Also
(X−(t) + X+(t))/2 is an option. . . Traditionally, one prefers right continuity.

Sample functions of the special Lévy process are r.c.l.l.

Here ‘r.c.l.l.’ means: right continuous, having (finite) left limit (at every
point). Jumps exist, but a given point is a.s. not a jump; in other words: no
fixed jumps.
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We turn to the Cauchy process. Still, (1e8) and (1e9) hold. It means: no
fixed discontinuities. However, are there discontinuities worse than jumps?
In other words: do the left and right limits exist?

We would like to discuss the probability of the event

(1e10) ∀t ∈ (0, 1) X−(t) and X+(t) exist ,

however, it is not evident that this is really an event, that is, the set of such
ω is measurable! Thus we turn to the event

(1e11) ∃ε > 0 ∀n ∃t1, . . . , tn ∈ T
(
t1 < t2 < · · · < tn, |X(t1) − X(t2)| ≥ ε, . . . , |X(tn−1) − X(tn)| ≥ ε

)
.

(As before, T ⊂ [0, 1] is a given dense countable set, and (Xt)t is the Cauchy
process.) This is a measurable subset of Ω, and it contains the complement
of (1e10) (think, why).1 We’ll prove that (1e11) is of probability 0, and
therefore (1e10) holds a.s.

In order to prove that (1e11) is of probability 0 it is sufficient to do it for
every ε separately (think, why). Let ε be given. For a finite or countable set
T ⊂ [0,∞) we consider the event

An(T ) = {ω : ∃t1, . . . , tn ∈ T
(
t1 < t2 < · · · < tn, |X(t1) − X(t2)| ≥ ε, . . . , |X(tn−1) − X(tn)| ≥ ε

)
.

It is sufficient to prove that P
(
An(T )

)
→ 0 as n → ∞.

It is easy to estimate P
(
|X(t1) − X(t2)| ≥ ε, . . . , |X(tn−1) −X(tn)| ≥ ε

)

when t1 < t2 < · · · < tn are given (think, how). But we need the union over
all such t1, . . . , tn! We’ll do it in the spirit of 1e2.

1e12 Lemma. 2 Let T ⊂ [0, 1] be finite, then

P
(
An+1(T )

)
≤ P

(
Osc(0, 1) ≥ ε

)
· P

(
An(T )

)

for all n.

Proof. We introduce

C(t) = {ω : Osc(0, t) ≥ ε, and ∀s ∈ T ∩ [0, t) Osc(0, s) < ε}

and get, on one hand,
∑

t∈T

P
(
C(t)

)
= P

( ⋃

t∈T

C(t)
)

≤ P
(
Osc(0, 1) ≥ ε

)

1Moreover, it is equal to that complement.
2See also [2, Sect. 2.2, Lemma 21].
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and on the other hand (splitting at t2. . . )

P
(
An+1(T )

)
≤ P

(

∃t ∈ T
(

Osc(0, t) ≥ ε, and An(T ∩ [t, 1])
))

=

= P

( ⋃

t∈T

(
C(t) ∩ An(T ∩ [t, 1])

)

=
∑

t∈T

P
(
C(t) ∩ An(T ∩ [t, 1])

)
=

=
∑

t∈T

P
(
C(t)

)
· P

(
An(T ∩ [t, 1])

)
≤ P

(
An(T )

)∑

t∈T

P
(
C(t)

)
≤

≤ P
(
An(T )

)
· P

(
Osc(0, 1) ≥ ε

)
.

The same inequality for countable T follows, since Ti ↑ T implies An(Ti) ↑
An(T ). Similarly,

P
(
An+1(T )

)
≤ P

(
Osc(0, t) ≥ ε

)
· P

(
An(T )

)

for T ⊂ [0, t]. For t small enough we have P
(
Osc(0, t) ≥ ε

)
< 1 and therefore

P
(
An(T )

)
→ 0 as n → ∞. Taking into account that

A2n(T ) ⊂ An(T ∩ [0, t]) ∪ An(T ∩ [t,∞))

we pass from t to 2t, and so on. Thus, (1e10) holds a.s., and the situation
for the Cauchy process is the same as for the special Lévy process.

Sample functions of the Cauchy process are r.c.l.l.

It follows that jumps of size ≥ ε are a locally finite set (which can be deduced
also from (1e4)). However, the set of all jumps is dense.

1f Hints to exercises

1c1: Random variables U, V are independent if and only if E
(
f(U)g(V )

)
=

(
E f(U)

)(
E g(V )

)
for all bounded continuous f, g : R → R.

1d1: Estimate the integral of the density.

1d6: X(t) ≤ supT X a.s.

1d7: P
(
Osc(0, 1) ≤ ε

)
≤ P

(
|X( 1

n
)| ≤ ε, |X( 2

n
)−X( 1

n
)| ≤ ε, . . . , |X(1)−

X(n−1
n

)| ≤ ε
)
; estimate the integral of the density.

1d9: P
(
A1 ∪ · · · ∪ An

)
≤ P

(
A1

)
+ · · ·+ P

(
An

)
.

1d10: s ∈ [k−2
n

, k−1
n

], t ∈ [k−1
n

, k
n
], M

(
k−1
n

, k
n

)
> n− 1

α
− ε

2 .
1e1: The limit exists by monotonicity.
1e3: Use 1e2; estimate the integral of the density.
1e6: The limit exists by monotonicity; use 1e5.
1e7: (a) Osc(t − ε, t + ε) → 0 a.s. as ε → 0+; (b) use 1d5.
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