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2a Restart at a nonrandom time

Let X be any one of the three processes introduced in Sect. 1 (the Brownian
motion, the Cauchy process, the special Lévy process) on a probability space
(Ω,F , P ). We construct a random function Y on the product Ω2 = Ω × Ω
(that is, (Ω,F , P ) × (Ω,F , P )) by glueing together two independent sample
functions as follows:

(2a1) Y (t)(ω1, ω2) =

{

X(t)(ω1) for t ≤ 1,

X(1)(ω1) + X(t − 1)(ω2) for t ≥ 1.

Clearly, sample functions of Y are right continuous.

2a2 Exercise. Y is distributed like X.1

Prove it.

This is the Markov property: at the instant 1 the process X forgets its
past and retains only a single point, X(1).2 Of course, the Markov property
holds at every instant t ∈ (0,∞), not just 1.

We turn to the Brownian motion, B. Given x ∈ (0,∞), we define the
hitting time Tx : Ω → [0,∞] by

(2a3) Tx = inf{t : B(t) = x}

(as usual, inf ∅ = ∞).

1Recall 1c, especially 1c3. See also 2f4.
2By the way, a process with differentiable sample functions cannot be Markov (unless

it is nonrandom); it have to retain X
′(1).
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2a4 Exercise. (a) Tx is measurable (in ω, for a fixed x); (b) the distribu-
tion of Tx is uniquely determined, that is, does not depend on the choice of
(Ω,F , P ) and B as far as B is a Brownian motion.1

Prove it.

Such statements should be made every time we construct a random vari-
able out of the Brownian motion;2 however, they will be usually omitted.

2a5 Exercise. Tx is distributed like x2T1.
Prove it.

We introduce the random variable3

(2a6) L = max{t ∈ [0, 1] : B(t) = 0} ,

and want to calculate its distribution,

P
(

L < t
)

= P
(

∀s ∈ [t, 1] B(s) 6= 0
)

= ?

Given B(t) = x > 0, the conditional probability of this event should be equal
to

P
(

∀s ∈ [0, 1 − t] B(s) 6= x
)

= P
(

Tx > 1 − t
)

= P

(

T1 >
1 − t

x2

)

(think, why); for x < 0 the situation is similar. We guess that

(2a7) P
(

L < t
)

=

∫ ∞

−∞
pt(x)P

(

T1 >
1 − t

x2

)

dx ,

where pt(x) = (2πt)−1/2 exp
(

−x2

2t

)

.
The proof combines the Markov property of the Brownian motion with

the Fubini theorem. We use ω1 on [0, t], swich to ω2 on [t, 1], substitute this
combination for B into L and get

P
(

L < t
)

= P
(

∀s ∈ [t, 1] B(s) 6= 0
)

=

= (P × P ){(ω1, ω2) : ∀s ∈ [t, 1] B(t)(ω1) + B(s − t)(ω2) 6= 0} =

=

∫

Ω

f
(

B(t)(ω1)
)

P (dω1) = E f
(

B(t)
)

=

∫

R

pt(x)f(x) dx ,

1See also 2f3, 2f4.
2For instance, L and R, see (2a6), (2a9).
3‘L is for left or last’ [1, Sect. 7.2, Exer. 2.2].



Tel Aviv University, 2008 Brownian motion 14

where

f(x) = P{ω2 : ∀s ∈ [t, 1] x + B(s − t)(ω2) 6= 0} =

= P
(

∀s ∈ [0, 1 − t] B(s) 6= −x
)

= P
(

T|x| > 1 − t
)

= P

(

T1 >
1 − t

x2

)

;

(2a7) follows.

2a8 Exercise. Let1

(2a9) R = inf{t ∈ [1,∞) : B(t) = 0}

(possibly, ∞).2 Then

(2a10) P
(

R > 1 + t
)

=

∫ ∞

−∞
p1(x)P

(

T1 >
t

x2

)

dx .

Prove it.

2b Hit and restart

Similarly to (2a1) we let (recall (2a3))

(2b1) Y (t)(ω1, ω2) =

{

B(t)(ω1) for t ≤ T1(ω1),

1 + B(t − T1(ω1))(ω2) for t ≥ T1(ω1).

2b2 Proposition. Y is distributed like B.

The proof will be given in 2c, but do not hesitate to use 2b2 now.
This is a special case of strong Markov property.3

You see, the process B forgets the past when hitting the level 1. Of
course, the same happens when hitting x, for every x ∈ R, not just 1.

2b3 Exercise. Prove that

P

(

max
[0,t]

B(·) ≥ 1
)

= 2 P
(

B(t) ≥ 1
)

.

Similarly, P
(

max[0,t] B(·) ≥ x
)

= 2 P
(

B(t) ≥ x
)

for all x ∈ [0,∞). Thus,

(2b4) max
[0,t]

B(·) is distributed like |B(t)| .

1‘R is for right or return’ [1, Sect. 7.2, Exer. 2.1].
2But see 2b5.
3See also 2f8.
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The distribution of Tx is therefore

P
(

Tx ≤ t
)

= P

(

max
[0,t]

B(·) ≥ x
)

= 2 P
(

B(t) ≥ x
)

=

= 2 P

(

B(1) ≥ x√
t

)

= 2

∫ ∞

x/
√

t

p1(y) dy .

2b5 Exercise. Prove that

inf
[0,∞)

B(·) = −∞ , sup
[0,∞)

B(·) = ∞ a.s.

2b6 Exercise. Almost surely,

∀ε > 0
(

min
[0,ε]

B(·) < 0 and max
[0,ε]

B(·) > 0
)

.

Prove it.

2b7 Exercise. B does not restart at the random time L (defined by (2a6)).
Prove it.

Now we are in position to finalize the calculation of the distribution of L
and R started in (2a7), (2a10); the integrals need some effort, and give

P
(

L ≤ t
)

=
2

π
arcsin

√
t for 0 ≤ t ≤ 1 ,(2b8)

P
(

R ≤ t
)

=
2

π
arctan

√
t − 1 for 1 ≤ t < ∞ ,(2b9)

see [1, Sect. 7.4, Example 4.4].
Let us calculate the density:

d

dt
P

(

Tx ≤ t
)

= 2
d

dt

∫ ∞

x/
√

t

p1(y) dy =

= −2p1

( x√
t

)

· x ·
(

− 1

2
t−3/2

)

=
x

t3/2
p1

( x√
t

)

=

=
x

t
pt(x) =

1√
2π

x

t3/2
exp

(

− x2

2t

)

;

the derivative is continuous on [0.∞) (in spite of t in the denominator); we
got the density (of the distribution) of Tx. Note that E Tx = ∞. Interestingly,
Tx is distributed like the special Lévy process at time x.
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2b10 Exercise. For all x, y ∈ (0,∞),

Tx+y − Tx is independent of Tx and distributed like Ty .

Prove it.

The formula ps+t = ps ∗ pt for pt(x) = t√
2πx3/2

exp
(

− t2

2x

)

, claimed in 1a
without proof, follows from 2b10!

Similarly to 2b10, the process (Tx)x∈[0,∞) has stationary independent in-
crements. Also, its sample functions are continuous from the left (think,
why).

The random function (Tx)x∈[0,∞) is distributed as the
left-continuous modification of the special Lévy process.

See also [1, Sect. 7.4].
But wait, we did not prove 2b2 yet. . . 1

2c Delayed restart

An important step toward the proof of Prop. 2b2 is made here. Instead of the
random time T1 taking on a continuum of values we introduce (for a given
n) a random time τn with a finite number of values,

(2c1)
τn =

k

2n
whenever

k − 1

2n
< T1 ≤

k

2n
for k = 1, 2, . . . , 22n ;

τn = ∞ whenever T1 > 2n .

Clearly, τn ↓ T1 a.s., as n → ∞.
Similarly to (2b1) we restart at τn,

(2c2)

Yn(t)(ω1, ω2) =

{

B(t)(ω1) for t ≤ τn(ω1),

B
(

τn(ω1)
)

(ω1) + B
(

t − τn(ω1)
)

(ω2) for t ≥ τn(ω1).

Similarly to 2b2 we claim the following.

2c3 Lemma. For every n the random function Yn is distributed like B.

The proof will be given in 2e. Now we’ll deduce 2b2 from 2c3.

1“It may be difficult for the novice to appreciate the fact that twenty five years ago
a formal proof of the strong Markov property was a major event.” Kai Lai Chung, John
B. Walsh, “Markov processes, Brownian motion, and time symmetry”, second edition,
Springer (1982 and) 2005; see page 73.
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Proof of 2b2 (assuming 2c3). The random function Y defined by (2b1) is
evidently continuous. In order to prove that Y is distributed like B it is
sufficient to check that

(

Y (t1), . . . , Y (tj)
)

∼
(

B(t1), . . . , B(tj)
)

for all j and
t1, . . . , tj ∈ (0,∞). To this end it is sufficient to check that

(2c4) E ϕ
(

Y (t1), . . . , Y (tj)
)

= E ϕ
(

B(t1), . . . , B(tj)
)

for every j and every bounded continuous ϕ : R
j → R.

By 2c3,

(2c5) E ϕ
(

Yn(t1), . . . , Yn(tj)
)

= E ϕ
(

B(t1), . . . , B(tj)
)

for all n. As n → ∞, we have (for almost all ω1, ω2)

τn(ω1) ↓ T1(ω1) ;

B
(

τn(ω1)
)

(ω1) → B
(

T1(ω1)
)

(ω1) = 1 ;

t − τn(ω1) → t − T1(ω1) ;

B
(

t − τn(ω1)
)

(ω2) → B
(

t − T1(ω1)
)

(ω2) ;

Yn(t)(ω1, ω2) → Y (t)(ω1, ω2)

for t ≥ T1(ω1). And clearly Yn(t)(ω1, ω2) = B(t)(ω1) = Y (t)(ω1, ω2) for
t < T1(ω1), if n is large enough. Thus, Yn(t) → Y (t) a.s. (for each t);
therefore

E ϕ
(

Yn(t1), . . . , Yn(tj)
)

→ E ϕ
(

Y (t1), . . . , Y (tj)
)

by the bounded convergence theorem. In combination with (2c5) it gives
(2c4).

2d Maybe restart, maybe not

Here we prove Lemma 2c3 for the simplest case, n = 0. (Be careful, mind
2b7!) By (2c1),

τ0 =

{

1 if T1 ≤ 1,

∞ if T1 > 1.

By (2c2),1

Y0(t)(ω1, ω3) =











B(t)(ω1) if t ≤ 1,

B(t)(ω1) if t ≥ 1 and max[0,1] B(·)(ω1) < 1,

B(1)(ω1) + B(t − 1)(ω3) if t ≥ 1 and max[0,1] B(·)(ω1) ≥ 1.

1Why ω3? Wait a little. . .
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We want to prove that Y0 ∼ B. The distribution of Y0 does not change if
we replace B with another process X distributed like B. We choose (recall
(2a1))

X(t)(ω1, ω2) =

{

B(t)(ω1) for t ≤ 1,

B(1)(ω1) + B(t − 1)(ω2) for t ≥ 1

and consider

Y (t)(ω1, ω2, ω3) =

=











X(t)(ω1, ω2) if t ≤ 1,

X(t)(ω1, ω2) if t ≥ 1 and max[0,1] X(·)(ω1, ω2) < 1,

X(1)(ω1, ω2) + B(t − 1)(ω3) if t ≥ 1 and max[0,1] X(·)(ω1, ω2) ≥ 1.

Similarly to 2a4,1 Y is distributed like Y0. We have

Y (t)(ω1, ω2, ω3) =











B(t)(ω1) if t ≤ 1,

B(1)(ω1) + B(t − 1)(ω2) if t ≥ 1 and ω1 ∈ A,

B(1)(ω1) + B(t − 1)(ω3) if t ≥ 1 and ω1 /∈ A,

where A = {ω1 : max[0,1] B(·)(ω1) < 1}.

2d1 Exercise. Let (Ω,F , P ) be a probability space, A ⊂ Ω a measurable
set, f : Ω2 → R a bounded measurable function. Define g : Ω3 → R by

g(ω1, ω2, ω3) =

{

f(ω1, ω2) if ω1 ∈ A,

f(ω1, ω3) if ω1 /∈ A.

Then
∫∫∫

Ω3

g d(P × P × P ) =

∫∫

Ω2

f d(P × P ) .

Prove it.

It follows that Y is distributed like X, therefore, like B, which proves
Lemma 2c3 for n = 0.

2e The proof, at last

If two non-overlapping changes are separately harmless, then they are jointly
harmless in the following sense.

1See also 2f4.
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2e1 Exercise. (a) Let X, Y1, Y2 be identically distributed random variables
(on a probability space) such that P

(

Y1 6= X and Y2 6= X
)

= 0. Then the
random variable Z defined by

Z =











X if Y1 = X and Y2 = X,

Y1 if Y1 6= X and Y2 = X,

Y2 if Y1 = X and Y2 6= X

is distributed like X.
(b) The same holds for random vectors and random continuous functions.
Prove it.

The same holds for any finite (or countable) collection of pairwise non-
overlapping changes.

Proof of 2c3. We consider random continuous functions

Yn,k(t)(ω1, ω2) =

=











B(t)(ω1) if t ≤ k · 2−n,

B(t)(ω1) if t ≥ k · 2−n and τn(ω1) 6= k · 2−n,

B(k · 2−n)(ω1) + B(t − k · 2−n)(ω2) if t ≥ k · 2−n and τn(ω1) = k · 2−n.

Each Yn,k is distributed like B by the argument of 2d. It remains to apply
2e1.

2f Technicalities: sigma-fields and stopping times

The Borel σ-field1 B on the space C[0, 1] of all continuous functions [0, 1] → R

can be defined in many equivalent ways; here is the best one for our purposes:

(2f1)

B is generated by the functions

C[0, 1] ∋ f 7→ f(t) ∈ R

where t runs over [0, 1].

2f2 Exercise. Prove that each of the following four sets of functions C[0, 1] →
R generates the Borel σ-field:

(a) f 7→ f(t) for rational t ∈ [0, 1];
(b) f 7→ max[a,b] f(·) for [a, b] ⊂ [0, 1];

(c) f 7→
∫ b

a
f(x) dx for [a, b] ⊂ [0, 1];

(d) f 7→ ‖f − g‖ for g ∈ C[0, 1].
Prove it.

1In other words, “σ-algebra”.
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It follows easily from (d) that the Borel σ-field is generated by open (or
closed) balls, as well as by open (or closed) sets.

For any t ∈ [0,∞) the Borel σ-field on C[0, t] is defined similarly.
Now, for a given t ∈ [0,∞) we define a σ-field Bt on the set C[0,∞) of

all continuous (not necessarily bounded) functions [0,∞) → R as consisting
of inverse images of all Borel subsets of C[0, t] under the restriction map

C[0,∞) ∋ f 7→ f |[0,t] ∈ C[0, t] .

Clearly, Bt is generated by the functions

C[0,∞) ∋ f 7→ f(s) ∈ R

for s ∈ [0, t].
The σ-field generated by ∪tBt will be denoted by B∞ and called the Borel

σ-field of C[0,∞). Clearly, B∞ is generated by the functions

C[0,∞) ∋ f 7→ f(t) ∈ R

for t ∈ [0,∞).
Here are two equivalent definitions of a random continuous function.

2f3 Exercise. Let (Ω,F , P ) be a probability space. Then the following two
conditions on a function X : Ω → C[0,∞) are equivalent:

(a) for each t ∈ [0,∞) the function

Ω ∋ ω 7→ X(t)(ω)

is F -measurable;
(b) for each B∞-measurable function ϕ : C[0,∞) → R, the function

Ω ∋ ω 7→ ϕ
(

X(·)(ω)
)

is F -measurable.
Prove it.

For the next exercise you need something like the monotone class theorem
or Dynkin’s π − λ theorem; see [1, Appendix A2, (2.1) and (2.2)].

Here are two equivalent definitions of identically distributed random con-
tinuous functions.

2f4 Exercise. The following two conditions on random continuous functions1

X, Y are equivalent:

1Maybe, on different probability spaces.
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(a) for every n and t1, . . . , tn ∈ [0,∞) the random vectors
(

X(t1), . . . , X(tn)
)

and
(

Y (t1), . . . , Y (tn)
)

are identically distributed;
(b) for every B∞-measurable function ϕ : C[0,∞) → R the random

variables ϕ
(

X(·)
)

and ϕ
(

Y (·)
)

are identically distributed.
Prove it.

2f5 Definition. A stopping time is a function T : C[0,∞) → [0,∞] such
that

{f ∈ C[0,∞) : T (f) ≤ t} ∈ Bt

for all t ∈ [0,∞).

2f6 Exercise. The hitting time T1 defined by

T1(f) = inf{t : f(t) = 1}

(∞, if the set is empty) is a stopping time.
Prove it.

2f7 Exercise. The function L defined by

L(f) = sup{t ∈ [0, 1] : f(t) = 0}

(0, if the set is empty) is not a stopping time.
Prove it.

Here is the strong Markov property of the Brownian motion.

2f8 Theorem. If T is a stopping time then the random function

Y (t)(ω1, ω2) =

{

B(t)(ω1) for t ≤ T (ω1),

B
(

T (ω1)
)

(ω1) + B
(

t − T (ω1)
)

(ω2) for t ≥ T (ω1)

on Ω × Ω is distributed like the Brownian motion B.

The proof is quite similar to the proof of 2b2.

2f9 Remark. A weaker (than 2f5) assumption

{f ∈ C[0,∞) : T (f) < t} ∈ Bt for all t ∈ [0,∞)

is still sufficient for Theorem 2f8 to hold.
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(Anyway, a delay is stipulated by the proof, recall 2c). Such T is called
a stopping time of the (right-continuous) filtration (Bt+)t, where Bt+ =
∩ε>0Bt+ε. In contrast, 2f5 defines a stopping time of the filtration (Bt)t.
(Generally, a filtration is defined as an increasing family of σ-fields.)

Here is an example of a stopping time of (Bt+)t but not (Bt)t:

T1+ = inf{t : B(t) > 1} .

Note that Tt ↓ T1+ as t ↓ 1. Similarly, Tx+ are introduced for all x ∈
[0,∞). Due to 2f9, all said in 2b about the process (Tx)x∈[0,∞) holds also for
(Tx+)x∈[0,∞), except for the left continuity; this time we get right continuity.

The random function (Tx+)x∈[0,∞) is distributed as the
special Lévy process.

2f10 Exercise. P
(

Tx = Tx+

)

= 1 for each x ∈ [0,∞).
Prove it.

2g Hints to exercises

2a2: Calculate the joint distribution of Y (t1), Y (t2) − Y (t1), . . . , Y (tn) −
Y (tn−1) assuming that t1 < · · · < tn and 1 ∈ {t1, . . . , tn}.

2a4: {ω : Tx > t} = {ω : sup[0,t] B(·) < x}.
2a5: Use 1c2.

2b3: P
(

max[0,t] B(·) ≥ 1
)

= P
(

T1 ≤ t
)

; use 2b2.

2b5: P
(

Tx < ∞
)

= 1.

2b6: limx→0+ P
(

Tx < ε
)

= ?

2b7: use 2b6.

2b10: Use 2b2.

2d1: Fubini theorem.

2f2: (a), (b), (c): if ϕn are measurable (w.r.t. a given σ-field) and ϕn → ϕ
pointwise, then ϕ is also measurable. (d): take a sequence (gn)n dense in
C[0, 1] and note that supn:‖f−gn‖<1 gn(t) = f(t) + 1.

2f3: (a) =⇒(b): all sets A ⊂ C[0,∞) such that X−1(A) ∈ F are a σ-field.

2f10: Tx and Tx+ are identically distributed, and Tx ≤ Tx+.
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