2

Markov and strong Markov

$\mathbf{2a}$	Restart at a nonrandom time	12
$\mathbf{2b}$	Hit and restart	14
2c	Delayed restart	16
2d	Maybe restart, maybe not	17
$2\mathbf{e}$	The proof, at last	18
$\mathbf{2f}$	Technicalities: sigma-fields and stopping times .	19
$2 { m g}$	Hints to exercises	22

2a Restart at a nonrandom time

Let X be any one of the three processes introduced in Sect. 1 (the Brownian motion, the Cauchy process, the special Lévy process) on a probability space (Ω, \mathcal{F}, P) . We construct a random function Y on the product $\Omega^2 = \Omega \times \Omega$ (that is, $(\Omega, \mathcal{F}, P) \times (\Omega, \mathcal{F}, P)$) by glueing together two independent sample functions as follows:

(2a1)
$$Y(t)(\omega_1, \omega_2) = \begin{cases} X(t)(\omega_1) & \text{for } t \le 1, \\ X(1)(\omega_1) + X(t-1)(\omega_2) & \text{for } t \ge 1. \end{cases}$$

Clearly, sample functions of Y are right continuous.

2a2 Exercise. Y is distributed like X.¹

Prove it.

This is the Markov property: at the instant 1 the process X forgets its past and retains only a single point, X(1).² Of course, the Markov property holds at every instant $t \in (0, \infty)$, not just 1.

We turn to the Brownian motion, B. Given $x \in (0, \infty)$, we define the hitting time $T_x : \Omega \to [0, \infty]$ by

(2a3)
$$T_x = \inf\{t : B(t) = x\}$$

(as usual, $\inf \emptyset = \infty$).

¹Recall 1c, especially 1c3. See also 2f4.

²By the way, a process with differentiable sample functions cannot be Markov (unless it is nonrandom); it have to retain X'(1).

2a4 Exercise. (a) T_x is measurable (in ω , for a fixed x); (b) the distribution of T_x is uniquely determined, that is, does not depend on the choice of (Ω, \mathcal{F}, P) and B as far as B is a Brownian motion.¹

Prove it.

Such statements should be made every time we construct a random variable out of the Brownian motion;² however, they will be usually omitted.

2a5 Exercise. T_x is distributed like x^2T_1 .

Prove it.

We introduce the random variable³

(2a6)
$$L = \max\{t \in [0,1] : B(t) = 0\},\$$

and want to calculate its distribution,

$$\mathbb{P}(L < t) = \mathbb{P}(\forall s \in [t, 1] \ B(s) \neq 0) = ?$$

Given B(t) = x > 0, the conditional probability of this event should be equal to

$$\mathbb{P}\left(\forall s \in [0, 1-t] \ B(s) \neq x\right) = \mathbb{P}\left(T_x > 1-t\right) = \mathbb{P}\left(T_1 > \frac{1-t}{x^2}\right)$$

(think, why); for x < 0 the situation is similar. We guess that

(2a7)
$$\mathbb{P}(L < t) = \int_{-\infty}^{\infty} p_t(x) \mathbb{P}\left(T_1 > \frac{1-t}{x^2}\right) \mathrm{d}x,$$

where $p_t(x) = (2\pi t)^{-1/2} \exp\left(-\frac{x^2}{2t}\right)$. The proof combines the Markov property of the Brownian motion with the Fubini theorem. We use ω_1 on [0, t], swich to ω_2 on [t, 1], substitute this combination for B into L and get

$$\mathbb{P}(L < t) = \mathbb{P}(\forall s \in [t, 1] \ B(s) \neq 0) =$$

= $(P \times P)\{(\omega_1, \omega_2) : \forall s \in [t, 1] \ B(t)(\omega_1) + B(s - t)(\omega_2) \neq 0\} =$
= $\int_{\Omega} f(B(t)(\omega_1)) P(d\omega_1) = \mathbb{E}f(B(t)) = \int_{\mathbb{R}} p_t(x)f(x) dx,$

¹See also 2f3, 2f4.

²For instance, L and R, see (2a6), (2a9).

³'L is for left or last' [1, Sect. 7.2, Exer. 2.2].

Tel Aviv University, 2008

 $Brownian\ motion$

where

$$f(x) = P\{\omega_2 : \forall s \in [t, 1] \ x + B(s - t)(\omega_2) \neq 0\} = \\ = \mathbb{P}(\forall s \in [0, 1 - t] \ B(s) \neq -x) = \mathbb{P}(T_{|x|} > 1 - t) = \mathbb{P}(T_1 > \frac{1 - t}{x^2});$$

(2a7) follows.

2a8 Exercise. Let¹

(2a9)
$$R = \inf\{t \in [1,\infty) : B(t) = 0\}$$

(possibly, ∞).² Then

(2a10)
$$\mathbb{P}(R > 1+t) = \int_{-\infty}^{\infty} p_1(x) \mathbb{P}\left(T_1 > \frac{t}{x^2}\right) \mathrm{d}x.$$

Prove it.

2b Hit and restart

Similarly to (2a1) we let (recall (2a3))

(2b1)
$$Y(t)(\omega_1, \omega_2) = \begin{cases} B(t)(\omega_1) & \text{for } t \le T_1(\omega_1), \\ 1 + B(t - T_1(\omega_1))(\omega_2) & \text{for } t \ge T_1(\omega_1). \end{cases}$$

2b2 Proposition. Y is distributed like B.

The proof will be given in 2c, but do not hesitate to use 2b2 now.

This is a special case of strong Markov property.³

You see, the process B forgets the past when hitting the level 1. Of course, the same happens when hitting x, for every $x \in \mathbb{R}$, not just 1.

2b3 Exercise. Prove that

$$\mathbb{P}\left(\max_{[0,t]} B(\cdot) \ge 1\right) = 2 \mathbb{P}\left(B(t) \ge 1\right).$$

Similarly, $\mathbb{P}(\max_{[0,t]} B(\cdot) \ge x) = 2 \mathbb{P}(B(t) \ge x)$ for all $x \in [0,\infty)$. Thus,

(2b4) $\max_{[0,t]} B(\cdot) \text{ is distributed like } |B(t)|.$

 2 But see 2b5.

 3 See also 2f8.

 $^{^{1}}$ R is for right or return' [1, Sect. 7.2, Exer. 2.1].

The distribution of T_x is therefore

$$\mathbb{P}\left(T_x \le t\right) = \mathbb{P}\left(\max_{[0,t]} B(\cdot) \ge x\right) = 2\mathbb{P}\left(B(t) \ge x\right) = 2\mathbb{P}\left(B(1) \ge \frac{x}{\sqrt{t}}\right) = 2\int_{x/\sqrt{t}}^{\infty} p_1(y) \,\mathrm{d}y.$$

2b5 Exercise. Prove that

$$\inf_{[0,\infty)} B(\cdot) = -\infty , \quad \sup_{[0,\infty)} B(\cdot) = \infty \quad \text{a.s.}$$

2b6 Exercise. Almost surely,

$$\forall \varepsilon > 0 \ \left(\min_{[0,\varepsilon]} B(\cdot) < 0 \text{ and } \max_{[0,\varepsilon]} B(\cdot) > 0 \right).$$

Prove it.

2b7 Exercise. B does not restart at the random time L (defined by (2a6)). Prove it.

Now we are in position to finalize the calculation of the distribution of L and R started in (2a7), (2a10); the integrals need some effort, and give

(2b8) $\mathbb{P}(L \le t) = \frac{2}{\pi} \arcsin \sqrt{t} \quad \text{for } 0 \le t \le 1,$

(2b9)
$$\mathbb{P}(R \le t) = \frac{2}{\pi} \arctan \sqrt{t-1} \quad \text{for } 1 \le t < \infty,$$

see [1, Sect. 7.4, Example 4.4].

Let us calculate the density:

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}\left(T_x \le t\right) = 2\frac{\mathrm{d}}{\mathrm{d}t} \int_{x/\sqrt{t}}^{\infty} p_1(y) \,\mathrm{d}y =$$

$$= -2p_1\left(\frac{x}{\sqrt{t}}\right) \cdot x \cdot \left(-\frac{1}{2}t^{-3/2}\right) = \frac{x}{t^{3/2}}p_1\left(\frac{x}{\sqrt{t}}\right) =$$

$$= \frac{x}{t}p_t(x) = \frac{1}{\sqrt{2\pi}}\frac{x}{t^{3/2}}\exp\left(-\frac{x^2}{2t}\right);$$

the derivative is continuous on $[0.\infty)$ (in spite of t in the denominator); we got the density (of the distribution) of T_x . Note that $\mathbb{E} T_x = \infty$. Interestingly, T_x is distributed like the special Lévy process at *time* x.

Brownian motion

2b10 Exercise. For all $x, y \in (0, \infty)$,

 $T_{x+y}-T_x$ is independent of T_x and distributed like $T_y\,.$

Prove it.

The formula $p_{s+t} = p_s * p_t$ for $p_t(x) = \frac{t}{\sqrt{2\pi x^{3/2}}} \exp\left(-\frac{t^2}{2x}\right)$, claimed in 1a without proof, follows from 2b10!

Similarly to 2b10, the process $(T_x)_{x \in [0,\infty)}$ has stationary independent increments. Also, its sample functions are continuous from the left (think, why).

The random function	$(T_x)_{x\in[0,\infty)}$ is	distributed as the
left-continuous modifie	eation of the sp	pecial Lévy process.

See also [1, Sect. 7.4].

But wait, we did not prove 2b2 yet...¹

2c Delayed restart

An important step toward the proof of Prop. 2b2 is made here. Instead of the random time T_1 taking on a continuum of values we introduce (for a given n) a random time τ_n with a finite number of values,

(2c1)
$$\tau_n = \frac{k}{2^n} \quad \text{whenever } \frac{k-1}{2^n} < T_1 \le \frac{k}{2^n} \quad \text{for } k = 1, 2, \dots, 2^{2n};$$
$$\tau_n = \infty \quad \text{whenever } T_1 > 2^n.$$

Clearly, $\tau_n \downarrow T_1$ a.s., as $n \to \infty$.

Similarly to (2b1) we restart at τ_n , (2c2)

$$Y_n(t)(\omega_1, \omega_2) = \begin{cases} B(t)(\omega_1) & \text{for } t \le \tau_n(\omega_1), \\ B(\tau_n(\omega_1))(\omega_1) + B(t - \tau_n(\omega_1))(\omega_2) & \text{for } t \ge \tau_n(\omega_1). \end{cases}$$

Similarly to 2b2 we claim the following.

2c3 Lemma. For every *n* the random function Y_n is distributed like *B*.

The proof will be given in 2e. Now we'll deduce 2b2 from 2c3.

¹ "It may be difficult for the novice to appreciate the fact that twenty five years ago a formal proof of the strong Markov property was a major event." Kai Lai Chung, John B. Walsh, "Markov processes, Brownian motion, and time symmetry", second edition, Springer (1982 and) 2005; see page 73.

Proof of 2b2 (assuming 2c3). The random function Y defined by (2b1) is evidently continuous. In order to prove that Y is distributed like B it is sufficient to check that $(Y(t_1), \ldots, Y(t_j)) \sim (B(t_1), \ldots, B(t_j))$ for all j and $t_1, \ldots, t_j \in (0, \infty)$. To this end it is sufficient to check that

(2c4)
$$\mathbb{E}\varphi(Y(t_1),\ldots,Y(t_j)) = \mathbb{E}\varphi(B(t_1),\ldots,B(t_j))$$

for every j and every bounded continuous $\varphi : \mathbb{R}^j \to \mathbb{R}$. By 2c3,

(2c5)
$$\mathbb{E}\varphi(Y_n(t_1),\ldots,Y_n(t_j)) = \mathbb{E}\varphi(B(t_1),\ldots,B(t_j))$$

for all n. As $n \to \infty$, we have (for almost all ω_1, ω_2)

$$\tau_n(\omega_1) \downarrow T_1(\omega_1);$$

$$B(\tau_n(\omega_1))(\omega_1) \to B(T_1(\omega_1))(\omega_1) = 1;$$

$$t - \tau_n(\omega_1) \to t - T_1(\omega_1);$$

$$B(t - \tau_n(\omega_1))(\omega_2) \to B(t - T_1(\omega_1))(\omega_2);$$

$$Y_n(t)(\omega_1, \omega_2) \to Y(t)(\omega_1, \omega_2)$$

for $t \geq T_1(\omega_1)$. And clearly $Y_n(t)(\omega_1, \omega_2) = B(t)(\omega_1) = Y(t)(\omega_1, \omega_2)$ for $t < T_1(\omega_1)$, if *n* is large enough. Thus, $Y_n(t) \to Y(t)$ a.s. (for each *t*); therefore

$$\mathbb{E} \varphi (Y_n(t_1), \dots, Y_n(t_j)) \to \mathbb{E} \varphi (Y(t_1), \dots, Y(t_j))$$

by the bounded convergence theorem. In combination with (2c5) it gives (2c4).

2d Maybe restart, maybe not

Here we prove Lemma 2c3 for the simplest case, n = 0. (Be careful, mind 2b7!) By (2c1),

$$\tau_0 = \begin{cases} 1 & \text{if } T_1 \leq 1, \\ \infty & \text{if } T_1 > 1. \end{cases}$$

By (2c2),¹

$$Y_{0}(t)(\omega_{1},\omega_{3}) = \begin{cases} B(t)(\omega_{1}) & \text{if } t \leq 1, \\ B(t)(\omega_{1}) & \text{if } t \geq 1 \text{ and } \max_{[0,1]} B(\cdot)(\omega_{1}) < 1, \\ B(1)(\omega_{1}) + B(t-1)(\omega_{3}) & \text{if } t \geq 1 \text{ and } \max_{[0,1]} B(\cdot)(\omega_{1}) \geq 1. \end{cases}$$

¹Why ω_3 ? Wait a little...

Tel Aviv University, 2008

We want to prove that $Y_0 \sim B$. The distribution of Y_0 does not change if we replace B with another process X distributed like B. We choose (recall (2a1))

$$X(t)(\omega_1, \omega_2) = \begin{cases} B(t)(\omega_1) & \text{for } t \le 1, \\ B(1)(\omega_1) + B(t-1)(\omega_2) & \text{for } t \ge 1 \end{cases}$$

and consider

$$\begin{split} Y(t)(\omega_1, \omega_2, \omega_3) &= \\ &= \begin{cases} X(t)(\omega_1, \omega_2) & \text{if } t \le 1, \\ X(t)(\omega_1, \omega_2) & \text{if } t \ge 1 \text{ and } \max_{[0,1]} X(\cdot)(\omega_1, \omega_2) < 1, \\ X(1)(\omega_1, \omega_2) + B(t-1)(\omega_3) & \text{if } t \ge 1 \text{ and } \max_{[0,1]} X(\cdot)(\omega_1, \omega_2) \ge 1. \end{cases} \end{split}$$

Similarly to 2a4, Y is distributed like Y_0 . We have

$$Y(t)(\omega_1, \omega_2, \omega_3) = \begin{cases} B(t)(\omega_1) & \text{if } t \le 1, \\ B(1)(\omega_1) + B(t-1)(\omega_2) & \text{if } t \ge 1 \text{ and } \omega_1 \in A, \\ B(1)(\omega_1) + B(t-1)(\omega_3) & \text{if } t \ge 1 \text{ and } \omega_1 \notin A, \end{cases}$$

where $A = \{\omega_1 : \max_{[0,1]} B(\cdot)(\omega_1) < 1\}.$

2d1 Exercise. Let (Ω, \mathcal{F}, P) be a probability space, $A \subset \Omega$ a measurable set, $f: \Omega^2 \to \mathbb{R}$ a bounded measurable function. Define $g: \Omega^3 \to \mathbb{R}$ by

$$g(\omega_1, \omega_2, \omega_3) = \begin{cases} f(\omega_1, \omega_2) & \text{if } \omega_1 \in A, \\ f(\omega_1, \omega_3) & \text{if } \omega_1 \notin A. \end{cases}$$

Then

$$\iiint_{\Omega^3} g \,\mathrm{d}(P \times P \times P) = \iint_{\Omega^2} f \,\mathrm{d}(P \times P) \,.$$

Prove it.

It follows that Y is distributed like X, therefore, like B, which proves Lemma 2c3 for n = 0.

2e The proof, at last

If two non-overlapping changes are separately harmless, then they are jointly harmless in the following sense.

¹See also 2f4.

2e1 Exercise. (a) Let X, Y_1, Y_2 be identically distributed random variables (on a probability space) such that $\mathbb{P}(Y_1 \neq X \text{ and } Y_2 \neq X) = 0$. Then the random variable Z defined by

$$Z = \begin{cases} X & \text{if } Y_1 = X \text{ and } Y_2 = X, \\ Y_1 & \text{if } Y_1 \neq X \text{ and } Y_2 = X, \\ Y_2 & \text{if } Y_1 = X \text{ and } Y_2 \neq X \end{cases}$$

is distributed like X.

(b) The same holds for random vectors and random continuous functions. Prove it.

The same holds for any finite (or countable) collection of pairwise nonoverlapping changes.

Proof of 2c3. We consider random continuous functions

$$Y_{n,k}(t)(\omega_1, \omega_2) = \begin{cases} B(t)(\omega_1) & \text{if } t \le k \cdot 2^{-n}, \\ B(t)(\omega_1) & \text{if } t \ge k \cdot 2^{-n} \text{ and } \tau_n(\omega_1) \ne k \cdot 2^{-n}, \\ B(k \cdot 2^{-n})(\omega_1) + B(t - k \cdot 2^{-n})(\omega_2) & \text{if } t \ge k \cdot 2^{-n} \text{ and } \tau_n(\omega_1) = k \cdot 2^{-n}. \end{cases}$$

Each $Y_{n,k}$ is distributed like B by the argument of 2d. It remains to apply 2e1.

2f Technicalities: sigma-fields and stopping times

The Borel σ -field¹ \mathcal{B} on the space C[0, 1] of all continuous functions $[0, 1] \to \mathbb{R}$ can be defined in many equivalent ways; here is the best one for our purposes:

(2f1) $\mathcal{B} \text{ is generated by the functions}$ $C[0,1] \ni f \mapsto f(t) \in \mathbb{R}$ where t runs over [0,1].

2f2 Exercise. Prove that each of the following four sets of functions $C[0,1] \rightarrow \mathbb{R}$ generates the Borel σ -field:

(a) $f \mapsto f(t)$ for rational $t \in [0, 1]$; (b) $f \mapsto \max_{[a,b]} f(\cdot)$ for $[a,b] \subset [0,1]$; (c) $f \mapsto \int_a^b f(x) \, dx$ for $[a,b] \subset [0,1]$; (d) $f \mapsto ||f - g||$ for $g \in C[0,1]$. Prove it.

¹In other words, " σ -algebra".

It follows easily from (d) that the Borel σ -field is generated by open (or closed) balls, as well as by open (or closed) sets.

For any $t \in [0, \infty)$ the Borel σ -field on C[0, t] is defined similarly.

Now, for a given $t \in [0, \infty)$ we define a σ -field \mathcal{B}_t on the set $C[0, \infty)$ of all continuous (not necessarily bounded) functions $[0, \infty) \to \mathbb{R}$ as consisting of inverse images of all Borel subsets of C[0, t] under the restriction map

$$C[0,\infty) \ni f \mapsto f|_{[0,t]} \in C[0,t].$$

Clearly, \mathcal{B}_t is generated by the functions

$$C[0,\infty) \ni f \mapsto f(s) \in \mathbb{R}$$

for $s \in [0, t]$.

The σ -field generated by $\cup_t \mathcal{B}_t$ will be denoted by \mathcal{B}_∞ and called the Borel σ -field of $C[0,\infty)$. Clearly, \mathcal{B}_∞ is generated by the functions

$$C[0,\infty) \ni f \mapsto f(t) \in \mathbb{R}$$

for $t \in [0, \infty)$.

Here are two equivalent definitions of a random continuous function.

2f3 Exercise. Let (Ω, \mathcal{F}, P) be a probability space. Then the following two conditions on a function $X : \Omega \to C[0, \infty)$ are equivalent:

(a) for each $t \in [0, \infty)$ the function

$$\Omega \ni \omega \mapsto X(t)(\omega)$$

is \mathcal{F} -measurable;

(b) for each \mathcal{B}_{∞} -measurable function $\varphi: C[0,\infty) \to \mathbb{R}$, the function

$$\Omega \ni \omega \mapsto \varphi \big(X(\cdot)(\omega) \big)$$

is \mathcal{F} -measurable.

Prove it.

For the next exercise you need something like the monotone class theorem or Dynkin's $\pi - \lambda$ theorem; see [1, Appendix A2, (2.1) and (2.2)].

Here are two equivalent definitions of *identically distributed* random continuous functions.

2f4 Exercise. The following two conditions on random continuous functions¹ X, Y are equivalent:

¹Maybe, on different probability spaces.

(a) for every n and $t_1, \ldots, t_n \in [0, \infty)$ the random vectors $(X(t_1), \ldots, X(t_n))$ and $(Y(t_1), \ldots, Y(t_n))$ are identically distributed;

(b) for every \mathcal{B}_{∞} -measurable function $\varphi : C[0,\infty) \to \mathbb{R}$ the random variables $\varphi(X(\cdot))$ and $\varphi(Y(\cdot))$ are identically distributed.

Prove it.

2f5 Definition. A stopping time is a function $T : C[0, \infty) \to [0, \infty]$ such that

$$\{f \in C[0,\infty) : T(f) \le t\} \in \mathcal{B}_t$$

for all $t \in [0, \infty)$.

2f6 Exercise. The hitting time T_1 defined by

$$T_1(f) = \inf\{t : f(t) = 1\}$$

 $(\infty, \text{ if the set is empty})$ is a stopping time. Prove it.

2f7 Exercise. The function L defined by

$$L(f) = \sup\{t \in [0,1] : f(t) = 0\}$$

(0, if the set is empty) is not a stopping time. Prove it.

Here is the strong Markov property of the Brownian motion.

2f8 Theorem. If T is a stopping time then the random function

$$Y(t)(\omega_1, \omega_2) = \begin{cases} B(t)(\omega_1) & \text{for } t \le T(\omega_1), \\ B(T(\omega_1))(\omega_1) + B(t - T(\omega_1))(\omega_2) & \text{for } t \ge T(\omega_1) \end{cases}$$

on $\Omega \times \Omega$ is distributed like the Brownian motion B.

The proof is quite similar to the proof of 2b2.

2f9 Remark. A weaker (than 2f5) assumption

$$\{f \in C[0,\infty) : T(f) < t\} \in \mathcal{B}_t \text{ for all } t \in [0,\infty)$$

is still sufficient for Theorem 2f8 to hold.

(Anyway, a delay is stipulated by the proof, recall 2c). Such T is called a stopping time of the (right-continuous) filtration $(\mathcal{B}_{t+})_t$, where $\mathcal{B}_{t+} = \bigcap_{\varepsilon>0} \mathcal{B}_{t+\varepsilon}$. In contrast, 2f5 defines a stopping time of the filtration $(\mathcal{B}_t)_t$. (Generally, a filtration is defined as an increasing family of σ -fields.)

Here is an example of a stopping time of $(\mathcal{B}_{t+})_t$ but not $(\mathcal{B}_t)_t$:

$$T_{1+} = \inf\{t : B(t) > 1\}.$$

Note that $T_t \downarrow T_{1+}$ as $t \downarrow 1$. Similarly, T_{x+} are introduced for all $x \in [0, \infty)$. Due to 2f9, all said in 2b about the process $(T_x)_{x \in [0,\infty)}$ holds also for $(T_{x+})_{x \in [0,\infty)}$, except for the left continuity; this time we get right continuity.

The random function $(T_{x+})_{x\in[0,\infty)}$ is distributed as the special Lévy process.

2f10 Exercise. $\mathbb{P}(T_x = T_{x+}) = 1$ for each $x \in [0, \infty)$.

Prove it.

2g Hints to exercises

2a2: Calculate the joint distribution of $Y(t_1), Y(t_2) - Y(t_1), \ldots, Y(t_n) - Y(t_{n-1})$ assuming that $t_1 < \cdots < t_n$ and $1 \in \{t_1, \ldots, t_n\}$. 2a4: $\{\omega : T_x > t\} = \{\omega : \sup_{[0,t]} B(\cdot) < x\}.$

2a5: Use 1c2. 2b3: $\mathbb{P}(\max_{[0,t]} B(\cdot) \ge 1) = \mathbb{P}(T_1 \le t)$; use 2b2. 2b5: $\mathbb{P}(T_x < \infty) = 1$. 2b6: $\lim_{x \to 0+} \mathbb{P}(T_x < \varepsilon) = ?$ 2b7: use 2b6. 2b10: Use 2b2. 2d1: Fubini theorem.

2f2: (a), (b), (c): if φ_n are measurable (w.r.t. a given σ -field) and $\varphi_n \to \varphi$ pointwise, then φ is also measurable. (d): take a sequence $(g_n)_n$ dense in C[0,1] and note that $\sup_{n:\|f-g_n\|<1} g_n(t) = f(t) + 1$.

2f3: (a) \Longrightarrow (b): all sets $A \subset C[0, \infty)$ such that $X^{-1}(A) \in \mathcal{F}$ are a σ -field. 2f10: T_x and T_{x+} are identically distributed, and $T_x \leq T_{x+}$.

References

[1] R. Durrett, Probability: theory and examples, 1996.

Index

filtration, 22	stopping time, 21 strong Markov property, 14, 21	
hitting time, 12		
Markov property, 12	$\mathcal{B}_t, 20$	
random continuous functions, 20 identically distributed, 20	$\mathcal{B}_{\infty}, 20$ $T_x, 12$ $\tau_n, 16$	
σ -field, 19	$T_{x+}, 22$	