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3a Simple walks embedded into Brownian motion

The simple (symmetric, one-dimensional) random walk is (by definition) the
sequence of random variables Sn = X1 + · · · + Xn where X1, X2, . . . are
independent random signs, P

(
Xk = −1

)
= 0.5 = P

(
Xk = +1

)
. This is a

discrete-time random process with stationary independent increments.
Returning to the Brownian motion B, we introduce stopping times Tn

recursively:1

(3a1)
T0 = 0 ,

Tn+1 = min{t ∈ (Tn,∞) : |B(t) − B(Tn)| = 1} for n = 0, 1, . . .

The strong Markov property gives

(3a2)
the discrete-time random process (B(Tn))n

is distributed like the simple random walk.

This is called embedded random walk.
Note also that

(3a3) T1, T2 − T1, T3 − T2 , . . . are i.i.d. random variables.

We may do the same for the process
(
2B(t/4)

)

t distributed like B (by
the Brownian scaling):

T
(1)
0 = 0 ,

T
(1)
n+1 = min{t ∈ (T (1)

n ,∞) : |2B(t) − 2B(T (1)
n )| = 1} for n = 0, 1, . . . ;

(4T (1)
n )n is distributed like (Tn)n ,

(
2B(T (1)

n )
)

n is distributed like the simple random walk (Sn)n .

1Do not confuse these Tn with Tx of Sect. 2. By the way, E Tx = ∞ while E Tn < ∞,
see 3a6 (and 3a7).
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The walk
(
B(Tn)

)

n is embedded into the walk
(
2B(T

(1)
n )

)

n in roughly the
same sense as the latter is embedded into the Brownian motion.

Continuing this way we get a chain of embedded random walks
(
2mB(T

(m)
n )

)

n.

An interesting question: whether the random variables B(T
(m)
n ) for all

m, n determine uniquely a Brownian sample function, or not?
You may think that the answer is evidently negative, since all these ran-

dom variables are insensitive to time change. If ω1, ω2 are such that, say,
∀t B(t)(ω1) = B(2t)(ω2), then clearly ∀m, n B(T

(m)
n )(ω1) = B(T

(m)
n )(ω2).

The same holds if ∀t B(t)(ω1) = B(ϕ(t))(ω2) for some increasing homeo-
morphism ϕ : [0,∞) → [0,∞).

Nevertheless, the answer is affirmative!
It means that the relation ∃ϕ ∀t B(t)(ω1) = B(ϕ(t))(ω2) never holds

(well, almost never). The Brownian motion cannot move more quickly (nor
more slowly), even though dB(t)/dt is ill-defined.

3a4 Proposition.

lim
m→∞

T (m)
nm

= lim
m→∞

nm

22m
a.s.

for every sequence (n1, n2, . . . ) such that the limit in the right-hand side
exists.

The proof is given below (after 3a7).
You see, the rescaled (discrete) time of the m-th embedded random walk

converges (as m → ∞) to the (continuous) time of the Brownian motion.
This fact leads to another construction of the Brownian motion.1,2 One

may start with a chain of simple random walks S(m) = (S
(m)
n )n (on a single

probability space) such that each S(m) is embedded into S(m+1). (Such a se-
quence can be constructed easily out of a countable collection of independent
random signs or binary digits.) Then one defines random variables B(t) (on
the same probability space) by

lim
m

S(m)
nm

= B(t) whenever lim
m

nm

22m
= t .

Here is another implication of 3a4. We have T
(m)
22m → 1 a.s., which evi-

dently implies
B

(
T

(m)

22m

)
→ B(1) a.s.

1See also: F.B. Knight (1962) ‘On the random walk and Brownian motion’, Trans.
Amer. Math. Soc. 103:2, 218–228.

2For the Brownian motion on the Sierpinski gasket, the construction via embedded
walks is most natural. See: M.T. Barlow, E.A. Perkins (1988) ‘Brownian motion on the
Sierpiński gasket’, Probab. Theory Related Fields 79:4, 543–623 (MR966175).
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A wonder: B
(
T

(m)

22m

)
is distributed like 2−mS22m , while B(1) has the normal

distribution N(0, 1); it follows that

P
(
2−mS22m ≤ x

)
→ 1√

2π

∫ x

−∞
e−u2/2 du as m → ∞

for all x ∈ R.1 This is asymptotic normality of the binomial distribution
B(n, 0.5), but only for n ∈ {1, 4, 16, 64, . . .}. We leave this matter till 3b,
since now we want to prove 3a4.

3a5 Exercise. E B2(T ) = E T for every stopping time T such that ∃t P
(
T ≤

t
)

= 1.
Prove it.

3a6 Exercise. E T1 = 1.
Prove it.

3a7 Exercise. E T n
1 < ∞ for all n.

Prove it.

Proof of Prop. 3a4. Let 2−2mnm → t. Using scaling, the strong Markov
property and 3a6,

E T (m)
nm

= 2−2m
E Tnm

= 2−2mnmE T1 = 2−2mnm → t .

Similarly,
Var T (m)

nm
= 2−4m Var Tnm

= 2−4mnm VarT1 ;

note that VarT1 < ∞ by 3a7.2 Chebyshev’s inequality

P
(
|T (m)

nm
− E T (m)

nm
| ≥ ε

)
≤ VarT

(m)
nm

ε2

gives
∑

m

P
(
|T (m)

nm
− 2−2mnm| ≥ ε

)
< ∞

for all ε > 0. By the first Borel-Cantelli lemma,

T (m)
nm

− nm

22m
→ 0 a.s. as m → ∞ .

1You see, 1(−∞,x]

(
B(T

(m)
22m )

)
→ 1(−∞,x]

(
B(1)

)
a.s.

2In fact, Var T1 = 2/3.
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3b Functional limit theorem

In order to get the asymptotic normality of the binomial distribution B(n, 0.5)
for all n (rather than n = 22m) we turn to another collection of stopping times

T
(m)
n , namely,1

T
(m)
0 = 0 ,

T
(m)
n+1 = min{t ∈ (T (m)

n ,∞) : |B(t) − B(T (m)
n )| = 1/

√
m} for n = 0, 1, . . . ;

(mT (m)
n )n is distributed like (Tn)n ,

(√
mB(T (m)

n )
)

n is distributed like the simple random walk (Sn)n .

The m-th walk is embedded into the Brownian motion, and also into the
4m-th walk (but not (m + 1)-th walk).

3b1 Proposition.

lim
m→∞

T (m)
nm

= lim
m→∞

nm

m
a.s.

for every sequence (n1, n2, . . . ) such that the limit in the right-hand side
exists.

The proof is a bit harder than the proof of 3a4, since Var T
(m)
nm

= 1
m2 nm Var T1 =

O
(

1
m

)
does not lead to a convergent series. We turn to fourth moment.

3b2 Exercise. E (ξ1 + · · · + ξn)4 = nE ξ4
1 + (n2 − n)

(
E ξ2

1

)
2 for any i.i.d.

random variables ξ1, . . . , ξn such that E ξ1 = 0.
Prove it.

Combining it with (3a3), 3a6 and 3a7 we get

E (Tn − n)4 = O(n2) ;

E

(

T (m)
n − n

m

)4

= O
( n2

m4

)

.

3b3 Exercise. Prove 3b1.

We have T
(m)
m → 1 a.s., therefore B(T

(m)
m ) → B(1) a.s., therefore E ϕ

(
B(T

(m)
m )

)
→

E ϕ
(
B(1)

)
for every bounded continuous ϕ : R → R; thus,

(3b4) E ϕ
( 1√

m
Sm

)

→ E ϕ
(
B(1)

)
.

1Do not confuse T
(m)
n here and T

(m)
n of 3a.



Tel Aviv University, 2008 Brownian motion 28

The same holds if ϕ is required to be continuous almost everywhere (rather
than everywhere). Taking ϕ = 1(−∞,x] we get

(3b5) P
(
Sn ≤ x

√
n
)
→ 1√

2π

∫ x

−∞
e−u2/2 du as n → ∞

for all x ∈ R. Note that we get it without such analytic tools as Stirling’s
formula, Fourier transform etc. However, we can go much further.

3b6 Exercise. Let X1(·), X2(·), . . . be random increasing functions [0, 1] →
R (on the same probability space). If

∀t ∈ [0, 1] P
(
|Xn(t) − t| → 0

)
= 1

then
P

(
∀t ∈ [0, 1] |Xn(t) − t| → 0

)
= 1

and moreover,

P

(

sup
t∈[0,1]

|Xn(t) − t| → 0
)

= 1 .

Prove it.

3b7 Exercise.

max
n=0,...,m

∣
∣
∣T (m)

n − n

m

∣
∣
∣ → 0 a.s. as m → ∞ .

Prove it.

It follows that

(3b8) max
n=0,...,m

∣
∣
∣B

(
T (m)

n

)
− B

( n

m

)∣
∣
∣ → 0 a.s. as m → ∞ ,

since B(·) is uniformly continuous on (say) [0, 2] a.s. We see that a collection

of random walks
(
S

(m)
n

)

n and the Brownian motion B can be constructed on
a single probability space such that

(3b9) max
n=0,...,m

∣
∣
∣

1√
m

S(m)
n − B

( n

m

)∣
∣
∣ → 0 a.s. as m → ∞ .

One may interpolate the function n
m

7→ 1√
m

S
(m)
n linearly and get a.s. uniform

convergence of these random piecewise linear functions X(m) to the Brownian
motion B. The same holds on every bounded time interval [0, t], not just
[0, 1]. Therefore

(3b10) E ϕ(X(m)) → E ϕ(B) as m → ∞
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for every bounded ϕ : C[0,∞) → R continuous in the sense that ϕ(fn) →
ϕ(f) whenever fn → f uniformly on bounded intervals [0, t]. The same holds
if ϕ is required to be continuous for almost all f according to the Wiener
measure (the distribution of the Brownian motion). In other words, X(n)

converges to B in distribution. This is the functional limit theorem for the
simple random walk.1

Also ϕ(X(n)) converges to ϕ(B) in distribution (since the composition of
two almost everywhere continuous functions is almost everywhere continu-
ous), be ϕ bounded or not.

Consider for example the function ϕ : C[0,∞) → [0, 1],

ϕ(f) = sup{t ∈ [0, 1] : f(t) = 0}
(recall (2a6)); here sup ∅ = 0.

3b11 Exercise. Let fn → f uniformly on [0, 1].
(a) Then lim supn→∞ ϕ(fn) ≤ ϕ(f).
(b) It may happen that ϕ(fn) −−−→

n→∞
a < ϕ(f).

(c) If (b) happens then there exists a rational t ∈ (0, 1) such that at least
one of the two relations

min
[t,1]

f(·) = 0 , max
[t,1]

f(·) = 0

holds.
Prove it.

For a given rational t ∈ (0, 1) the random variable max[t,1] B(·) is nonatomic
(since it is the sum of two independent random variables, and one of them,
B(t), is nonatomic). Thus, Case (c) is negligible, and therefore ϕ is contin-
uous almost everywhere.

It follows that Ln converges in distribution to L, where L is defined by
(2a6), and

(3b12) Ln =
1

n
max{k = 0, . . . , n : Sk = 0} .

Using (2b7) we get

(3b13) P
(
Ln ≤ t

)
→ 2

π
arcsin

√
t as n → ∞

for all t ∈ [0, 1].2

1This is rather the tip of the iceberg. For more see the following paper and references
therein: S. Chatterjee, ‘An alternative construction of the strong embedding for the simple
random walk’, arXiv:0711.0501.

2See also [1, Sect. 7.6, Example 6.3].
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3c Invariance principle

Limit theorems of 3b can be generalized to non-simple random walks.
We introduce the hitting time

(3c1) T−z,y = min
{
t : B(t) ∈ {−z, y}

}

for y, z ∈ (0,∞). Similarly to 3a5–3a6 we prove that

(3c2) E B(T−z,y) = 0 ,

therefore

(3c3) P
(
B(T−z,y) = −z

)
=

y

y + z
, P

(
B(T−z,y) = y

)
=

z

y + z
.

This is the general form of a centered (that is, zero mean) two-point proba-
bility measure. Similarly to 3a5–3a7,

E T−z,y = E B2(T−z,y) = yz ,

E T n
−z,y < ∞ for all n .

3c4 Lemma. Every centered finitely supported1 probability measure is a
linear combination with positive coefficients of centered two-point (or one-
point) probability measures.

This fact follows from general theorems about extremal points of convex
sets, but anyway, here is an elementary proof.

Proof. Let µ =
∑n

k=1 pkδxk
be a centered finitely supported probability mea-

sure. Without loss of generality we assume that µ({0}) = 0 and
∫
|x|µ(dx) =

1. It is sufficient to find a pair of random variables Y, Z such that2

µ = E

( 1

2Y
δY +

1

2Z
δ−Z

)

,

that is,

E
1

2Y
δY =

∑

k:xk>0

pkδxk
, E

1

2Z
δ−Z =

∑

k:xk<0

pkδxk
.

Marginal distributions of Y and Z must be equal to
∑

k:xk>0 2xkδxk
and

∑

k:xk<0 2(−xk)δxk
respectively, which is evidently possible.3

1That is, consisting of a finite set of atoms.
2This is the expectation of a random vector in the n-dimensional space of all

∑
ckδxk

.
3You may choose Y, Z to be independent or, if you like, dependent in any way.
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Given a centered finitely supported probability measure µ, we represent
it in the form

(3c5) µ = p0δ0 +
n∑

k=1

pk

( yk

yk + zk
δ−zk

+
zk

yk + zk
δyk

)

for some n ∈ {1, 2, . . .}, y1, . . . , yn > 0, z1, . . . , zn > 0, and p0, . . . , pn ≥ 0
(such that p0+· · ·+pn = 1). We multiply the given probability space Ω (that
carries the Brownian motion B) by the finite probability space {0, 1, . . . , n}
(endowed with the probabilities p0, . . . , pn) and introduce the random vari-
able

(3c6)
T1(ω, k) = T−zk,yk

(ω) for (ω, k) ∈ Ω × {0, 1, . . . , n} ,

S1(ω, k) = B
(
T1(ω, k), ω

)
.

The conditional distribution of S1, given k, is yk

yk+zk

δ−zk
+ zk

yk+zk

δyk
; thus, S1

is distributed µ. Similarly to 3a, we iterate this construction:

(3c7)

T0 = 0 ,

Tn+1 = min
{
t ∈ (Tn,∞) : B(t) − B(Tn) ∈ {−zkn+1 , ykn+1}

}
,

Sn = B(Tn) ;

these are random variables on the probability space Ω × {0, 1, . . . , n}∞,
where {0, 1, . . . , n}∞ is the space of (infinite) sequences {k1, k2, . . . } with the
product measure. As before, random variables T1, T2 − T1, T3 − T2, . . . are
i.i.d.; random variables S1, S2 − S1, S3 − S2, . . . are also i.i.d., distributed µ.
Thus, (Sn)n is a (non-simple) random walk. Also,

(3c8)
E T1 = E S2

1 ,

E Tm
1 < ∞ for all m .

Similarly to 3b, we replace y, z with y/
√

m, z/
√

m getting T
(m)
n (for any m)

and observe that
(
mT

(m)
n

)

n is distributed like (Tn)n; also,
(√

mB(T
(m)
n )

)

n is

distributed like the random walk (S
(m)
n )n. Similarly to 3b1,

(3c9) lim
m→∞

T (m)
nm

= σ2 lim
m→∞

nm

m
a.s.,

where σ2 = E S2
1 . In particular, T

(m)
m → σ2 a.s., B(T

(m)
m ) → B(σ2) a.s., thus,

assuming σ = 1,

(3c10) P
(
Sn ≤ x

√
n
)
→ 1√

2π

∫ x

−∞
e−u2/2 du as n → ∞



Tel Aviv University, 2008 Brownian motion 32

for all x ∈ R. (Still, without Stirling’s formula, Fourier transform etc.)
It was assumed that S1 is discrete, moreover, takes on a finite set of

values. However, this assumption can be eliminated. Here are two ways to
do so.

The first way: you can generalize 3c4 to all µ such that
∫

x2 µ(dx) < ∞
and

∫
xµ(dx) = 0; this is easy if you do not fear of measures on R in

general. Subsequent arguments generalize easily as far as µ is compactly
supported. Otherwise the fourth moment need not be finite, and we get
convergence in probability (rather than a.s. convergence) in (3c9), which
makes the transition to (3c10) a bit more complicated. For the functional

limit theorem you need also redesign 3b6, 3b7, (3b8), (3b9) for convergence
in probability (and still get (3b10)). This way is implemented in [1, Sect. 7.6].

The second way: for every such µ and every ε > 0 you can find a step
function f : R → R (with a finite number of steps) such that

∫
f 2(x) µ(dx) =

∫
x2 µ(dx),

∫
f(x) µ(dx) = 0 and

∫ (
x − f(x)

)
2 µ(dx) ≤ ε. Then the CLT

for f(S1) + f(S2 − S1) + · · ·+ f(Sn − Sn−1) implies an approximate CLT for
Sn (try it); finally take ε → 0. . . This approach (by approximation) will be
applied soon to the functional limit theorem.

Before that we return for a while to the random walk (Sn)n such that Sn

takes on a finite set of values. Similarly to 3b7 (assuming σ = 1, as before),

max
n=0,...,m

∣
∣
∣T (m)

n − n

m

∣
∣
∣ → 0 a.s. as m → ∞ ,

therefore

max
n=0,...,m

∣
∣
∣ B(T (m)

n )
︸ ︷︷ ︸

S
(m)
n /

√
m

−B
( n

m

)∣
∣
∣ → 0 a.s. as m → ∞ ;

the functional limit theorem follows similarly to (3b10):

E ϕ(X(m)) → E ϕ(B) as m → ∞

for every bounded ϕ : C[0,∞) → R continuous almost everywhere; here

X(m) is the random piecewise linear function interpolating n
m

7→ 1√
m

S
(m)
n .

An example: similarly to (3b13),

P
(
Ln ≤ t

)
→ 2

π
arcsin

√
t as n → ∞

for all t ∈ [0, 1]; however, (3b12) is now replaced with, say,

Ln =
1

n
max{k = 1, . . . , n : Sk−1Sk ≤ 0}
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(think, why).
Now, as promised, we use approximation. Given a random walk (Sn)n

such that E S1 = 0, E S2
1 = 1 (otherwise arbitrary), we construct step func-

tions fk satisfying

E fk(S1) = 0 , E f 2
k (S1) = 1 , E |S1 − fk(S1)|2 ≤

1

k
.

The random walk (S
(k)
n )n, S

(k)
n = fk(S1) + fk(S2 − S1) + · · ·+ fk(Sn − Sn−1),

is close to (Sn)n (if k is large); indeed, the differences Rn = S
(k)
n − Sn (for a

given k) are another random walk (centered, not just symmetric);

E Rn = 0 , E R2
n = n E R2

1 ≤
n

k
.

3c11 Exercise. For every c ∈ (0,∞) and every m,

E R2
m ≥ c2

P

(

max
n=0,...,m

|Rn| ≥ c
)

.

Prove it.

We have

P

(

max
n=0,...,m

|Rn| ≥ c
)

≤ 1

c2
E R2

m ≤ m

c2k
,

therefore

(3c12) P

( 1√
m

max
n=0,...,m

|S(k)
n − Sn| ≥ ε

)

≤ 1

ε2k
.

Given k and m, we consider the function

n

m
7→ 1√

m
S(k)

n

and interpolate it linearly, getting a piecewise linear random function Xk,m(·).
For each k the functional limit theorem holds;

Xk,m → B in distribution as m → ∞ .

On the other hand, for each m,

Xk,m → Xm in distribution (moreover, in probability) as k → ∞ ,

where Xm is the linearly interpolated function n
m

7→ 1√
m

Sn. Indeed, by

(3c12),

(3c13) P

(

max
t∈[0,1]

|Xk,m(t) − Xm(t)| ≥ ε
)

≤ 1

ε2k
→ 0 as k → ∞ .
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Does it follow that Xm → B in distribution, as m → ∞? In other words:
can we interchange the limits (in distribution),

lim
m

lim
k

Xk,m

︸ ︷︷ ︸

Xm

= lim
k

lim
m

Xk,m

︸ ︷︷ ︸

B

?

The answer should be affirmative, since the convergence in k is uniform in
m. Alas, distributions are not numbers. . .

There are two ways (again). One way is, to develop some theory of weak
convergence: a metric on the space of probability distributions on C[0,∞),
and all that. The other, shorter way is formalized by Lemma 3c14 below (it
is in fact the relevant fragment of the weak convergence theory, adapted to
our situation). You may restrict yourselves to the metric space X = C[0, 1]
(with its usual metric ρ), but the lemma holds for every metric space.

3c14 Lemma. Let (X , ρ) be a metric space; Ω and Ω′ probability spaces;
Ym, Yk,m : Ω′ → X and Z, Zk,m : Ω → X measurable maps such that1

(a) ∀k, m Yk,m ∼ Zk,m (that is, identically distributed);
(b) ∀k

(
Zk,m → Z a.s. as m → ∞

)
;

(c) Yk,m → Ym in probability as k → ∞, uniformly in m (which means
existence of εk → 0 such that ∀m P

(
ρ(Yk,m, Ym) > εk

)
≤ εk).

Then
E ϕ(Ym) → E ϕ(Z) as m → ∞

for every bounded ϕ : X → R continuous almost everywhere w.r.t. the
distribution of Z.

Here is how we use this lemma. The metric space (X , ρ) is C[0, 1]. The
probability space Ω′ carries the given random walk (Sn)n. The probability
space Ω carries the Brownian motion B(·) treated as an X -valued random
variable Z. The X -valued random variable Ym is the piecewise linear random
function interpolating n

m
7→ 1√

m
Sn. Applying the function fk we get the

discrete approximation (S
(k)
n )n to (Sn)n, and (by scaling and interpolation)

another piecewise linear random function, Yk,m. We embed the random walk
(

1√
m

S
(k)
n

)

n into the Brownian motion B on Ω and get (by interpolation)
another copy Zk,m of this piecewise linear random function.

Condition (a) is evidently satisfied.
Condition (b) is satisfied by the functional limit theorem (applied to the

k-th discrete approximation of the needed random walk).
Condition (c) is satisfied by 3c13 (think, why).

1We could also stipulate Ω′

m and Ym, Yk,m : Ω′

m → X .
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The conclusion of the lemma gives the functional limit theorem for the
given random walk (Sn)n.

3c15 Theorem. Let ϕ : C[0, 1] → R be a bounded continuous function.
Let Sn be a random walk (that is, S0 = 0 and random variables Sn+1 − Sn

are i.i.d.), E S2
1 = 1, E S1 = 0. For each m let Xm(·) be the piecewise linear

random function interpolating n
m

7→ 1√
m

Sn (n = 0, . . . , m). Then the limit

lim
m→∞

E ϕ
(
Xm(·)

)

exists and does not depend on the distribution of S1.

This is called the invariance principle:

All random walks are the same in the scaling limit.

And moreover,

E ϕ
(
Xm(·)

)
→ E ϕ

(
B(·)

)
as m → ∞

for every bounded ϕ : C[0, 1] → R continuous almost everywhere w.r.t. the
distribution of B(·). Also, C[0, 1] may be replaced with C[0, t] for any t, and
even with C[0,∞) (with the locally uniform convergence).

Proof of Lemma 3c14. Without loss of generality we assume that ϕ : X →
[0, 1].

For every δ > 0 we define ϕδ : X → [0, 1] by

ϕδ(x) = sup
y:ρ(y,x)≤δ

ϕ(y)

and observe that
E ϕδ(Z) → E ϕ(Z) as δ → 0+

(think, why). By (c) and (a),

E ϕ(Ym) ≤ εk + E ϕεk
(Yk,m) = εk + E ϕεk

(Zk,m) .

By (b),
lim sup

m→∞

(
ϕεk

(Zk,m) − ϕ2εk
(Z)

)
≤ 0 a.s.;

in combination with boundedness it implies

lim sup
m→∞

E ϕεk
(Zk,m) ≤ E ϕ2εk

(Z) .

We have lim supm→∞ E ϕ(Ym) ≤ εk+E ϕ2εk
(Z) for all k. Therefore lim supm→∞ E ϕ(Ym) ≤

E ϕ(Z). Similarly, lim infm→∞ E ϕ(Ym) ≥ E ϕ(Z).
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3d Hints to exercises

3a5: calculate E Y 2(t) for Y of 2f8.

3a6: B2(T1 ∧ n) ≤ 1 and B2(T1 ∧ n) → 1 a.s.; use 3a5. (Here a ∧ b =
min(a, b).)

3a7: recall 1d7, 1d8.

3b2: open the brackets; most of the expectations vanish.

3b6: consider t ∈ {0, 1
m

, 2
m

, . . . , 1} first.

3b7: 3b1 and 3b6.

3b11: (a) |f(·)| ≥ ε on [ϕ(f) + ε, 1]; (b) fn(t) = 1 − t + 1
n
; (c) let

a < t < ϕ(f), then fn cannot change the sign on [t, 1].

3c11: recall the proof of 1e2 and note that E (a + Ri)
2 ≥ a2.
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