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4 Brownian martingales

4a Heat equation appears . ... ... ........ @
4b  Conditioning and martingales . . . ... ... .. @
4c  Nothing happens suddenly to Brownian motion lad
4d Hintstoexercises . ... ... ... .. ...... 5

4a Heat equation appears

Recall 3a5: E B*(T) = ET for every stopping time T such that (say) T' < 1
a.s. This is a manifestation of the martingale property of the process

M(t) = B*(t) —t,

as explained below. Here is a solution of 3a5 (hopefully, not new to you).
Using 28 we have!

0=FE(B*1)-1) // J(wi,w2) — 1) P(dwy)P(dws) =
<m1/Pdw (To1))(wr) + B = T(wn))(w))? ~ 1) =
/ (dr) f (T(wr), B(T(w1))(w1)) = Eg(T, B(T)) = E(BXT) ~T),
where
glt.a) = [ Pldus) (a4 BU-1)(wn)?~1) =B (a4 BA-1)7 ~1) =2+,

The relevant property of the function f(t,z) = 22—t isE f(1,2+B(1—t)) =
f(t,x). More generally,?

(4al) E f(s+t,x+ B(t)) = f(s,z), that is,
[ s+t )y = fls.0).

!Compare it with the proof of (2a7).
2 As before, pi(x) = (2nt)~1/2 exp(—%).
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Three examples of such functions:

f(tvx) =,
(4a2) flt,x) =a*—t,
f(t,r) =2 - 3t

(check it). We define new functions f; for ¢ € [0, 00) by*

(4a3) ﬁxawzﬁf@+ux+8@)=/f@+ux+wm@My

and note that (fi+)4u = [+ (think, why). Now, the idea is simple and
natural. We have a dynamics in (some) space of functions, and (#all) means
that f is a fixed point,

fu=f forallt>0,

that is, the speed vanishes at f,

1
g(f+5—f)—>0 ase — 0+ .
Denoting for convenience % f(s,x) by f; (s, x) we have for small ¢,y

fls+t,x+y)= f(s,2) + frols, )t + for(s, )y + %foa(saﬂ?)yQ ;

Fuels,t) =Ef(s+ 5,2+ B(e) & Fl5,2) + frols, 2)e + 5 aals, 1) EB(2);

=€

%(f—l—e —f) = fio+ %fo,z-

No one of the higher terms contributes (think, why). Thus, we guess that
(EaT) is equivalent to a partial differential equation (PDE) well-known as the
heat equation:?

(4ad) (8 102

E + §@>f<t,x) =0.

The question is, how to prove it, and what to require of f.

! Assuming integrability. Of course, p; does not work for ¢ = 0.

20r rather, time reversed heat equation with coefficient 1/2; the standard heat equation
0 92

contalns 5 92
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4a5 Lemma. Let f : (0,00) xR — R be a continuous function such that the
derivatives f;; exist and are continuous for (z,7) € {(1,0),(0,2)}. Assume
that'

1
(4a6) = In"|fi;(t,x)] = 0 asz— oo

for every t € (0,00), (4,7) € {(0,0),(1,0),(0,2)}, and moreover, it holds
uniformly in ¢ € [a,b] whenever 0 < a < b < co. Then f,, is well-defined (by
[#a3))) for all t € (0, 00), and

%ert(Sa T) = / <f1,0(5 +tx+y)+ %fog(s +t,x+ y))Z?t(y) dy

for all t € (0,00) and (s,x) € (0,00) x R. Both sides are claimed to be well-
defined (the derivative in the left-hand side and the integral in the right-hand
side).

4a7 Exercise. For every twice continuously differentiable function g : [z —
e, x+¢e] =R,

)2
. g,,(,)gg(w €) g(f)+9(f€+€) < max g'().
[x—e,z+e€] £ [x—e,z+€]

Prove it.

Proof of fal. First, fi: is well-defined due to (a8 for (i, 5) = (0,0).

Second, without loss of generality we assume that s = 0, z = 0 (since
the shifted function (sq,x1) — f(s + s1,2 + 1) satisfies all the conditions
imposed on f).

Right derivative is considered below; left derivative, treated similarly, is
left to the reader.

We have for every ¢ > 0

hﬂMD:/f@WM@Nw

hmﬂ@ﬁ%Z/f@+&WMﬁ@ﬁw=

— /dypt(y)/dzpa(z)f(t+€,y+z) = /dypt(y)/del(z)f(t+e,y+z\/§) —
= /dypt(y)/del(z)f<t+€vy—z\/g)ﬂLf(t—i-a,y—i—z\/g)

5 ;

Here In™ a = max(0,1n a).
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fr+2)(0,0) — f4:(0,0)
:/dypt@)/dzpl(z)f(t—i_g’y_Z\/g)—Qf(t,y)_|_f<t+57y+z\/g)

2e

By Bad and continuity of fj o,

f(t+€,y—z\/g)_Qf(t;;&y)ij(thg’y—i_Z\/g) —>%2f0,2(t>?/) as € — 0+.

Taking into account that

f(t+€7y)_f(tay)

— fro(t,y)
we get

flt+ey—2/5) — 2fét8, y +fEteytave) frolt,y) + %fog(t,y)

as € — 04. Now we need an integrable majorant. Using Bal again,

'f(“f&y—z\/g) —2f(t ey fEteytave)l
2e <
i—lolVE 2l | foa(tte, )] < C(6) exp(d(|y|+]21vE)?) < C(6) exp(26(y*+2%))

by (#adl) for fyo (locally uniform in ¢...); any 6 > 0 may be chosen. Also,

f(t+ 8,1/2 — J(t,y) < mi}g{} |f10( )| < C(8) exp(dy?)

by (#adl) for fi o (locally uniform in t). We have a majorant

C(0) exp(20(y” + 2%€)) pe(y)p1(2) |

integrable if § is small enough (namely, 26 < 5= and 26 < 1/2). By the

dominated convergence theorem (applied to [[dydz...),

f+(t+z—:)(07 0)
€

— J+(0,0) — /dypt(y)/del(Z) (fl,o(tay)+%2f0,2(tay)> =
= /dypt(y) (fLO(t,y) + %fog(t, y)) ase — 0+ .

O
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4a8 Exercise. Consider in detail the other case: left derivative.
See also [I], Sect. 7.5, Exercise 5.5.

4a9 Proposition. Condition [#all) is equivalent to the PDE (#adl) for every
function satisfying the conditions of Lemma Hail

Proof. Follows from HaH, since f,. — f as e — 0+. O

4a10 Proposition. Ef(T,B(T)) = f(0,0) for every function f satisfying
the conditions of Lemma Hal and the PDE (#adl), and every stopping time
T such that 3t P(T <¢) = 1.

The proof given for f(t,z) = x? —t in the beginning of Hal generalizes
immediately.

4all Exercise. For every polynomial P on R the following polynomial f
on R? satisfies (Hall):

Prove it.

Now we can continue (HaZ) a little:

flt,x) =2* —t, P(t) = —t,
f(t,r) = a* — 6ta® + 3%, P(t) = 3t*.

4a12 Exercise. ! VarT = 2/3 for T = min{¢ : |B(t)| = 1}.
Prove it. (Warning: be careful with ¢ — c0.)

An astonishing counterexample was found by Tychonoff? ?: let

P(t) = exp(—(1—1)"2) forte0,1),
)0 for t € [1, 00)

(not a polynomial, of course, but a non-analytic infinitely differentiable func-
tion), then the formula given in BaIll produces a power series convergent for

1See [, Sect. 7.5, Theorem (5.9).

2A.N. Tychonoff, Matem. Sbornik 32 (1935), 199-216.

3See (1.18)—(1.24) on page 212 in: F. John, “Partial differential equations”, Springer
(fourth edition).
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all z (and all ) to an infinitely differentiable function that satisfies the PDE

(#adl) but violates (Hall).
Trying f(t,z) = exp(at 4+ bx) we get f10 = af and foo = bf, thus, #all
is satisfied if and only if a + 0.50* = 0;

f(t, ZL‘) — e)\aze—AQt/Q )

Also functions

f(t,z) +2f(t’ —) = e M2 cosh Az,

f(t,$’) — f(ta —l‘) _ ef)\Qt/2
2
satisfy (Hall). Replacing A with i\ we get functions

sinh Az

flt,z) = e cos Mz,
f(t,2) = % sin Az
satisfying (Hall).
4a13 Exercise. ! Let T = min{¢ : |B(t)| = 1}, then

1 for —co< A<,
cosh /2| )|

EeM — 1 2

e T for 0 < A < 7?/8,

00 for A > 2/8.

Prove it. Also, give a new proof of 3a7.

4b Conditioning and martingales

Conditioning is simple in two frameworks: discrete probability, and densities.
However, conditioning of a Brownian motion on its past goes far beyond these
two frameworks. The clue is, the ‘restart’ introduced in Sect. 2:

B(t)(w1) if t < T(w),

X(t) (w1, wa) = {B(T(Wl))(wl) + B(t — T(w1))(wa) if t > T(wy).

Here T is a stopping time (as defined by 2f5) and of course, T'(w) means
T(B(-)(w)). Let us write X in a shorter form:

T(w1)
(4b1) X (Y(wr,wz) = BO)(wr) || B()(ws),

1See also [1], Sect. 7.5, Th. (5.7).
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where f () g is defined for f, g € C[0,00) and a € [0,00) by

f|i|g:h€C[O,oo),

A F0 it <a,
f(a)+g(t —a) —g(0) ift>a.

Not only the map (f,g) — f ) g is Borel measurable for each a, but also

(fra.9)— f| ]9

is a Borel measurable map C0,00) x R x C[0,00) — C0, c0), and therefore
T(f)
(f,g) — f U gis a Borel measurable map C|0,0c) x C[0,00) — C[0, c0).!

4b2 Definition. The conditional distribution of B(-) given B(-)|j0.q) = [f|0,q]
is the distribution of f LI B.

()
Some Borel functions ¢ : C[0,00) — R are such that ¢(f U g) depends
on f only (not g). Some of these functions are indicators, ¢ : C[0,00) —
{0,1}. The corresponding sets are, by definition, the sub-o-field By C By.

T(f)
A Borel function ¢ : C[0,00) — R is By-measurable if and only if <p( fu g)

depends on f only (think, why).

Events of the form {B(-) € G} for G € By are, by definition, the sub-
o-field Fr on ). Especially, the sub-o-field F., on 2 generated by the Brow-
nian motion consists of the events of the form {B(:) € G} for G € By,

Conditional probability of an event of F, given Fr is (by definition) the
random variable

T(wl)

(4b3)  P(B() € G|Fr)(w) :P<{w2 :B()(w1) || B()(ws) € G}).

In other words, it is the probability according to the conditional distribution
of B(-) given B(-)|o,r). If G € By then P(B(-) € G|Fr) = 1 (as it should
be).

By the Fubini theorem,

E(P(B(-) € G|Fr)) =P(X() €qG),

'Recall Lemma B in Correction to 2f.
20ften Foo = F; always Fo, C F; and sometimes Fo, # F, recall 3c (£ x
{0,1,...,n}).
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X being defined by (LI)). Thus, the strong Markov property turns into the
total probability formula

P(B() € G)=E(P(B(-) € G|Fr)) forG e Bx.
In other words,
P(A)=E (P(A|Fr)) for Ae Fs.

You may be astonished if you are acquainted with the general theory of
conditioning. In that framework the total probability formula holds for every
sub-o-field, irrespective of any Markov property!

In that framework, however, conditional probabilities are defined as to
satisfy this formula, for each sub-o-field separately.! In contrast, we define
them constructively by ([h3). In our definitions, the conditional distribution
of B(-) given B(-)|jo,r] at w depends on T'(w) and the path on [0, 7T (w)], not
on the choice of T' (as far as T'(w) is fixed).

The space Li(Fu) = L1(Q, Foo, P) consists of (equivalence classes of)
random variables of the form ¢(B(-)) where ¢ : C[0,00) — R is a Borel
function such that E |¢(B(+))| < oc.

Conditional expectation of a randon variable of L, (F.,) given Fr is (by
definition) the random variable

T(w1)
w0 E(BO)|Fr) e = [o( B0 L B P
In other words, it is the expectation according to the conditional distribution

of B(-) given B(-)|0,11-
4b5 Exercise. Prove the total expectation formula:
E@(B(-)) =E(E(¢(B()|Fr))
for p(B(+)) € L1(Fs)-
In other words:

EX =E(E(X|Fr)) forX € Li(Fx).

L An example in the framework of densities: the conditional density of X given Y = 0 is
proportional to px,y (x,0), but the conditional density of X given Y/X = 0 is proportional
to |z|px,y (,0).
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4b6 Exercise. For all X € Lo (Fr), Y € Li(Fu),
E(XY |Fr) = XE(Y|Fr).
Prove it.

4b7 Definition. A Brownian martingale' is a family (Mp)iejo,00) of My €
Li(F;) such that

E(Mt‘fs) =M, as. for0<s<{<o0.

(I write M; and M(t) interchangingly.)
Examples of Brownian martingales:

M(t) = B(t), M(t) = B*(t) — t,

M(t) = B*(t) — 3tB(t), M(t) = B*(t) — 6tB*(t) + 3t*,
M(t) = e M2 exp AB(t) ,

M(t) = e N2 cosh AB(t) M(t) = e M2 sinh AB(t)
M(t) = M2 cos AB(t) M(t) = M2 sin AB(t)

and, more generally,
(408) M(t) = £ (t, B®))
where f satisfies the conditions of Lemma and the PDE (#adl). And, of
course, the process
M, =E(X|F)
is a Brownian martingale for every X € Li(Fy).
4b9 Exercise. Prove that the following process is a Brownian martingale:
t .
B(s)d 1—-t)B(t) iftel0,1
v = LB s+ (1B itre 1)
Jo B(s)ds ifte([l,00).

4b10 Theorem. If f satisfies the conditions of Lemma Hal then the follow-
ing process is a Brownian martingale:

M(t) = f(t, B(t)) —/0 g(s, B(s)) ds,

where 9= fLO + %f0,27 that iS,

0 10°
g(t,x) = <§ + éﬁ)f(t,x)

! A Brownian martingale is a martingale w.r.t. the Brownian filtration (F;);. Generally,
a martingale w.r.t. a given filtration is defined similarly.
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4b11 Exercise. Prove that

d

&E /Otg(s,B(s)) ds = Eg(t,B(t)) fort>0.

4b12 Exercise. Prove that

%EM(t):O fort > 0.

4b13 Exercise. Prove Theorem Ub10)

4c Nothing happens suddenly to Brownian motion

4cl Theorem. Every Brownian martingale can be upgraded!,? to a random
continuous function.

Similarly to the Brownian motion itself, we always upgrade (M;); this
way.

Sample functions of a Brownian martingale are continuous. ‘

4c2 Corollary. For every stopping time 7" such that 7" > 0 a.s. there exist
stopping times 17, Ts, ... such that almost surely

1T, T,<T.

‘Nothing happens suddenly to Brownian motion.

A striking contrast to jumping processes! I mean the Poisson process, the
special Levy process, the Cauchy process.

Proof of Corollary[cgd The process®
M, = E (77 |7)

is a Brownian martingale. By Theorem Hc]l it is continuous a.s. Clearly,

_ T
Mr = = = and moreover,

T =inf{t: M, — 5 =0}

Tn the sense discussed in le (after 1e6).

2Generally, a martingale (w.r.t. any filtration) can be upgraded to a random r.c.l.1
function.

3The idea is, to consider the expected remaining time, E (T —t ‘ ]-"t). However, T need
not be integrable.
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(think, why). We take

T,, = min{t € [0,00) : M; — L < 1},

Now we have to prove Theorem HcIl.
We consider (M;)icpo,1) (larger intervals are treated similarly); thus,

M(t)=E(X|F)

for some X € Ly(Fy) (namely, X = M;). Our first goal is to show that it is
sufficient to ensure a.s. continuity of M(-) for a dense set of X € L;(F}).

4¢3 Proposition. For every X € Li(F;) there exist X,, € L;(F7) such that
(a) E|X,, — X| — 0 as n — oo,
(b) each martingale

M,(t) =E(X,|F5)

can be upgraded to a random continuous function,
(¢) M,(-) converge in C0, 1] almost surely; that is,

max |M,(t) — My (t)] = 0 asn— oo
te€[0,1]

for some random continuous function M(+).

Proof of Th. given Prop. [fc3 The equivalence class M (t) contains M (),

since

E|M(t) — My(t)| =E[E(X - X,,| F)| <
<E(E(|X - X.||R))=E|X - X,| =0

and therefore M, (t) — M (t) a.s. (for an appropriate subsequence). O

4c4 Exercise. Let (M;); be a Brownian martingale, and 7" C [0, 1] a count-
able set. Then

]P’(sup\M(t)| > c) < E|M{)| for ¢ € (0,00) .

teT &
Prove it.

4c5 Exercise. Prove Item (c) of Prop. Bc3, assuming Items (a) and (b).
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It remains to ensure a.s. continuity (in ¢) of M(t) = E(X}]:t) for all
X of a dense set of X C Ly(Fy). Moreover, it is enough if linear combi-
nations of these X are dense. There are several reasonable choices of such
X. You may try bounded uniformly continuous functions C|[0,00) — R,
or X = f(B(t1),...,B(t,)) for bounded continuous f : R* — R, or X =
fol exp(if(t)B(t)) dt etc. I prefer indicators X = 14 of events of the form

(4(36) A:{algB(tl)Sbl,,CLnSB<tn)§bn}
4c7 Exercise. Let 0 < t; < --- < t, < 1, and —o00 < a3 < bp < oo for
k=1,...,n. Then the random function
M(0) = B ( [T (B(0)| %)
k=1

1S continuous a.s.
Prove it.

Linear combinations of (arbitrary) indicators are dense in Lq(Fy). It
remains to prove that sets of the form (HcH) and their disjoint unions are dense
in F; (mod 0) according to the metric dist(4, B) =P(A\ B) +P(B\ A).

This claim follows easily from the next general lemma.

4c8 Lemma. Let (Q, F, P) be a probability space, and A C F an algebra
of sets that generates F (mod 0). Then:

(a) For every C € F and € > 0 there exist Ay, Ay, --- € A such that
CCAUAU... and P(AJUAyU...) < P(C)+e. In other words, there
exists A € A, such that C' C A and P(A) < P(C) +«.

(b) For every C' € F there exist By, By, -+ € A, such that By D By D ...,
C C B NBy...,and P(C) = P(B; N By...). In other words, there exists
B € A,s such that C' C B and P(B\ C) = 0.

(c) For every C' € F and € > 0 there exists A € A such that P(A\ C) +
P(C\ A) <e.

See [1], Appendix A.3.
The proof of Theorem HcTl is thus finished.
On the other hand, our approach to conditioning gives us another way of

upgrading a martingale to a random function, at least when X = M(1) =
¢(B(+)) for a bounded Borel function ¢ : C[0,1] — R.! Namely,

t

(1e0) Mo)wn) = E(X]7)(er) = [ (O L BO@) ) Plden).

'T often write ¢ (B(+)) instead of ¢(B(-)0,1)-
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Several questions appear naturally. What happens if we change ¢ on a neg-
ligible (w.r.t. the Wiener measure) set? What happens if ¢ is not bounded?
And, above all: is it a random continuous function?

4c10 Exercise. Let ¢, 1, p9,---: C[0,1] — [—1, 1] be Borel functions such
that ¢,(x) T ¢(z) (as n — o) for every x € CI0,1], and M, My, M, ...
random functions corresponding to ¢, @1, ¢a, ... according to [HcH). If each
M, is a.s. continuous, then M is a.s. continuous.

Prove it.

Due to Ec we have an algebra A C B; such that

(a) A generates By,

(b) for every A € A the random function My(t) = P(A|F,) is as.
continuous.

By BcIO, Mp(+) is a.s. continuous for all B € A, and moreover, all B €
Ass.

4c11 Exercise. If C' € By is negligible in the sense that P(B(-) € C') =
then P(Vt Mc(t) =0) =1
Prove it.

Combining EcTTl and Ec8(b) we get the following.

4c12 Theorem. For every Borel set G C C[0,1], the following random
function is a.s. continuous:

Ma(t) =P(B(-) € G| R),

that is,

Me( IP({ ()(w1) |i|B(-)(w2) c G)}

4c13 Exercise. VG  P(Mg ()1s continuous ) = 1, however,
IP’(VG M¢(+) is continuous ) ; here G runs over all Borel subsets of
1o, 1].

Prove it.

4c14 Exercise. Let A € F; for all t > 0; then either ]P(A) =0or ]P(A) =1.
(‘Blumenthal’s 0 — 1 law’)
Prove it.

In other words, Fo. = Fy (mod 0). See also [I], Sect. 7.2, (2.5).

4c15 Exercise. Give another proof to 2b6, using BcI4l (and not the distri-
bution of 7).
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4c16 Exercise. For every f : (0,00) — (0,00) the random variable

B(t
lim sup B() [0, 0o]
t—o+ f(t)
is degenerate (that is, equal a.s. to a constant).

Prove it.

4c17 Exercise. Generalize BcT4 for A € N.~oFri., where T is a stopping
time. That is, show that Fry = Fr (mod 0).

4c18 Exercise. Generalize to the case when ¢y, : C[0,1] — [0, 00) are
bounded, while ¢ : C[0,1] — [0, 00) need not be bounded, but E ¢(B(-)) <
0.

4c19 Exercise. Let ¢ : C[0, 1] — R be a Borel function such that E ¢(B(+)) <
00. Then the random function

M(t) =E(o(B())|F)

1s a.s. continuous.
Prove it.

4d Hints to exercises
E (BY(T An)—6(T An)B*(T' An)) = —=3(T'An)?*; use T as an integrable
majorant in the left-hand side. . .

Hal3 E (e)‘2T/2]1[0,t] (T)) < L5 for all A € [0,7/2) and ¢ € (0, 00).

Hcdk recall 3cll.

Ach >, P(maxqoq) [M, — Myy| > 1/n?) <3 n’E|X, — Xpi1| < 0.

HEcT Consider the integral of the density; note that B(ty) # ay, B(tx) # by
a.s.

AcIlt By () and the bounded convergence theorem, P (V¢ € [0, 1] M, (t) T
M(t)) = 1. On the other hand, similarly to Ec3, M,(-) converge in C[0,1]
to some M (-) a.s., if ¢, — ¢ fast enough (take a subsequence). Therefore
M(-) = My(-) a.s.

HcTT: BEc(b) gives a negligible B € A, such that C' C B; thas, M¢o(-) <
Mg(-), Mp(-) is continuous, and E Mg(t) = E Mp(1) = 0.

HcT3 Consider G = G, = {f: f(1) <z} for all z € R.

EcT4 consider IP’(A}]—}).

HcTH ¢ = ¢t — p7; use BEcI], each ¢ being a linear combination of
indicators.
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