Brownian martingales 4

4a	Heat equation appears	37
4b	Conditioning and martingales	42
4c	Nothing happens suddenly to Brownian motion	46
4d	Hints to exercises	50

Heat equation appears 4a

Recall 3a5: $\mathbb{E}B^2(T) = \mathbb{E}T$ for every stopping time T such that (say) $T \leq 1$ a.s. This is a manifestation of the martingale property of the process

$$M(t) = B^2(t) - t \,,$$

as explained below. Here is a solution of 3a5 (hopefully, not new to you). Using 2f8 we have¹

$$0 = \mathbb{E} (B^{2}(1) - 1) = \iint (Y^{2}(1)(\omega_{1}, \omega_{2}) - 1) P(d\omega_{1})P(d\omega_{2}) =$$

=
$$\int P(d\omega_{1}) \int P(d\omega_{2}) (((B(T(\omega_{1}))(\omega_{1}) + B(1 - T(\omega_{1}))(\omega_{2}))^{2} - 1)) =$$

=
$$\int P(d\omega_{1}) f(T(\omega_{1}), B(T(\omega_{1}))(\omega_{1})) = \mathbb{E} g(T, B(T)) = \mathbb{E} (B^{2}(T) - T),$$

where

$$g(t,x) = \int P(d\omega_2) \left((x + B(1-t)(\omega_2))^2 - 1 \right) = \mathbb{E} \left((x + B(1-t))^2 - 1 \right) = x^2 - t.$$

The relevant property of the function $f(t, x) = x^2 - t$ is $\mathbb{E} f(1, x + B(1-t)) = t$ f(t, x). More generally,²

(4a1)
$$\mathbb{E} f(s+t, x+B(t)) = f(s, x)$$
, that is,

$$\int f(s+t, x+y)p_t(y) \, \mathrm{d}y = f(s, x).$$

¹Compare it with the proof of (2a7). ²As before, $p_t(x) = (2\pi t)^{-1/2} \exp(-\frac{x^2}{2t})$.

Three examples of such functions:

(4a2)

$$f(t, x) = x,$$

$$f(t, x) = x^{2} - t,$$

$$f(t, x) = x^{3} - 3tx$$

(check it). We define new functions f_{+t} for $t \in [0, \infty)$ by¹

(4a3)
$$f_{+t}(s,x) = \mathbb{E} f(s+t,x+B(t)) = \int f(s+t,x+y)p_t(y) \, \mathrm{d}y$$

and note that $(f_{+t})_{+u} = f_{+(t+u)}$ (think, why). Now, the idea is simple and natural. We have a dynamics in (some) space of functions, and (4a1) means that f is a fixed point,

$$f_{+t} = f$$
 for all $t \ge 0$,

that is, the speed vanishes at f,

$$\frac{1}{\varepsilon}(f_{+\varepsilon} - f) \to 0 \quad \text{as } \varepsilon \to 0 + .$$

Denoting for convenience $\frac{\partial^{i+j}}{\partial s^i \partial x^j} f(s, x)$ by $f_{i,j}(s, x)$ we have for small t, y

$$f(s+t, x+y) \approx f(s, x) + f_{1,0}(s, x)t + f_{0,1}(s, x)y + \frac{1}{2}f_{0,2}(s, x)y^2;$$

$$f_{+\varepsilon}(s, x) = \mathbb{E} f\left(s+\varepsilon, x+B(\varepsilon)\right) \approx f(s, x) + f_{1,0}(s, x)\varepsilon + \frac{1}{2}f_{0,2}(s, x)\underbrace{\mathbb{E} B^2(\varepsilon)}_{=\varepsilon};$$

$$\frac{1}{\varepsilon}(f_{+\varepsilon}-f) \to f_{1,0} + \frac{1}{2}f_{0,2}.$$

No one of the higher terms contributes (think, why). Thus, we guess that (4a1) is equivalent to a partial differential equation (PDE) well-known as the heat equation:²

(4a4)
$$\left(\frac{\partial}{\partial t} + \frac{1}{2}\frac{\partial^2}{\partial x^2}\right)f(t,x) = 0.$$

The question is, how to prove it, and what to require of f.

¹Assuming integrability. Of course, p_t does not work for t = 0.

²Or rather, time reversed heat equation with coefficient 1/2; the standard heat equation contains $\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}$.

Brownian motion

4a5 Lemma. Let $f: (0, \infty) \times \mathbb{R} \to \mathbb{R}$ be a continuous function such that the derivatives $f_{i,j}$ exist and are continuous for $(i, j) \in \{(1, 0), (0, 2)\}$. Assume that¹

(4a6)
$$\frac{1}{x^2} \ln^+ |f_{i,j}(t,x)| \to 0 \quad \text{as } x \to \pm \infty$$

for every $t \in (0, \infty)$, $(i, j) \in \{(0, 0), (1, 0), (0, 2)\}$, and moreover, it holds uniformly in $t \in [a, b]$ whenever $0 < a < b < \infty$. Then f_{+t} is well-defined (by (4a3)) for all $t \in (0, \infty)$, and

$$\frac{\mathrm{d}}{\mathrm{d}t}f_{+t}(s,x) = \int \left(f_{1,0}(s+t,x+y) + \frac{1}{2}f_{0,2}(s+t,x+y)\right)p_t(y)\,\mathrm{d}y$$

for all $t \in (0, \infty)$ and $(s, x) \in (0, \infty) \times \mathbb{R}$. Both sides are claimed to be welldefined (the derivative in the left-hand side and the integral in the right-hand side).

4a7 Exercise. For every twice continuously differentiable function $g: [x - \varepsilon, x + \varepsilon] \to \mathbb{R}$,

$$\min_{[x-\varepsilon,x+\varepsilon]} g''(\cdot) \le \frac{g(x-\varepsilon) - 2g(x) + g(x+\varepsilon)}{\varepsilon^2} \le \max_{[x-\varepsilon,x+\varepsilon]} g''(\cdot) \,.$$

Prove it.

Proof of 4a5. First, f_{+t} is well-defined due to (4a6) for (i, j) = (0, 0).

Second, without loss of generality we assume that s = 0, x = 0 (since the shifted function $(s_1, x_1) \mapsto f(s + s_1, x + x_1)$ satisfies all the conditions imposed on f).

Right derivative is considered below; left derivative, treated similarly, is left to the reader.

We have for every $\varepsilon > 0$

$$f_{+t}(0,0) = \int f(t,y)p_t(y) \,\mathrm{d}y;$$

$$f_{+(t+\varepsilon)}(0,0) = \int f(t+\varepsilon,y)p_{t+\varepsilon}(y) \,\mathrm{d}y =$$

$$= \int \mathrm{d}y \, p_t(y) \int \mathrm{d}z \, p_\varepsilon(z)f(t+\varepsilon,y+z) = \int \mathrm{d}y \, p_t(y) \int \mathrm{d}z \, p_1(z)f(t+\varepsilon,y+z\sqrt{\varepsilon}) =$$

$$= \int \mathrm{d}y \, p_t(y) \int \mathrm{d}z \, p_1(z) \frac{f(t+\varepsilon,y-z\sqrt{\varepsilon})+f(t+\varepsilon,y+z\sqrt{\varepsilon})}{2};$$

¹Here $\ln^{+} a = \max(0, \ln a)$.

Brownian motion

$$\frac{f_{+(t+\varepsilon)}(0,0) - f_{+t}(0,0)}{\varepsilon} = \int \mathrm{d}y \, p_t(y) \int \mathrm{d}z \, p_1(z) \frac{f(t+\varepsilon, y-z\sqrt{\varepsilon}) - 2f(t,y) + f(t+\varepsilon, y+z\sqrt{\varepsilon})}{2\varepsilon} \,.$$

By 4a7 and continuity of $f_{0,2}$,

$$\frac{f(t+\varepsilon, y-z\sqrt{\varepsilon})-2f(t+\varepsilon, y)+f(t+\varepsilon, y+z\sqrt{\varepsilon})}{2\varepsilon} \to \frac{z^2}{2}f_{0,2}(t,y) \quad \text{as } \varepsilon \to 0+.$$

Taking into account that

$$\frac{f(t+\varepsilon,y)-f(t,y)}{\varepsilon} \to f_{1,0}(t,y)$$

we get

$$\frac{f(t+\varepsilon, y-z\sqrt{\varepsilon})-2f(t,y)+f(t+\varepsilon, y+z\sqrt{\varepsilon})}{2\varepsilon} \to f_{1,0}(t,y)+\frac{z^2}{2}f_{0,2}(t,y)$$

as $\varepsilon \to 0+$. Now we need an integrable majorant. Using 4a7 again,

$$\left|\frac{f(t+\varepsilon, y-z\sqrt{\varepsilon})-2f(t+\varepsilon, y)+f(t+\varepsilon, y+z\sqrt{\varepsilon})}{2\varepsilon}\right| \leq \max_{|y-|z|\sqrt{\varepsilon}, y+|z|\sqrt{\varepsilon}} |f_{0,2}(t+\varepsilon, \cdot)| \leq C(\delta) \exp(\delta(|y|+|z|\sqrt{\varepsilon})^2) \leq C(\delta) \exp(2\delta(y^2+z^2\varepsilon))$$

by (4a6) for $f_{0,2}$ (locally uniform in t...); any $\delta > 0$ may be chosen. Also,

$$\left|\frac{f(t+\varepsilon,y)-f(t,y)}{\varepsilon}\right| \le \max_{[t,t+\varepsilon]} |f_{1,0}(\cdot,y)| \le C(\delta) \exp(\delta y^2)$$

by (4a6) for $f_{1,0}$ (locally uniform in t). We have a majorant

$$C(\delta) \exp\left(2\delta(y^2+z^2\varepsilon)\right) p_t(y) p_1(z),$$

integrable if δ is small enough (namely, $2\delta < \frac{1}{2t}$ and $2\delta\varepsilon < 1/2$). By the dominated convergence theorem (applied to $\iint dy dz \dots$),

$$\frac{f_{+(t+\varepsilon)}(0,0) - f_{+t}(0,0)}{\varepsilon} \to \int \mathrm{d}y \, p_t(y) \int \mathrm{d}z \, p_1(z) \Big(f_{1,0}(t,y) + \frac{z^2}{2} f_{0,2}(t,y) \Big) = \\ = \int \mathrm{d}y \, p_t(y) \Big(f_{1,0}(t,y) + \frac{1}{2} f_{0,2}(t,y) \Big) \quad \text{as } \varepsilon \to 0 + .$$

4a8 Exercise. Consider in detail the other case: left derivative.

See also [1], Sect. 7.5, Exercise 5.5.

4a9 Proposition. Condition (4a1) is equivalent to the PDE (4a4) for every function satisfying the conditions of Lemma 4a5.

Proof. Follows from 4a5, since $f_{+\varepsilon} \to f$ as $\varepsilon \to 0+$.

4a10 Proposition. $\mathbb{E} f(T, B(T)) = f(0, 0)$ for every function f satisfying the conditions of Lemma 4a5 and the PDE (4a4), and every stopping time T such that $\exists t \mathbb{P}(T \leq t) = 1$.

The proof given for $f(t, x) = x^2 - t$ in the beginning of 4a generalizes immediately.

4a11 Exercise. For every polynomial P on \mathbb{R} the following polynomial f on \mathbb{R}^2 satisfies (4a1):

$$f(t,x) = \sum_{k} (-1)^{k} \frac{2^{k}}{(2k)!} P^{(k)}(t) x^{2k}.$$

Prove it.

Now we can continue (4a2) a little:

$$\begin{aligned} f(t,x) &= x^2 - t , \\ f(t,x) &= x^4 - 6tx^2 + 3t^2 , \end{aligned} \qquad \begin{array}{l} P(t) &= -t , \\ P(t) &= 3t^2 . \end{aligned}$$

4a12 Exercise. ¹ Var T = 2/3 for $T = \min\{t : |B(t)| = 1\}$. Prove it. (Warning: be careful with $t \to \infty$.)

An astonishing counterexample was found by Tychonoff²,³: let

$$P(t) = \begin{cases} \exp(-(1-t)^{-2}) & \text{for } t \in [0,1), \\ 0 & \text{for } t \in [1,\infty) \end{cases}$$

(not a polynomial, of course, but a non-analytic infinitely differentiable function), then the formula given in 4a11 produces a power series convergent for

¹See [1], Sect. 7.5, Theorem (5.9).

²A.N. Tychonoff, Matem. Sbornik **32** (1935), 199–216.

 $^{^{3}}$ See (1.18)–(1.24) on page 212 in: F. John, "Partial differential equations", Springer (fourth edition).

all x (and all t) to an infinitely differentiable function that satisfies the PDE (4a4) but violates (4a1).

Trying $f(t, x) = \exp(at + bx)$ we get $f_{1,0} = af$ and $f_{0,2} = b^2 f$, thus, (4a1) is satisfied if and only if $a + 0.5b^2 = 0$;

$$f(t,x) = e^{\lambda x} e^{-\lambda^2 t/2}$$

Also functions

$$\frac{f(t,x) + f(t,-x)}{2} = e^{-\lambda^2 t/2} \cosh \lambda x ,$$
$$\frac{f(t,x) - f(t,-x)}{2} = e^{-\lambda^2 t/2} \sinh \lambda x$$

satisfy (4a1). Replacing λ with $i\lambda$ we get functions

$$f(t, x) = e^{\lambda^2 t/2} \cos \lambda x ,$$

$$f(t, x) = e^{\lambda^2 t/2} \sin \lambda x ,$$

satisfying (4a1).

4a13 Exercise. ¹ Let $T = \min\{t : |B(t)| = 1\}$, then

$$\mathbb{E} e^{\lambda T} = \begin{cases} \frac{1}{\cosh \sqrt{2|\lambda|}} & \text{for } -\infty < \lambda \le 0, \\ \frac{1}{\cos \sqrt{2\lambda}} & \text{for } 0 \le \lambda < \pi^2/8, \\ \infty & \text{for } \lambda \ge \pi^2/8. \end{cases}$$

Prove it. Also, give a new proof of 3a7.

4b Conditioning and martingales

Conditioning is simple in two frameworks: discrete probability, and densities. However, conditioning of a Brownian motion on its past goes far beyond these two frameworks. The clue is, the 'restart' introduced in Sect. 2:

$$X(t)(\omega_1, \omega_2) = \begin{cases} B(t)(\omega_1) & \text{if } t \le T(\omega_1), \\ B(T(\omega_1))(\omega_1) + B(t - T(\omega_1))(\omega_2) & \text{if } t \ge T(\omega_1). \end{cases}$$

Here T is a stopping time (as defined by 2f5) and of course, $T(\omega)$ means $T(B(\cdot)(\omega))$. Let us write X in a shorter form:

(4b1)
$$X(\cdot)(\omega_1, \omega_2) = B(\cdot)(\omega_1) \bigsqcup^{T(\omega_1)} B(\cdot)(\omega_2),$$

¹See also [1], Sect. 7.5, Th. (5.7).

where $f \stackrel{a}{\sqcup} g$ is defined for $f, g \in C[0, \infty)$ and $a \in [0, \infty)$ by

$$f \bigsqcup^{a} g = h \in C[0, \infty) ,$$

$$h(t) = \begin{cases} f(t) & \text{if } t \leq a, \\ f(a) + g(t - a) - g(0) & \text{if } t \geq a. \end{cases}$$

Not only the map $(f,g) \mapsto f \stackrel{a}{\sqcup} g$ is Borel measurable for each a, but also

$$(f, a, g) \mapsto f \bigsqcup^a g$$

is a Borel measurable map $C[0,\infty) \times \mathbb{R} \times C[0,\infty) \to C[0,\infty)$, and therefore $(f,g) \mapsto f \stackrel{T(f)}{\sqcup} g$ is a Borel measurable map $C[0,\infty) \times C[0,\infty) \to C[0,\infty)$.¹ **4b2 Definition.** The conditional distribution of $B(\cdot)$ given $B(\cdot)|_{[0,a]} = f|_{[0,a]}$ is the distribution of $f \stackrel{a}{\sqcup} B$.

Some Borel functions $\varphi : C[0, \infty) \to \mathbb{R}$ are such that $\varphi(f \stackrel{T(f)}{\sqcup} g)$ depends on f only (not g). Some of these functions are indicators, $\varphi : C[0, \infty) \to \{0, 1\}$. The corresponding sets are, by definition, the sub- σ -field $\mathcal{B}_T \subset \mathcal{B}_\infty$. A Borel function $\varphi : C[0, \infty) \to \mathbb{R}$ is \mathcal{B}_T -measurable if and only if $\varphi(f \stackrel{T(f)}{\sqcup} g)$ depends on f only (think, why).

Events of the form $\{B(\cdot) \in G\}$ for $G \in \mathcal{B}_T$ are, by definition, the sub- σ -field \mathcal{F}_T on Ω . Especially, the sub- σ -field \mathcal{F}_{∞} on Ω generated by the Brownian motion consists of the events of the form $\{B(\cdot) \in G\}$ for $G \in \mathcal{B}_{\infty}$.²

Conditional probability of an event of \mathcal{F}_{∞} given \mathcal{F}_{T} is (by definition) the random variable

(4b3)
$$\mathbb{P}(B(\cdot) \in G | \mathcal{F}_T)(\omega_1) = \mathbb{P}\left(\{\omega_2 : B(\cdot)(\omega_1) \bigsqcup^{T(\omega_1)} B(\cdot)(\omega_2) \in G\}\right).$$

In other words, it is the probability according to the conditional distribution of $B(\cdot)$ given $B(\cdot)|_{[0,T]}$. If $G \in \mathcal{B}_T$ then $\mathbb{P}(B(\cdot) \in G | \mathcal{F}_T) = \mathbb{1}_G$ (as it should be).

By the Fubini theorem,

$$\mathbb{E}\left(\mathbb{P}\left(B(\cdot)\in G\,\middle|\,\mathcal{F}_T\right)\right)=\mathbb{P}\left(X(\cdot)\in G\right),$$

¹Recall Lemma B in Correction to 2f.

²Often $\mathcal{F}_{\infty} = \mathcal{F}$; always $\mathcal{F}_{\infty} \subset \mathcal{F}$; and sometimes $\mathcal{F}_{\infty} \neq \mathcal{F}$, recall 3c $(\Omega \times \{0, 1, \ldots, n\}^{\infty})$.

X being defined by (4b1). Thus, the strong Markov property turns into the total probability formula

$$\mathbb{P}(B(\cdot) \in G) = \mathbb{E}(\mathbb{P}(B(\cdot) \in G | \mathcal{F}_T)) \text{ for } G \in \mathcal{B}_{\infty}.$$

In other words,

$$\mathbb{P}(A) = \mathbb{E}(\mathbb{P}(A | \mathcal{F}_T)) \text{ for } A \in \mathcal{F}_{\infty}.$$

You may be astonished if you are acquainted with the general theory of conditioning. In that framework the total probability formula holds for every sub- σ -field, irrespective of any Markov property!

In that framework, however, conditional probabilities are defined as to satisfy this formula, for each sub- σ -field separately.¹ In contrast, we define them constructively by (4b3). In our definitions, the conditional distribution of $B(\cdot)$ given $B(\cdot)|_{[0,T]}$ at ω depends on $T(\omega)$ and the path on $[0, T(\omega)]$, not on the choice of T (as far as $T(\omega)$ is fixed).

The space $L_1(\mathcal{F}_{\infty}) = L_1(\Omega, \mathcal{F}_{\infty}, P)$ consists of (equivalence classes of) random variables of the form $\varphi(B(\cdot))$ where $\varphi : C[0, \infty) \to \mathbb{R}$ is a Borel function such that $\mathbb{E} |\varphi(B(\cdot))| < \infty$.

Conditional expectation of a random variable of $L_1(\mathcal{F}_{\infty})$ given \mathcal{F}_T is (by definition) the random variable

(4b4)
$$\mathbb{E}\left(\varphi(B(\cdot)) \middle| \mathcal{F}_T\right)(\omega_1) = \int \varphi\left(B(\cdot)(\omega_1) \bigsqcup^{T(\omega_1)} B(\cdot)(\omega_2)\right) P(\mathrm{d}\omega_2) \,.$$

In other words, it is the expectation according to the conditional distribution of $B(\cdot)$ given $B(\cdot)|_{[0,T]}$.

4b5 Exercise. Prove the total expectation formula:

$$\mathbb{E}\,\varphi(B(\cdot)) = \mathbb{E}\left(\mathbb{E}\left(\varphi(B(\cdot))\,\middle|\,\mathcal{F}_T\right)\right)$$

for $\varphi(B(\cdot)) \in L_1(\mathcal{F}_\infty)$.

In other words:

$$\mathbb{E} X = \mathbb{E} \left(\mathbb{E} \left(X \left| \mathcal{F}_T \right) \right) \quad \text{for} X \in L_1(\mathcal{F}_\infty) \,.$$

¹An example in the framework of densities: the conditional density of X given Y = 0 is proportional to $p_{X,Y}(x,0)$, but the conditional density of X given Y/X = 0 is proportional to $|x|p_{X,Y}(x,0)$.

Brownian motion

4b6 Exercise. For all $X \in L_{\infty}(\mathcal{F}_T), Y \in L_1(\mathcal{F}_{\infty})$, $\mathbb{E}(XY|\mathcal{F}_T) = X\mathbb{E}(Y|\mathcal{F}_T).$

Prove it.

4b7 Definition. A Brownian martingale¹ is a family $(M_t)_{t \in [0,\infty)}$ of $M_t \in$ $L_1(\mathcal{F}_t)$ such that

$$\mathbb{E}(M_t | \mathcal{F}_s) = M_s$$
 a.s. for $0 \le s \le t < \infty$.

(I write M_t and M(t) interchangingly.) Examples of Brownian martingales:

$$\begin{split} M(t) &= B(t) , & M(t) = B^2(t) - t , \\ M(t) &= B^3(t) - 3tB(t) , & M(t) = B^4(t) - 6tB^2(t) + 3t^2 , \\ M(t) &= e^{-\lambda^2 t/2} \exp \lambda B(t) , & \\ M(t) &= e^{-\lambda^2 t/2} \cosh \lambda B(t) , & M(t) = e^{-\lambda^2 t/2} \sinh \lambda B(t) , \\ M(t) &= e^{\lambda^2 t/2} \cos \lambda B(t) , & M(t) = e^{\lambda^2 t/2} \sin \lambda B(t) \end{split}$$

and, more generally,

(4b8)
$$M(t) = f(t, B(t))$$

where f satisfies the conditions of Lemma 4a5 and the PDE (4a4). And, of course, the process

$$M_t = \mathbb{E}\left(X \,\middle|\, \mathcal{F}_t\right)$$

is a Brownian martingale for every $X \in L_1(\mathcal{F}_\infty)$.

4b9 Exercise. Prove that the following process is a Brownian martingale:

$$M(t) = \begin{cases} \int_0^t B(s) \, \mathrm{d}s + (1-t)B(t) & \text{if } t \in [0,1], \\ \int_0^1 B(s) \, \mathrm{d}s & \text{if } t \in [1,\infty). \end{cases}$$

4b10 Theorem. If f satisfies the conditions of Lemma 4a5 then the following process is a Brownian martingale:

$$M(t) = f(t, B(t)) - \int_0^t g(s, B(s)) \,\mathrm{d}s \,,$$

where $g = f_{1,0} + \frac{1}{2}f_{0,2}$, that is,

$$g(t,x) = \left(\frac{\partial}{\partial t} + \frac{1}{2}\frac{\partial^2}{\partial x^2}\right)f(t,x).$$

¹A Brownian martingale is a martingale w.r.t. the Brownian filtration $(\mathcal{F}_t)_t$. Generally,

Brownian motion

4b11 Exercise. Prove that

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}\,\int_0^t g\bigl(s,B(s)\bigr)\,\mathrm{d}s = \mathbb{E}\,g\bigl(t,B(t)\bigr)\quad\text{for }t>0$$

4b12 Exercise. Prove that

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}\,M(t) = 0 \quad \text{for } t > 0\,.$$

4b13 Exercise. Prove Theorem 4b10.

4c Nothing happens suddenly to Brownian motion

4c1 Theorem. Every Brownian martingale can be upgraded¹,² to a random continuous function.

Similarly to the Brownian motion itself, we always upgrade $(M_t)_t$ this way.

Sample functions of a Brownian martingale are continuous.

4c2 Corollary. For every stopping time T such that T > 0 a.s. there exist stopping times T_1, T_2, \ldots such that almost surely

$$T_n \uparrow T$$
, $T_n < T$.

Nothing happens suddenly to Brownian motion.

A striking contrast to jumping processes! I mean the Poisson process, the special Levy process, the Cauchy process.

Proof of Corollary 4c2. The process³

$$M_t = \mathbb{E}\left(\frac{T}{T+1} \left| \mathcal{F}_t \right.\right)$$

is a Brownian martingale. By Theorem 4c1 it is continuous a.s. Clearly, $M_T = \frac{T}{T+1}$ and moreover,

$$T = \inf\{t : M_t - \frac{t}{t+1} = 0\}$$

 $^{^{1}}$ In the sense discussed in 1e (after 1e6).

²Generally, a martingale (w.r.t. any filtration) can be upgraded to a random r.c.l.l function.

³The idea is, to consider the expected remaining time, $\mathbb{E}(T - t | \mathcal{F}_t)$. However, T need not be integrable.

(think, why). We take

$$T_n = \min\{t \in [0, \infty) : M_t - \frac{t}{t+1} \le \frac{1}{n}\}.$$

Brownian motion

Now we have to prove Theorem 4c1. We consider $(M_t)_{t \in [0,1]}$ (larger intervals are treated similarly); thus,

$$M(t) = \mathbb{E}\left(X \,\middle|\, \mathcal{F}_t\right)$$

for some $X \in L_1(\mathcal{F}_1)$ (namely, $X = M_1$). Our first goal is to show that it is sufficient to ensure a.s. continuity of $M(\cdot)$ for a dense set of $X \in L_1(\mathcal{F}_1)$.

4c3 Proposition. For every $X \in L_1(\mathcal{F}_1)$ there exist $X_n \in L_1(\mathcal{F}_1)$ such that

(a) $\mathbb{E} |X_n - X| \to 0 \text{ as } n \to \infty,$

(b) each martingale

 $M_n(t) = \mathbb{E}\left(X_n \,\middle|\, \mathcal{F}_t\right)$

can be upgraded to a random continuous function,

(c) $M_n(\cdot)$ converge in C[0,1] almost surely; that is,

$$\max_{t \in [0,1]} |M_n(t) - M_\infty(t)| \to 0 \quad \text{as } n \to \infty$$

for some random continuous function $M_{\infty}(\cdot)$.

Proof of Th. 4c1, given Prop. 4c3. The equivalence class M(t) contains $M_{\infty}(t)$, since

$$\mathbb{E} |M(t) - M_n(t)| = \mathbb{E} |\mathbb{E} (X - X_n | \mathcal{F}_t)| \le \le \mathbb{E} (\mathbb{E} (|X - X_n| | \mathcal{F}_t)) = \mathbb{E} |X - X_n| \to 0$$

and therefore $M_{n_k}(t) \to M(t)$ a.s. (for an appropriate subsequence).

4c4 Exercise. Let $(M_t)_t$ be a Brownian martingale, and $T \subset [0, 1]$ a countable set. Then

$$\mathbb{P}\left(\sup_{t\in T} |M(t)| \ge c\right) \le \frac{\mathbb{E}|M(1)|}{c} \quad \text{for } c \in (0,\infty).$$

Prove it.

4c5 Exercise. Prove Item (c) of Prop. 4c3, assuming Items (a) and (b).

It remains to ensure a.s. continuity (in t) of $M(t) = \mathbb{E}(X | \mathcal{F}_t)$ for all X of a dense set of $\mathcal{X} \subset L_1(\mathcal{F}_1)$. Moreover, it is enough if linear combinations of these X are dense. There are several reasonable choices of such \mathcal{X} . You may try bounded uniformly continuous functions $C[0,\infty) \to \mathbb{R}$, or $X = f(B(t_1), \ldots, B(t_n))$ for bounded continuous $f : \mathbb{R}^n \to \mathbb{R}$, or $X = \int_0^1 \exp(if(t)B(t)) dt$ etc. I prefer indicators $X = \mathbb{1}_A$ of events of the form

(4c6)
$$A = \{a_1 \le B(t_1) \le b_1, \dots, a_n \le B(t_n) \le b_n\}.$$

4c7 Exercise. Let $0 < t_1 < \cdots < t_n < 1$, and $-\infty < a_k < b_k < \infty$ for $k = 1, \ldots, n$. Then the random function

$$M(t) = \mathbb{E}\left(\left.\prod_{k=1}^{n} \mathbb{1}_{[a_k, b_k]} (B(t_k)) \right| \mathcal{F}_t\right)$$

is continuous a.s.

Prove it.

Linear combinations of (arbitrary) indicators are dense in $L_1(\mathcal{F}_1)$. It remains to prove that sets of the form (4c6) and their disjoint unions are dense in $\mathcal{F}_1 \pmod{0}$ according to the metric $\operatorname{dist}(A, B) = \mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A)$. This claim follows easily from the next general lemma.

4c8 Lemma. Let (Ω, \mathcal{F}, P) be a probability space, and $\mathcal{A} \subset \mathcal{F}$ an algebra of sets that generates $\mathcal{F} \pmod{0}$. Then:

(a) For every $C \in \mathcal{F}$ and $\varepsilon > 0$ there exist $A_1, A_2, \dots \in \mathcal{A}$ such that $C \subset A_1 \cup A_2 \cup \dots$ and $P(A_1 \cup A_2 \cup \dots) \leq P(C) + \varepsilon$. In other words, there exists $A \in \mathcal{A}_{\sigma}$ such that $C \subset A$ and $P(A) \leq P(C) + \varepsilon$.

(b) For every $C \in \mathcal{F}$ there exist $B_1, B_2, \dots \in \mathcal{A}_{\sigma}$ such that $B_1 \supset B_2 \supset \dots$, $C \subset B_1 \cap B_2 \dots$, and $P(C) = P(B_1 \cap B_2 \dots)$. In other words, there exists $B \in \mathcal{A}_{\sigma\delta}$ such that $C \subset B$ and $P(B \setminus C) = 0$.

(c) For every $C \in \mathcal{F}$ and $\varepsilon > 0$ there exists $A \in \mathcal{A}$ such that $P(A \setminus C) + P(C \setminus A) \leq \varepsilon$.

See [1], Appendix A.3.

The proof of Theorem 4c1 is thus finished.

On the other hand, our approach to conditioning gives us another way of upgrading a martingale to a random function, at least when $X = M(1) = \varphi(B(\cdot))$ for a bounded Borel function $\varphi : C[0, 1] \to \mathbb{R}^{1}$ Namely,

(4c9)
$$M(t)(\omega_1) = \mathbb{E}\left(X \middle| \mathcal{F}_t\right)(\omega_1) = \int \varphi \left(B(\cdot)(\omega_1) \bigsqcup^t B(\cdot)(\omega_2)\right) P(\mathrm{d}\omega_2).$$

¹I often write $\varphi(B(\cdot))$ instead of $\varphi(B(\cdot)|_{[0,1]})$.

Several questions appear naturally. What happens if we change φ on a negligible (w.r.t. the Wiener measure) set? What happens if φ is not bounded? And, above all: is it a random *continuous* function?

4c10 Exercise. Let $\varphi, \varphi_1, \varphi_2, \dots : C[0, 1] \to [-1, 1]$ be Borel functions such that $\varphi_n(x) \uparrow \varphi(x)$ (as $n \to \infty$) for every $x \in C[0, 1]$, and M, M_1, M_2, \dots random functions corresponding to $\varphi, \varphi_1, \varphi_2, \dots$ according to (4c9). If each M_k is a.s. continuous, then M is a.s. continuous.

Prove it.

Due to 4c7 we have an algebra $\mathcal{A} \subset \mathcal{B}_1$ such that

(a) \mathcal{A} generates \mathcal{B}_1 ,

(b) for every $A \in \mathcal{A}$ the random function $M_A(t) = \mathbb{P}(A | \mathcal{F}_t)$ is a.s. continuous.

By 4c10, $M_B(\cdot)$ is a.s. continuous for all $B \in \mathcal{A}_{\sigma}$ and moreover, all $B \in \mathcal{A}_{\sigma\delta}$.

4c11 Exercise. If $C \in \mathcal{B}_1$ is negligible in the sense that $\mathbb{P}(B(\cdot) \in C) = 0$, then $\mathbb{P}(\forall t \ M_C(t) = 0) = 1$.

Prove it.

Combining 4c11 and 4c8(b) we get the following.

4c12 Theorem. For every Borel set $G \subset C[0, 1]$, the following random function is a.s. continuous:

$$M_G(t) = \mathbb{P}(B(\cdot) \in G | \mathcal{F}_t),$$

that is,

$$M_G(t)(\omega_1) = \mathbb{P}\left(\left\{\omega_2 : B(\cdot)(\omega_1) \bigsqcup^t B(\cdot)(\omega_2) \in G\right)\right\}.$$

4c13 Exercise. $\forall G \quad \mathbb{P}(M_G(\cdot) \text{ is continuous }) = 1$, however, $\mathbb{P}(\forall G \quad M_G(\cdot) \text{ is continuous }) = 0$; here G runs over all Borel subsets of C[0,1].

Prove it.

4c14 Exercise. Let $A \in \mathcal{F}_t$ for all t > 0; then either $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$. ('Blumenthal's 0 - 1 law')

Prove it.

In other words, $\mathcal{F}_{0+} = \mathcal{F}_0 \pmod{0}$. See also [1], Sect. 7.2, (2.5).

4c15 Exercise. Give another proof to 2b6, using 4c14 (and not the distribution of T_x).

4c16 Exercise. For every $f: (0, \infty) \to (0, \infty)$ the random variable

$$\limsup_{t \to 0+} \frac{B(t)}{f(t)} \in [0,\infty]$$

is degenerate (that is, equal a.s. to a constant).

Prove it.

4c17 Exercise. Generalize 4c14 for $A \in \bigcap_{\varepsilon > 0} \mathcal{F}_{T+\varepsilon}$, where T is a stopping time. That is, show that $\mathcal{F}_{T+} = \mathcal{F}_T \pmod{0}$.

4c18 Exercise. Generalize 4c10 to the case when $\varphi_k : C[0,1] \to [0,\infty)$ are bounded, while $\varphi: C[0,1] \to [0,\infty)$ need not be bounded, but $\mathbb{E} \varphi(B(\cdot)) < 0$ ∞ .

4c19 Exercise. Let $\varphi : C[0,1] \to \mathbb{R}$ be a Borel function such that $\mathbb{E} \varphi(B(\cdot)) < 0$ ∞ . Then the random function

$$M(t) = \mathbb{E}\left(\varphi(B(\cdot)) \,|\, \mathcal{F}_t\right)$$

is a.s. continuous.

Prove it.

4dHints to exercises

4a12: $\mathbb{E}\left(B^4(T \wedge n) - 6(T \wedge n)B^2(T \wedge n)\right) = -3(T \wedge n)^2$; use T as an integrable majorant in the left-hand side...

4a13: $\mathbb{E}\left(e^{\lambda^2 T/2}\mathbb{1}_{[0,t]}(T)\right) \leq \frac{1}{\cos\lambda}$ for all $\lambda \in [0,\pi/2)$ and $t \in (0,\infty)$. 4c4: recall 3c11.

4c5: $\sum_{n} \mathbb{P}\left(\max_{[0,1]} |M_n - M_{n+1}| \ge 1/n^2\right) \le \sum_{n} n^2 \mathbb{E} |X_n - X_{n+1}| < \infty.$

4c7: Consider the integral of the density; note that $B(t_k) \neq a_k, B(t_k) \neq b_k$ a.s.

4c10: By (4c9) and the bounded convergence theorem, $\mathbb{P}(\forall t \in [0, 1] M_n(t) \uparrow$ M(t) = 1. On the other hand, similarly to 4c5, $M_n(\cdot)$ converge in C[0,1]to some $M_{\infty}(\cdot)$ a.s., if $\varphi_n \to \varphi$ fast enough (take a subsequence). Therefore $M(\cdot) = M_{\infty}(\cdot)$ a.s.

4c11: 4c8(b) gives a negligible $B \in \mathcal{A}_{\sigma\delta}$ such that $C \subset B$; thas, $M_C(\cdot) \leq C$ $M_B(\cdot), M_B(\cdot)$ is continuous, and $\mathbb{E} M_B(t) = \mathbb{E} M_B(1) = 0.$

4c13: Consider $G = G_x = \{f : f(1) \le x\}$ for all $x \in \mathbb{R}$.

4c14: consider $\mathbb{P}(A | \mathcal{F}_t)$.

4c19: $\varphi = \varphi^+ - \varphi^-$; use 4c18, each φ_k being a linear combination of indicators.

References

[1] R. Durrett, Probability: theory and examples, 1996.

Index

Blumenthal, 49	upgraded, 46	
conditional distribution, 43 conditional expectation, 44 conditional probability, 43	$\mathcal{B}_T, 43$ $\mathcal{F}_T, 43$	
martingale, 45	${\mathcal F}_{\infty}, 43 \ f \stackrel{a}{\sqcup} g, 43$	
total expectation, 44	$f_{+t}, 38$	
total probability, 44	$f_{1,0}, f_{0,2}, 38$	