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4a Heat equation appears

Recall 3a5: E B2(T ) = E T for every stopping time T such that (say) T ≤ 1
a.s. This is a manifestation of the martingale property of the process

M(t) = B2(t) − t ,

as explained below. Here is a solution of 3a5 (hopefully, not new to you).
Using 2f8 we have1

0 = E (B2(1) − 1) =

∫∫
(
Y 2(1)(ω1, ω2) − 1

)
P (dω1)P (dω2) =

=

∫

P (dω1)

∫

P (dω2)
((

(B(T (ω1))(ω1) + B(1 − T (ω1))(ω2)
)
2 − 1

)

=

=

∫

P (dω1)f
(
T (ω1), B(T (ω1))(ω1)

)
= E g(T, B(T )) = E (B2(T ) − T ) ,

where

g(t, x) =

∫

P (dω2)
(
(x+B(1−t)(ω2))

2−1
)

= E
(
(x+B(1−t))2−1

)
= x2−t .

The relevant property of the function f(t, x) = x2−t is E f(1, x+B(1−t)) =
f(t, x). More generally,2

(4a1) E f
(
s + t, x + B(t)

)
= f(s, x) , that is,

∫

f(s + t, x + y)pt(y) dy = f(s, x) .

1Compare it with the proof of (2a7).
2As before, pt(x) = (2πt)−1/2 exp(−x2

2t ).
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Three examples of such functions:

(4a2)

f(t, x) = x ,

f(t, x) = x2 − t ,

f(t, x) = x3 − 3tx

(check it). We define new functions f+t for t ∈ [0,∞) by1

(4a3) f+t(s, x) = E f
(
s + t, x + B(t)

)
=

∫

f(s + t, x + y)pt(y) dy

and note that (f+t)+u = f+(t+u) (think, why). Now, the idea is simple and
natural. We have a dynamics in (some) space of functions, and (4a1) means
that f is a fixed point,

f+t = f for all t ≥ 0 ,

that is, the speed vanishes at f ,

1

ε
(f+ε − f) → 0 as ε → 0 + .

Denoting for convenience ∂i+j

∂si∂xj f(s, x) by fi,j(s, x) we have for small t, y

f(s + t, x + y) ≈ f(s, x) + f1,0(s, x)t + f0,1(s, x)y +
1

2
f0,2(s, x)y2 ;

f+ε(s, x) = E f
(
s + ε, x + B(ε)

)
≈ f(s, x) + f1,0(s, x)ε +

1

2
f0,2(s, x) E B2(ε)

︸ ︷︷ ︸

=ε

;

1

ε
(f+ε − f) → f1,0 +

1

2
f0,2 .

No one of the higher terms contributes (think, why). Thus, we guess that
(4a1) is equivalent to a partial differential equation (PDE) well-known as the
heat equation:2

(4a4)
( ∂

∂t
+

1

2

∂2

∂x2

)

f(t, x) = 0 .

The question is, how to prove it, and what to require of f .

1Assuming integrability. Of course, pt does not work for t = 0.
2Or rather, time reversed heat equation with coefficient 1/2; the standard heat equation

contains ∂
∂t − ∂2

∂x2 .
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4a5 Lemma. Let f : (0,∞)×R → R be a continuous function such that the
derivatives fi,j exist and are continuous for (i, j) ∈ {(1, 0), (0, 2)}. Assume
that1

(4a6)
1

x2
ln+ |fi,j(t, x)| → 0 as x → ±∞

for every t ∈ (0,∞), (i, j) ∈ {(0, 0), (1, 0), (0, 2)}, and moreover, it holds
uniformly in t ∈ [a, b] whenever 0 < a < b < ∞. Then f+t is well-defined (by
(4a3)) for all t ∈ (0,∞), and

d

dt
f+t(s, x) =

∫ (

f1,0(s + t, x + y) +
1

2
f0,2(s + t, x + y)

)

pt(y) dy

for all t ∈ (0,∞) and (s, x) ∈ (0,∞)× R. Both sides are claimed to be well-
defined (the derivative in the left-hand side and the integral in the right-hand
side).

4a7 Exercise. For every twice continuously differentiable function g : [x −
ε, x + ε] → R,

min
[x−ε,x+ε]

g′′(·) ≤ g(x − ε) − 2g(x) + g(x + ε)

ε2
≤ max

[x−ε,x+ε]
g′′(·) .

Prove it.

Proof of 4a5. First, f+t is well-defined due to (4a6) for (i, j) = (0, 0).
Second, without loss of generality we assume that s = 0, x = 0 (since

the shifted function (s1, x1) 7→ f(s + s1, x + x1) satisfies all the conditions
imposed on f).

Right derivative is considered below; left derivative, treated similarly, is
left to the reader.

We have for every ε > 0

f+t(0, 0) =

∫

f(t, y)pt(y) dy ;

f+(t+ε)(0, 0) =

∫

f(t + ε, y)pt+ε(y) dy =

=

∫

dy pt(y)

∫

dz pε(z)f(t+ε, y+z) =

∫

dy pt(y)

∫

dz p1(z)f(t+ε, y+z
√

ε) =

=

∫

dy pt(y)

∫

dz p1(z)
f(t + ε, y − z

√
ε) + f(t + ε, y + z

√
ε)

2
;

1Here ln+ a = max(0, ln a).
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f+(t+ε)(0, 0) − f+t(0, 0)

ε
=

=

∫

dy pt(y)

∫

dz p1(z)
f(t + ε, y − z

√
ε) − 2f(t, y) + f(t + ε, y + z

√
ε)

2ε
.

By 4a7 and continuity of f0,2,

f(t + ε, y − z
√

ε) − 2f(t + ε, y) + f(t + ε, y + z
√

ε)

2ε
→ z2

2
f0,2(t, y) as ε → 0+ .

Taking into account that

f(t + ε, y) − f(t, y)

ε
→ f1,0(t, y)

we get

f(t + ε, y − z
√

ε) − 2f(t, y) + f(t + ε, y + z
√

ε)

2ε
→ f1,0(t, y) +

z2

2
f0,2(t, y)

as ε → 0+. Now we need an integrable majorant. Using 4a7 again,

∣
∣
∣
∣

f(t + ε, y − z
√

ε) − 2f(t + ε, y) + f(t + ε, y + z
√

ε)

2ε

∣
∣
∣
∣
≤

max
[y−|z|√ε,y+|z|√ε]

|f0,2(t+ε, ·)| ≤ C(δ) exp
(
δ(|y|+|z|

√
ε)2

)
≤ C(δ) exp

(
2δ(y2+z2ε)

)

by (4a6) for f0,2 (locally uniform in t. . . ); any δ > 0 may be chosen. Also,

∣
∣
∣
∣

f(t + ε, y)− f(t, y)

ε

∣
∣
∣
∣
≤ max

[t,t+ε]
|f1,0(·, y)| ≤ C(δ) exp(δy2)

by (4a6) for f1,0 (locally uniform in t). We have a majorant

C(δ) exp
(
2δ(y2 + z2ε)

)
pt(y)p1(z) ,

integrable if δ is small enough (namely, 2δ < 1
2t

and 2δε < 1/2). By the
dominated convergence theorem (applied to

∫∫
dydz . . . ),

f+(t+ε)(0, 0) − f+t(0, 0)

ε
→

∫

dy pt(y)

∫

dz p1(z)
(

f1,0(t, y)+
z2

2
f0,2(t, y)

)

=

=

∫

dy pt(y)
(

f1,0(t, y) +
1

2
f0,2(t, y)

)

as ε → 0 + .
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4a8 Exercise. Consider in detail the other case: left derivative.

See also [1], Sect. 7.5, Exercise 5.5.

4a9 Proposition. Condition (4a1) is equivalent to the PDE (4a4) for every
function satisfying the conditions of Lemma 4a5.

Proof. Follows from 4a5, since f+ε → f as ε → 0+.

4a10 Proposition. E f
(
T, B(T )

)
= f(0, 0) for every function f satisfying

the conditions of Lemma 4a5 and the PDE (4a4), and every stopping time
T such that ∃t P

(
T ≤ t

)
= 1.

The proof given for f(t, x) = x2 − t in the beginning of 4a generalizes
immediately.

4a11 Exercise. For every polynomial P on R the following polynomial f
on R

2 satisfies (4a1):

f(t, x) =
∑

k

(−1)k 2k

(2k)!
P (k)(t)x2k .

Prove it.

Now we can continue (4a2) a little:

f(t, x) = x2 − t , P (t) = −t ,

f(t, x) = x4 − 6tx2 + 3t2 , P (t) = 3t2 .

4a12 Exercise. 1 VarT = 2/3 for T = min{t : |B(t)| = 1}.
Prove it. (Warning: be careful with t → ∞.)

An astonishing counterexample was found by Tychonoff2,3: let

P (t) =

{

exp
(
−(1 − t)−2

)
for t ∈ [0, 1),

0 for t ∈ [1,∞)

(not a polynomial, of course, but a non-analytic infinitely differentiable func-
tion), then the formula given in 4a11 produces a power series convergent for

1See [1], Sect. 7.5, Theorem (5.9).
2A.N. Tychonoff, Matem. Sbornik 32 (1935), 199–216.
3See (1.18)–(1.24) on page 212 in: F. John, “Partial differential equations”, Springer

(fourth edition).
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all x (and all t) to an infinitely differentiable function that satisfies the PDE
(4a4) but violates (4a1).

Trying f(t, x) = exp(at+ bx) we get f1,0 = af and f0,2 = b2f , thus, (4a1)
is satisfied if and only if a + 0.5b2 = 0;

f(t, x) = eλxe−λ2t/2 .

Also functions

f(t, x) + f(t,−x)

2
= e−λ2t/2 cosh λx ,

f(t, x) − f(t,−x)

2
= e−λ2t/2 sinh λx

satisfy (4a1). Replacing λ with iλ we get functions

f(t, x) = eλ2t/2 cos λx ,

f(t, x) = eλ2t/2 sin λx

satisfying (4a1).

4a13 Exercise. 1 Let T = min{t : |B(t)| = 1}, then

E eλT =







1

cosh
√

2|λ|
for −∞ < λ ≤ 0,

1
cos

√
2λ

for 0 ≤ λ < π2/8,

∞ for λ ≥ π2/8.

Prove it. Also, give a new proof of 3a7.

4b Conditioning and martingales

Conditioning is simple in two frameworks: discrete probability, and densities.
However, conditioning of a Brownian motion on its past goes far beyond these
two frameworks. The clue is, the ‘restart’ introduced in Sect. 2:

X(t)(ω1, ω2) =

{

B(t)(ω1) if t ≤ T (ω1),

B(T (ω1))(ω1) + B(t − T (ω1))(ω2) if t ≥ T (ω1).

Here T is a stopping time (as defined by 2f5) and of course, T (ω) means
T

(
B(·)(ω)

)
. Let us write X in a shorter form:

(4b1) X(·)(ω1, ω2) = B(·)(ω1)

T (ω1)
⊔

B(·)(ω2) ,

1See also [1], Sect. 7.5, Th. (5.7).
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where f
a
⊔ g is defined for f, g ∈ C[0,∞) and a ∈ [0,∞) by

f
a⊔

g = h ∈ C[0,∞) ,

h(t) =

{

f(t) if t ≤ a,

f(a) + g(t − a) − g(0) if t ≥ a.

Not only the map (f, g) 7→ f
a
⊔ g is Borel measurable for each a, but also

(f, a, g) 7→ f

a⊔

g

is a Borel measurable map C[0,∞)×R×C[0,∞) → C[0,∞), and therefore

(f, g) 7→ f
T (f)
⊔ g is a Borel measurable map C[0,∞) × C[0,∞) → C[0,∞).1

4b2 Definition. The conditional distribution of B(·) given B(·)|[0,a] = f |[0,a]

is the distribution of f
a
⊔ B.

Some Borel functions ϕ : C[0,∞) → R are such that ϕ
(
f

T (f)
⊔ g

)
depends

on f only (not g). Some of these functions are indicators, ϕ : C[0,∞) →
{0, 1}. The corresponding sets are, by definition, the sub-σ-field BT ⊂ B∞.

A Borel function ϕ : C[0,∞) → R is BT -measurable if and only if ϕ
(
f

T (f)
⊔ g

)

depends on f only (think, why).
Events of the form {B(·) ∈ G} for G ∈ BT are, by definition, the sub-

σ-field FT on Ω. Especially, the sub-σ-field F∞ on Ω generated by the Brow-
nian motion consists of the events of the form {B(·) ∈ G} for G ∈ B∞.2

Conditional probability of an event of F∞ given FT is (by definition) the
random variable

(4b3) P
(
B(·) ∈ G

∣
∣FT

)
(ω1) = P

(

{ω2 : B(·)(ω1)

T (ω1)
⊔

B(·)(ω2) ∈ G}
)

.

In other words, it is the probability according to the conditional distribution
of B(·) given B(·)|[0,T ]. If G ∈ BT then P

(
B(·) ∈ G

∣
∣FT

)
= 1lG (as it should

be).
By the Fubini theorem,

E
(
P

(
B(·) ∈ G

∣
∣FT

))
= P

(
X(·) ∈ G

)
,

1Recall Lemma B in Correction to 2f.
2Often F∞ = F ; always F∞ ⊂ F ; and sometimes F∞ 6= F , recall 3c (Ω ×

{0, 1, . . . , n}∞).
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X being defined by (4b1). Thus, the strong Markov property turns into the
total probability formula

P
(
B(·) ∈ G

)
= E

(
P

(
B(·) ∈ G

∣
∣FT

))
for G ∈ B∞ .

In other words,

P
(
A

)
= E

(
P

(
A

∣
∣FT

))
for A ∈ F∞ .

You may be astonished if you are acquainted with the general theory of
conditioning. In that framework the total probability formula holds for every
sub-σ-field, irrespective of any Markov property!

In that framework, however, conditional probabilities are defined as to
satisfy this formula, for each sub-σ-field separately.1 In contrast, we define
them constructively by (4b3). In our definitions, the conditional distribution
of B(·) given B(·)|[0,T ] at ω depends on T (ω) and the path on [0, T (ω)], not
on the choice of T (as far as T (ω) is fixed).

The space L1(F∞) = L1(Ω,F∞, P ) consists of (equivalence classes of)
random variables of the form ϕ

(
B(·)

)
where ϕ : C[0,∞) → R is a Borel

function such that E |ϕ
(
B(·)

)
| < ∞.

Conditional expectation of a randon variable of L1(F∞) given FT is (by
definition) the random variable

(4b4) E
(
ϕ(B(·))

∣
∣FT

)
(ω1) =

∫

ϕ

(

B(·)(ω1)

T (ω1)
⊔

B(·)(ω2)

)

P (dω2) .

In other words, it is the expectation according to the conditional distribution
of B(·) given B(·)|[0,T ].

4b5 Exercise. Prove the total expectation formula:

E ϕ(B(·)) = E
(
E

(
ϕ(B(·))

∣
∣FT

))

for ϕ(B(·)) ∈ L1(F∞).

In other words:

E X = E
(
E

(
X

∣
∣FT

))
forX ∈ L1(F∞) .

1An example in the framework of densities: the conditional density of X given Y = 0 is
proportional to pX,Y (x, 0), but the conditional density of X given Y/X = 0 is proportional
to |x|pX,Y (x, 0).
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4b6 Exercise. For all X ∈ L∞(FT ), Y ∈ L1(F∞),

E
(
XY

∣
∣FT

)
= XE

(
Y

∣
∣FT

)
.

Prove it.

4b7 Definition. A Brownian martingale1 is a family (Mt)t∈[0,∞) of Mt ∈
L1(Ft) such that

E
(
Mt

∣
∣Fs

)
= Ms a.s. for 0 ≤ s ≤ t < ∞ .

(I write Mt and M(t) interchangingly.)
Examples of Brownian martingales:

M(t) = B(t) , M(t) = B2(t) − t ,

M(t) = B3(t) − 3tB(t) , M(t) = B4(t) − 6tB2(t) + 3t2 ,

M(t) = e−λ2t/2 exp λB(t) ,

M(t) = e−λ2t/2 cosh λB(t) , M(t) = e−λ2t/2 sinh λB(t) ,

M(t) = eλ2t/2 cos λB(t) , M(t) = eλ2t/2 sin λB(t)

and, more generally,

(4b8) M(t) = f
(
t, B(t)

)

where f satisfies the conditions of Lemma 4a5 and the PDE (4a4). And, of
course, the process

Mt = E
(
X

∣
∣Ft

)

is a Brownian martingale for every X ∈ L1(F∞).

4b9 Exercise. Prove that the following process is a Brownian martingale:

M(t) =

{∫ t

0
B(s) ds + (1 − t)B(t) if t ∈ [0, 1],

∫ 1

0
B(s) ds if t ∈ [1,∞).

4b10 Theorem. If f satisfies the conditions of Lemma 4a5 then the follow-
ing process is a Brownian martingale:

M(t) = f
(
t, B(t)

)
−

∫ t

0

g
(
s, B(s)

)
ds ,

where g = f1,0 + 1
2
f0,2, that is,

g(t, x) =
( ∂

∂t
+

1

2

∂2

∂x2

)

f(t, x) .

1A Brownian martingale is a martingale w.r.t. the Brownian filtration (Ft)t. Generally,
a martingale w.r.t. a given filtration is defined similarly.
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4b11 Exercise. Prove that

d

dt
E

∫ t

0

g
(
s, B(s)

)
ds = E g

(
t, B(t)

)
for t > 0 .

4b12 Exercise. Prove that

d

dt
E M(t) = 0 for t > 0 .

4b13 Exercise. Prove Theorem 4b10.

4c Nothing happens suddenly to Brownian motion

4c1 Theorem. Every Brownian martingale can be upgraded1,2 to a random
continuous function.

Similarly to the Brownian motion itself, we always upgrade (Mt)t this
way.

Sample functions of a Brownian martingale are continuous.

4c2 Corollary. For every stopping time T such that T > 0 a.s. there exist
stopping times T1, T2, . . . such that almost surely

Tn ↑ T , Tn < T .

Nothing happens suddenly to Brownian motion.

A striking contrast to jumping processes! I mean the Poisson process, the
special Levy process, the Cauchy process.

Proof of Corollary 4c2. The process3

Mt = E
(

T
T+1

∣
∣Ft

)

is a Brownian martingale. By Theorem 4c1 it is continuous a.s. Clearly,
MT = T

T+1
and moreover,

T = inf{t : Mt − t
t+1

= 0}
1In the sense discussed in 1e (after 1e6).
2Generally, a martingale (w.r.t. any filtration) can be upgraded to a random r.c.l.l

function.
3The idea is, to consider the expected remaining time, E

(
T − t

∣
∣Ft

)
. However, T need

not be integrable.
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(think, why). We take

Tn = min{t ∈ [0,∞) : Mt − t
t+1

≤ 1
n
} .

Now we have to prove Theorem 4c1.
We consider (Mt)t∈[0,1] (larger intervals are treated similarly); thus,

M(t) = E
(
X

∣
∣Ft

)

for some X ∈ L1(F1) (namely, X = M1). Our first goal is to show that it is
sufficient to ensure a.s. continuity of M(·) for a dense set of X ∈ L1(F1).

4c3 Proposition. For every X ∈ L1(F1) there exist Xn ∈ L1(F1) such that
(a) E |Xn − X| → 0 as n → ∞,
(b) each martingale

Mn(t) = E
(
Xn

∣
∣Ft

)

can be upgraded to a random continuous function,
(c) Mn(·) converge in C[0, 1] almost surely; that is,

max
t∈[0,1]

|Mn(t) − M∞(t)| → 0 as n → ∞

for some random continuous function M∞(·).

Proof of Th. 4c1, given Prop. 4c3. The equivalence class M(t) contains M∞(t),
since

E |M(t) − Mn(t)| = E |E
(
X − Xn

∣
∣Ft

)
| ≤

≤ E
(
E

(
|X − Xn|

∣
∣Ft

))
= E |X − Xn| → 0

and therefore Mnk
(t) → M(t) a.s. (for an appropriate subsequence).

4c4 Exercise. Let (Mt)t be a Brownian martingale, and T ⊂ [0, 1] a count-
able set. Then

P

(

sup
t∈T

|M(t)| ≥ c
)

≤ E |M(1)|
c

for c ∈ (0,∞) .

Prove it.

4c5 Exercise. Prove Item (c) of Prop. 4c3, assuming Items (a) and (b).
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It remains to ensure a.s. continuity (in t) of M(t) = E
(
X

∣
∣Ft

)
for all

X of a dense set of X ⊂ L1(F1). Moreover, it is enough if linear combi-
nations of these X are dense. There are several reasonable choices of such
X . You may try bounded uniformly continuous functions C[0,∞) → R,
or X = f

(
B(t1), . . . , B(tn)

)
for bounded continuous f : R

n → R, or X =
∫ 1

0
exp

(
if(t)B(t)

)
dt etc. I prefer indicators X = 1lA of events of the form

(4c6) A = {a1 ≤ B(t1) ≤ b1, . . . , an ≤ B(tn) ≤ bn} .

4c7 Exercise. Let 0 < t1 < · · · < tn < 1, and −∞ < ak < bk < ∞ for
k = 1, . . . , n. Then the random function

M(t) = E

( n∏

k=1

1l[ak,bk]

(
B(tk)

)
∣
∣
∣
∣
Ft

)

is continuous a.s.
Prove it.

Linear combinations of (arbitrary) indicators are dense in L1(F1). It
remains to prove that sets of the form (4c6) and their disjoint unions are dense
in F1 (mod 0) according to the metric dist(A, B) = P

(
A \ B

)
+ P

(
B \ A

)
.

This claim follows easily from the next general lemma.

4c8 Lemma. Let (Ω,F , P ) be a probability space, and A ⊂ F an algebra
of sets that generates F (mod 0). Then:

(a) For every C ∈ F and ε > 0 there exist A1, A2, · · · ∈ A such that
C ⊂ A1 ∪ A2 ∪ . . . and P (A1 ∪ A2 ∪ . . . ) ≤ P (C) + ε. In other words, there
exists A ∈ Aσ such that C ⊂ A and P (A) ≤ P (C) + ε.

(b) For every C ∈ F there exist B1, B2, · · · ∈ Aσ such that B1 ⊃ B2 ⊃ . . . ,
C ⊂ B1 ∩ B2 . . . , and P (C) = P (B1 ∩ B2 . . . ). In other words, there exists
B ∈ Aσδ such that C ⊂ B and P (B \ C) = 0.

(c) For every C ∈ F and ε > 0 there exists A ∈ A such that P (A \ C) +
P (C \ A) ≤ ε.

See [1], Appendix A.3.
The proof of Theorem 4c1 is thus finished.
On the other hand, our approach to conditioning gives us another way of

upgrading a martingale to a random function, at least when X = M(1) =
ϕ
(
B(·)

)
for a bounded Borel function ϕ : C[0, 1] → R.1 Namely,

(4c9) M(t)(ω1) = E
(
X

∣
∣Ft

)
(ω1) =

∫

ϕ

(

B(·)(ω1)
t⊔

B(·)(ω2)

)

P (dω2) .

1I often write ϕ
(
B(·)

)
instead of ϕ

(
B(·)|[0,1]

)
.
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Several questions appear naturally. What happens if we change ϕ on a neg-
ligible (w.r.t. the Wiener measure) set? What happens if ϕ is not bounded?
And, above all: is it a random continuous function?

4c10 Exercise. Let ϕ, ϕ1, ϕ2, · · · : C[0, 1] → [−1, 1] be Borel functions such
that ϕn(x) ↑ ϕ(x) (as n → ∞) for every x ∈ C[0, 1], and M, M1, M2, . . .
random functions corresponding to ϕ, ϕ1, ϕ2, . . . according to (4c9). If each
Mk is a.s. continuous, then M is a.s. continuous.

Prove it.

Due to 4c7 we have an algebra A ⊂ B1 such that
(a) A generates B1,
(b) for every A ∈ A the random function MA(t) = P

(
A

∣
∣Ft

)
is a.s.

continuous.
By 4c10, MB(·) is a.s. continuous for all B ∈ Aσ and moreover, all B ∈

Aσδ.

4c11 Exercise. If C ∈ B1 is negligible in the sense that P
(
B(·) ∈ C

)
= 0,

then P
(
∀t MC(t) = 0

)
= 1.

Prove it.

Combining 4c11 and 4c8(b) we get the following.

4c12 Theorem. For every Borel set G ⊂ C[0, 1], the following random
function is a.s. continuous:

MG(t) = P
(
B(·) ∈ G

∣
∣Ft

)
,

that is,

MG(t)(ω1) = P

({

ω2 : B(·)(ω1)
t⊔

B(·)(ω2) ∈ G
)}

.

4c13 Exercise. ∀G P
(
MG(·) is continuous

)
= 1, however,

P
(
∀G MG(·) is continuous

)
= 0; here G runs over all Borel subsets of

C[0, 1].
Prove it.

4c14 Exercise. Let A ∈ Ft for all t > 0; then either P
(
A

)
= 0 or P

(
A

)
= 1.

(‘Blumenthal’s 0 − 1 law’)
Prove it.

In other words, F0+ = F0 (mod 0). See also [1], Sect. 7.2, (2.5).

4c15 Exercise. Give another proof to 2b6, using 4c14 (and not the distri-
bution of Tx).
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4c16 Exercise. For every f : (0,∞) → (0,∞) the random variable

lim sup
t→0+

B(t)

f(t)
∈ [0,∞]

is degenerate (that is, equal a.s. to a constant).
Prove it.

4c17 Exercise. Generalize 4c14 for A ∈ ∩ε>0FT+ε, where T is a stopping
time. That is, show that FT+ = FT (mod 0).

4c18 Exercise. Generalize 4c10 to the case when ϕk : C[0, 1] → [0,∞) are
bounded, while ϕ : C[0, 1] → [0,∞) need not be bounded, but E ϕ

(
B(·)

)
<

∞.

4c19 Exercise. Let ϕ : C[0, 1] → R be a Borel function such that E ϕ
(
B(·)

)
<

∞. Then the random function

M(t) = E
(
ϕ
(
B(·)

)∣
∣Ft

)

is a.s. continuous.
Prove it.

4d Hints to exercises

4a12: E
(
B4(T ∧n)−6(T ∧n)B2(T ∧n)

)
= −3(T ∧n)2; use T as an integrable

majorant in the left-hand side. . .

4a13: E
(
eλ2T/21l[0,t](T )

)
≤ 1

cos λ
for all λ ∈ [0, π/2) and t ∈ (0,∞).

4c4: recall 3c11.

4c5:
∑

n P
(
max[0,1] |Mn − Mn+1| ≥ 1/n2

)
≤

∑

n n2
E |Xn − Xn+1| < ∞.

4c7: Consider the integral of the density; note that B(tk) 6= ak, B(tk) 6= bk

a.s.

4c10: By (4c9) and the bounded convergence theorem, P
(
∀t ∈ [0, 1] Mn(t) ↑

M(t)
)

= 1. On the other hand, similarly to 4c5, Mn(·) converge in C[0, 1]
to some M∞(·) a.s., if ϕn → ϕ fast enough (take a subsequence). Therefore
M(·) = M∞(·) a.s.

4c11: 4c8(b) gives a negligible B ∈ Aσδ such that C ⊂ B; thas, MC(·) ≤
MB(·), MB(·) is continuous, and E MB(t) = E MB(1) = 0.

4c13: Consider G = Gx = {f : f(1) ≤ x} for all x ∈ R.

4c14: consider P
(
A

∣
∣Ft

)
.

4c19: ϕ = ϕ+ − ϕ−; use 4c18, each ϕk being a linear combination of
indicators.
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