4 Brownian martingales

4a Heat equation appears 37
4b Conditioning and martingales 42
4c Nothing happens suddenly to Brownian motion 46
4d Hints to exercises 50

4a Heat equation appears

Recall 3a5: $\mathbb{E} B^{2}(T)=\mathbb{E} T$ for every stopping time T such that (say) $T \leq 1$ a.s. This is a manifestation of the martingale property of the process

$$
M(t)=B^{2}(t)-t
$$

as explained below. Here is a solution of 3 a5 (hopefully, not new to you). Using $2 f 8$ we have ${ }^{1}$

$$
\begin{aligned}
0 & =\mathbb{E}\left(B^{2}(1)-1\right)=\iint\left(Y^{2}(1)\left(\omega_{1}, \omega_{2}\right)-1\right) P\left(\mathrm{~d} \omega_{1}\right) P\left(\mathrm{~d} \omega_{2}\right)= \\
& =\int P\left(\mathrm{~d} \omega_{1}\right) \int P\left(\mathrm{~d} \omega_{2}\right)\left(\left(\left(B\left(T\left(\omega_{1}\right)\right)\left(\omega_{1}\right)+B\left(1-T\left(\omega_{1}\right)\right)\left(\omega_{2}\right)\right)^{2}-1\right)=\right. \\
& =\int P\left(\mathrm{~d} \omega_{1}\right) f\left(T\left(\omega_{1}\right), B\left(T\left(\omega_{1}\right)\right)\left(\omega_{1}\right)\right)=\mathbb{E} g(T, B(T))=\mathbb{E}\left(B^{2}(T)-T\right),
\end{aligned}
$$

where
$g(t, x)=\int P\left(\mathrm{~d} \omega_{2}\right)\left(\left(x+B(1-t)\left(\omega_{2}\right)\right)^{2}-1\right)=\mathbb{E}\left((x+B(1-t))^{2}-1\right)=x^{2}-t$.
The relevant property of the function $f(t, x)=x^{2}-t$ is $\mathbb{E} f(1, x+B(1-t))=$ $f(t, x)$. More generally, ${ }^{2}$
(4a1) $\mathbb{E} f(s+t, x+B(t))=f(s, x), \quad$ that is,

$$
\int f(s+t, x+y) p_{t}(y) \mathrm{d} y=f(s, x)
$$

[^0]Three examples of such functions:

$$
\begin{align*}
& f(t, x)=x \\
& f(t, x)=x^{2}-t \tag{4a2}\\
& f(t, x)=x^{3}-3 t x
\end{align*}
$$

(check it). We define new functions f_{+t} for $t \in[0, \infty)$ by 1

$$
\begin{equation*}
f_{+t}(s, x)=\mathbb{E} f(s+t, x+B(t))=\int f(s+t, x+y) p_{t}(y) \mathrm{d} y \tag{4a3}
\end{equation*}
$$

and note that $\left(f_{+t}\right)_{+u}=f_{+(t+u)}$ (think, why). Now, the idea is simple and natural. We have a dynamics in (some) space of functions, and (4all) means that f is a fixed point,

$$
f_{+t}=f \quad \text { for all } t \geq 0,
$$

that is, the speed vanishes at f,

$$
\frac{1}{\varepsilon}\left(f_{+\varepsilon}-f\right) \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0+
$$

Denoting for convenience $\frac{\partial^{i+j}}{\partial s^{i} \partial x^{j}} f(s, x)$ by $f_{i, j}(s, x)$ we have for small t, y

$$
\begin{gathered}
f(s+t, x+y) \approx f(s, x)+f_{1,0}(s, x) t+f_{0,1}(s, x) y+\frac{1}{2} f_{0,2}(s, x) y^{2} \\
f_{+\varepsilon}(s, x)=\mathbb{E} f(s+\varepsilon, x+B(\varepsilon)) \approx f(s, x)+f_{1,0}(s, x) \varepsilon+\frac{1}{2} f_{0,2}(s, x) \underbrace{\mathbb{E} B^{2}(\varepsilon)}_{=\varepsilon} ; \\
\frac{1}{\varepsilon}\left(f_{+\varepsilon}-f\right) \rightarrow f_{1,0}+\frac{1}{2} f_{0,2} .
\end{gathered}
$$

No one of the higher terms contributes (think, why). Thus, we guess that (4a1) is equivalent to a partial differential equation (PDE) well-known as the heat equation: ${ }^{2}$

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\right) f(t, x)=0 \tag{4a4}
\end{equation*}
$$

The question is, how to prove it, and what to require of f.

[^1]4a5 Lemma. Let $f:(0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that the derivatives $f_{i, j}$ exist and are continuous for $(i, j) \in\{(1,0),(0,2)\}$. Assume that ${ }^{1}$

$$
\begin{equation*}
\frac{1}{x^{2}} \ln ^{+}\left|f_{i, j}(t, x)\right| \rightarrow 0 \quad \text { as } x \rightarrow \pm \infty \tag{4a6}
\end{equation*}
$$

for every $t \in(0, \infty),(i, j) \in\{(0,0),(1,0),(0,2)\}$, and moreover, it holds uniformly in $t \in[a, b]$ whenever $0<a<b<\infty$. Then f_{+t} is well-defined (by (4a3)) for all $t \in(0, \infty)$, and

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f_{+t}(s, x)=\int\left(f_{1,0}(s+t, x+y)+\frac{1}{2} f_{0,2}(s+t, x+y)\right) p_{t}(y) \mathrm{d} y
$$

for all $t \in(0, \infty)$ and $(s, x) \in(0, \infty) \times \mathbb{R}$. Both sides are claimed to be welldefined (the derivative in the left-hand side and the integral in the right-hand side).
4a7 Exercise. For every twice continuously differentiable function $g:[x-$ $\varepsilon, x+\varepsilon] \rightarrow \mathbb{R}$,

$$
\min _{[x-\varepsilon, x+\varepsilon]} g^{\prime \prime}(\cdot) \leq \frac{g(x-\varepsilon)-2 g(x)+g(x+\varepsilon)}{\varepsilon^{2}} \leq \max _{[x-\varepsilon, x+\varepsilon]} g^{\prime \prime}(\cdot)
$$

Prove it.
Proof of 4a5. First, f_{+t} is well-defined due to (4a6) for $(i, j)=(0,0)$.
Second, without loss of generality we assume that $s=0, x=0$ (since the shifted function $\left(s_{1}, x_{1}\right) \mapsto f\left(s+s_{1}, x+x_{1}\right)$ satisfies all the conditions imposed on f).

Right derivative is considered below; left derivative, treated similarly, is left to the reader.

We have for every $\varepsilon>0$

$$
\begin{gathered}
f_{+t}(0,0)=\int f(t, y) p_{t}(y) \mathrm{d} y \\
f_{+(t+\varepsilon)}(0,0)=\int f(t+\varepsilon, y) p_{t+\varepsilon}(y) \mathrm{d} y= \\
=\int \mathrm{d} y p_{t}(y) \int \mathrm{d} z p_{\varepsilon}(z) f(t+\varepsilon, y+z)=\int \mathrm{d} y p_{t}(y) \int \mathrm{d} z p_{1}(z) f(t+\varepsilon, y+z \sqrt{\varepsilon})= \\
=\int \mathrm{d} y p_{t}(y) \int \mathrm{d} z p_{1}(z) \frac{f(t+\varepsilon, y-z \sqrt{\varepsilon})+f(t+\varepsilon, y+z \sqrt{\varepsilon})}{2} ;
\end{gathered}
$$

[^2]\[

$$
\begin{aligned}
& \frac{f_{+(t+\varepsilon)}(0,0)-f_{+t}(0,0)}{\varepsilon}= \\
& =\int \mathrm{d} y p_{t}(y) \int \mathrm{d} z p_{1}(z) \frac{f(t+\varepsilon, y-z \sqrt{\varepsilon})-2 f(t, y)+f(t+\varepsilon, y+z \sqrt{\varepsilon})}{2 \varepsilon}
\end{aligned}
$$
\]

By $4 a 7$ and continuity of $f_{0,2}$,

$$
\frac{f(t+\varepsilon, y-z \sqrt{\varepsilon})-2 f(t+\varepsilon, y)+f(t+\varepsilon, y+z \sqrt{\varepsilon})}{2 \varepsilon} \rightarrow \frac{z^{2}}{2} f_{0,2}(t, y) \quad \text { as } \varepsilon \rightarrow 0+.
$$

Taking into account that

$$
\frac{f(t+\varepsilon, y)-f(t, y)}{\varepsilon} \rightarrow f_{1,0}(t, y)
$$

we get

$$
\frac{f(t+\varepsilon, y-z \sqrt{\varepsilon})-2 f(t, y)+f(t+\varepsilon, y+z \sqrt{\varepsilon})}{2 \varepsilon} \rightarrow f_{1,0}(t, y)+\frac{z^{2}}{2} f_{0,2}(t, y)
$$

as $\varepsilon \rightarrow 0+$. Now we need an integrable majorant. Using 4a7 again,

$$
\begin{aligned}
& \left|\frac{f(t+\varepsilon, y-z \sqrt{\varepsilon})-2 f(t+\varepsilon, y)+f(t+\varepsilon, y+z \sqrt{\varepsilon})}{2 \varepsilon}\right| \leq \\
& \max _{[y-|z| \sqrt{\varepsilon}, y+|z| \sqrt{\varepsilon}]}\left|f_{0,2}(t+\varepsilon, \cdot)\right| \leq C(\delta) \exp \left(\delta(|y|+|z| \sqrt{\varepsilon})^{2}\right) \leq C(\delta) \exp \left(2 \delta\left(y^{2}+z^{2} \varepsilon\right)\right)
\end{aligned}
$$

by (4a6) for $f_{0,2}$ (locally uniform in $t \ldots$); any $\delta>0$ may be chosen. Also,

$$
\left|\frac{f(t+\varepsilon, y)-f(t, y)}{\varepsilon}\right| \leq \max _{[t, t+\varepsilon]}\left|f_{1,0}(\cdot, y)\right| \leq C(\delta) \exp \left(\delta y^{2}\right)
$$

by (4a6) for $f_{1,0}$ (locally uniform in t). We have a majorant

$$
C(\delta) \exp \left(2 \delta\left(y^{2}+z^{2} \varepsilon\right)\right) p_{t}(y) p_{1}(z)
$$

integrable if δ is small enough (namely, $2 \delta<\frac{1}{2 t}$ and $2 \delta \varepsilon<1 / 2$). By the dominated convergence theorem (applied to $\iint \mathrm{d} y \mathrm{~d} z \ldots$),

$$
\begin{aligned}
& \frac{f_{+(t+\varepsilon)}(0,0)-f_{+t}(0,0)}{\varepsilon} \rightarrow \int \mathrm{d} y p_{t}(y) \int \mathrm{d} z p_{1}(z)\left(f_{1,0}(t, y)+\frac{z^{2}}{2} f_{0,2}(t, y)\right)= \\
&=\int \mathrm{d} y p_{t}(y)\left(f_{1,0}(t, y)+\frac{1}{2} f_{0,2}(t, y)\right) \quad \text { as } \varepsilon \rightarrow 0+
\end{aligned}
$$

4a8 Exercise. Consider in detail the other case: left derivative.
See also [1], Sect. 7.5, Exercise 5.5.
4a9 Proposition. Condition (4a1) is equivalent to the PDE (4a4) for every function satisfying the conditions of Lemma 4 a5.

Proof. Follows from 4a5, since $f_{+\varepsilon} \rightarrow f$ as $\varepsilon \rightarrow 0+$.
4a10 Proposition. $\mathbb{E} f(T, B(T))=f(0,0)$ for every function f satisfying the conditions of Lemma $4 \mathrm{a5}$ and the PDE (4a4), and every stopping time T such that $\exists t \mathbb{P}(T \leq t)=1$.

The proof given for $f(t, x)=x^{2}-t$ in the beginning of 4a generalizes immediately.

4a11 Exercise. For every polynomial P on \mathbb{R} the following polynomial f on \mathbb{R}^{2} satisfies (4a1):

$$
f(t, x)=\sum_{k}(-1)^{k} \frac{2^{k}}{(2 k)!} P^{(k)}(t) x^{2 k}
$$

Prove it.
Now we can continue (4a2) a little:

$$
\begin{array}{ll}
f(t, x)=x^{2}-t, & P(t)=-t \\
f(t, x)=x^{4}-6 t x^{2}+3 t^{2}, & P(t)=3 t^{2}
\end{array}
$$

4a12 Exercise. ${ }^{1} \operatorname{Var} T=2 / 3$ for $T=\min \{t:|B(t)|=1\}$.
Prove it. (Warning: be careful with $t \rightarrow \infty$.)
An astonishing counterexample was found by Tychonoff ${ }^{2},{ }^{3}$: let

$$
P(t)= \begin{cases}\exp \left(-(1-t)^{-2}\right) & \text { for } t \in[0,1) \\ 0 & \text { for } t \in[1, \infty)\end{cases}
$$

(not a polynomial, of course, but a non-analytic infinitely differentiable function), then the formula given in 4 a 11 produces a power series convergent for

[^3]all x (and all t) to an infinitely differentiable function that satisfies the PDE (4a4) but violates (4a1).

Trying $f(t, x)=\exp (a t+b x)$ we get $f_{1,0}=a f$ and $f_{0,2}=b^{2} f$, thus, (4a1) is satisfied if and only if $a+0.5 b^{2}=0$;

$$
f(t, x)=\mathrm{e}^{\lambda x} \mathrm{e}^{-\lambda^{2} t / 2}
$$

Also functions

$$
\begin{aligned}
& \frac{f(t, x)+f(t,-x)}{2}=\mathrm{e}^{-\lambda^{2} t / 2} \cosh \lambda x \\
& \frac{f(t, x)-f(t,-x)}{2}=\mathrm{e}^{-\lambda^{2} t / 2} \sinh \lambda x
\end{aligned}
$$

satisfy (4a1). Replacing λ with $\mathrm{i} \lambda$ we get functions

$$
\begin{aligned}
& f(t, x)=\mathrm{e}^{\lambda^{2} t / 2} \cos \lambda x, \\
& f(t, x)=\mathrm{e}^{\lambda^{2} t / 2} \sin \lambda x
\end{aligned}
$$

satisfying (4a1).
4a13 Exercise. ${ }^{1}$ Let $T=\min \{t:|B(t)|=1\}$, then

$$
\mathbb{E} \mathrm{e}^{\lambda T}= \begin{cases}\frac{1}{\cosh \sqrt{2|\lambda|}} & \text { for }-\infty<\lambda \leq 0 \\ \frac{1}{\cos \sqrt{2 \lambda}} & \text { for } 0 \leq \lambda<\pi^{2} / 8 \\ \infty & \text { for } \lambda \geq \pi^{2} / 8\end{cases}
$$

Prove it. Also, give a new proof of 3 a 7 .

4b Conditioning and martingales

Conditioning is simple in two frameworks: discrete probability, and densities. However, conditioning of a Brownian motion on its past goes far beyond these two frameworks. The clue is, the 'restart' introduced in Sect. 2:

$$
X(t)\left(\omega_{1}, \omega_{2}\right)= \begin{cases}B(t)\left(\omega_{1}\right) & \text { if } t \leq T\left(\omega_{1}\right) \\ B\left(T\left(\omega_{1}\right)\right)\left(\omega_{1}\right)+B\left(t-T\left(\omega_{1}\right)\right)\left(\omega_{2}\right) & \text { if } t \geq T\left(\omega_{1}\right)\end{cases}
$$

Here T is a stopping time (as defined by 2f5) and of course, $T(\omega)$ means $T(B(\cdot)(\omega))$. Let us write X in a shorter form:

$$
\begin{equation*}
X(\cdot)\left(\omega_{1}, \omega_{2}\right)=B(\cdot)\left(\omega_{1}\right) \bigsqcup^{T\left(\omega_{1}\right)} B(\cdot)\left(\omega_{2}\right), \tag{4b1}
\end{equation*}
$$

[^4]where $f \stackrel{a}{\sqcup} g$ is defined for $f, g \in C[0, \infty)$ and $a \in[0, \infty)$ by
\[

$$
\begin{gathered}
f \bigsqcup^{a} g=h \in C[0, \infty), \\
h(t)= \begin{cases}f(t) & \text { if } t \leq a \\
f(a)+g(t-a)-g(0) & \text { if } t \geq a\end{cases}
\end{gathered}
$$
\]

Not only the map $(f, g) \mapsto f \stackrel{a}{\sqcup} g$ is Borel measurable for each a, but also

$$
(f, a, g) \mapsto f \bigsqcup^{a} g
$$

is a Borel measurable map $C[0, \infty) \times \mathbb{R} \times C[0, \infty) \rightarrow C[0, \infty)$, and therefore $(f, g) \mapsto f \stackrel{T(f)}{\sqcup} g$ is a Borel measurable map $C[0, \infty) \times C[0, \infty) \rightarrow C[0, \infty) .{ }^{1}$

4b2 Definition. The conditional distribution of $B(\cdot)$ given $\left.B(\cdot)\right|_{[0, a]}=\left.f\right|_{[0, a]}$ is the distribution of $f \stackrel{a}{\sqcup} B$.

Some Borel functions $\varphi: C[0, \infty) \rightarrow \mathbb{R}$ are such that $\varphi(f \stackrel{T(f)}{\sqcup} g)$ depends on f only (not g). Some of these functions are indicators, $\varphi: C[0, \infty) \rightarrow$ $\{0,1\}$. The corresponding sets are, by definition, the sub- σ-field $\mathcal{B}_{T} \subset \mathcal{B}_{\infty}$. A Borel function $\varphi: C[0, \infty) \rightarrow \mathbb{R}$ is \mathcal{B}_{T}-measurable if and only if $\varphi\left(f \stackrel{T(f)}{\sqcup^{\prime}} g\right)$ depends on f only (think, why).

Events of the form $\{B(\cdot) \in G\}$ for $G \in \mathcal{B}_{T}$ are, by definition, the sub-σ-field \mathcal{F}_{T} on Ω. Especially, the sub- σ-field \mathcal{F}_{∞} on Ω generated by the Brownian motion consists of the events of the form $\{B(\cdot) \in G\}$ for $G \in \mathcal{B}_{\infty} .{ }^{2}$

Conditional probability of an event of \mathcal{F}_{∞} given \mathcal{F}_{T} is (by definition) the random variable

$$
\begin{equation*}
\mathbb{P}\left(B(\cdot) \in G \mid \mathcal{F}_{T}\right)\left(\omega_{1}\right)=\mathbb{P}\left(\left\{\omega_{2}: B(\cdot)\left(\omega_{1}\right) \bigsqcup^{T\left(\omega_{1}\right)} B(\cdot)\left(\omega_{2}\right) \in G\right\}\right) \tag{4b3}
\end{equation*}
$$

In other words, it is the probability according to the conditional distribution of $B(\cdot)$ given $\left.B(\cdot)\right|_{[0, T]}$. If $G \in \mathcal{B}_{T}$ then $\mathbb{P}\left(B(\cdot) \in G \mid \mathcal{F}_{T}\right)=\mathbb{1}_{G}$ (as it should be).

By the Fubini theorem,

$$
\mathbb{E}\left(\mathbb{P}\left(B(\cdot) \in G \mid \mathcal{F}_{T}\right)\right)=\mathbb{P}(X(\cdot) \in G)
$$

[^5]X being defined by (4b1). Thus, the strong Markov property turns into the total probability formula
$$
\mathbb{P}(B(\cdot) \in G)=\mathbb{E}\left(\mathbb{P}\left(B(\cdot) \in G \mid \mathcal{F}_{T}\right)\right) \quad \text { for } G \in \mathcal{B}_{\infty}
$$

In other words,

$$
\mathbb{P}(A)=\mathbb{E}\left(\mathbb{P}\left(A \mid \mathcal{F}_{T}\right)\right) \quad \text { for } A \in \mathcal{F}_{\infty}
$$

You may be astonished if you are acquainted with the general theory of conditioning. In that framework the total probability formula holds for every sub- σ-field, irrespective of any Markov property!

In that framework, however, conditional probabilities are defined as to satisfy this formula, for each sub- σ-field separately. ${ }^{1}$ In contrast, we define them constructively by (4b3). In our definitions, the conditional distribution of $B(\cdot)$ given $\left.B(\cdot)\right|_{[0, T]}$ at ω depends on $T(\omega)$ and the path on $[0, T(\omega)]$, not on the choice of T (as far as $T(\omega)$ is fixed).

The space $L_{1}\left(\mathcal{F}_{\infty}\right)=L_{1}\left(\Omega, \mathcal{F}_{\infty}, P\right)$ consists of (equivalence classes of) random variables of the form $\varphi(B(\cdot))$ where $\varphi: C[0, \infty) \rightarrow \mathbb{R}$ is a Borel function such that $\mathbb{E}|\varphi(B(\cdot))|<\infty$.

Conditional expectation of a randon variable of $L_{1}\left(\mathcal{F}_{\infty}\right)$ given \mathcal{F}_{T} is (by definition) the random variable

$$
\begin{equation*}
\mathbb{E}\left(\varphi(B(\cdot)) \mid \mathcal{F}_{T}\right)\left(\omega_{1}\right)=\int \varphi\left(B(\cdot)\left(\omega_{1}\right) \bigsqcup^{T\left(\omega_{1}\right)} B(\cdot)\left(\omega_{2}\right)\right) P\left(\mathrm{~d} \omega_{2}\right) \tag{4~b4}
\end{equation*}
$$

In other words, it is the expectation according to the conditional distribution of $B(\cdot)$ given $\left.B(\cdot)\right|_{[0, T]}$.

4b5 Exercise. Prove the total expectation formula:

$$
\mathbb{E} \varphi(B(\cdot))=\mathbb{E}\left(\mathbb{E}\left(\varphi(B(\cdot)) \mid \mathcal{F}_{T}\right)\right)
$$

for $\varphi(B(\cdot)) \in L_{1}\left(\mathcal{F}_{\infty}\right)$.
In other words:

$$
\mathbb{E} X=\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{T}\right)\right) \quad \text { for } X \in L_{1}\left(\mathcal{F}_{\infty}\right)
$$

[^6]4b6 Exercise. For all $X \in L_{\infty}\left(\mathcal{F}_{T}\right), Y \in L_{1}\left(\mathcal{F}_{\infty}\right)$,

$$
\mathbb{E}\left(X Y \mid \mathcal{F}_{T}\right)=X \mathbb{E}\left(Y \mid \mathcal{F}_{T}\right)
$$

Prove it.
4b7 Definition. A Brownian martingale ${ }^{1}$ is a family $\left(M_{t}\right)_{t \in[0, \infty)}$ of $M_{t} \in$ $L_{1}\left(\mathcal{F}_{t}\right)$ such that

$$
\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right)=M_{s} \quad \text { a.s. for } 0 \leq s \leq t<\infty .
$$

(I write M_{t} and $M(t)$ interchangingly.)
Examples of Brownian martingales:

$$
\begin{array}{ll}
M(t)=B(t), & M(t)=B^{2}(t)-t, \\
M(t)=B^{3}(t)-3 t B(t), & M(t)=B^{4}(t)-6 t B^{2}(t)+3 t^{2}, \\
M(t)=\mathrm{e}^{-\lambda^{2} t / 2} \exp \lambda B(t), & \\
M(t)=\mathrm{e}^{-\lambda^{2} t / 2} \cosh \lambda B(t), & M(t)=\mathrm{e}^{-\lambda^{2} t / 2} \sinh \lambda B(t), \\
M(t)=\mathrm{e}^{\lambda^{2} t / 2} \cos \lambda B(t), & M(t)=\mathrm{e}^{\lambda^{2} t / 2} \sin \lambda B(t)
\end{array}
$$

and, more generally,

$$
\begin{equation*}
M(t)=f(t, B(t)) \tag{4b8}
\end{equation*}
$$

where f satisfies the conditions of Lemma 4a5 and the PDE (4a4). And, of course, the process

$$
M_{t}=\mathbb{E}\left(X \mid \mathcal{F}_{t}\right)
$$

is a Brownian martingale for every $X \in L_{1}\left(\mathcal{F}_{\infty}\right)$.
4b9 Exercise. Prove that the following process is a Brownian martingale:

$$
M(t)=\left\{\begin{array}{l}
\int_{0}^{t} B(s) \mathrm{d} s+(1-t) B(t) \quad \text { if } t \in[0,1] \\
\int_{0}^{1} B(s) \mathrm{d} s \quad \text { if } t \in[1, \infty)
\end{array}\right.
$$

4b10 Theorem. If f satisfies the conditions of Lemma 4a5 then the following process is a Brownian martingale:

$$
M(t)=f(t, B(t))-\int_{0}^{t} g(s, B(s)) \mathrm{d} s
$$

where $g=f_{1,0}+\frac{1}{2} f_{0,2}$, that is,

$$
g(t, x)=\left(\frac{\partial}{\partial t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\right) f(t, x)
$$

[^7]4b11 Exercise. Prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E} \int_{0}^{t} g(s, B(s)) \mathrm{d} s=\mathbb{E} g(t, B(t)) \quad \text { for } t>0
$$

4b12 Exercise. Prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{E} M(t)=0 \quad \text { for } t>0
$$

4b13 Exercise. Prove Theorem 4b10.

4c Nothing happens suddenly to Brownian motion

4 c 1 Theorem. Every Brownian martingale can be upgraded ${ }^{1},{ }^{2}$ to a random continuous function.

Similarly to the Brownian motion itself, we always upgrade $\left(M_{t}\right)_{t}$ this way.

Sample functions of a Brownian martingale are continuous.
$\mathbf{4 c} \mathbf{2}$ Corollary. For every stopping time T such that $T>0$ a.s. there exist stopping times T_{1}, T_{2}, \ldots such that almost surely

$$
T_{n} \uparrow T, \quad T_{n}<T
$$

Nothing happens suddenly to Brownian motion.
A striking contrast to jumping processes! I mean the Poisson process, the special Levy process, the Cauchy process.

Proof of Corollary 4 c2. The process ${ }^{3}$

$$
M_{t}=\mathbb{E}\left(\left.\frac{T}{T+1} \right\rvert\, \mathcal{F}_{t}\right)
$$

is a Brownian martingale. By Theorem 4c11 it is continuous a.s. Clearly, $M_{T}=\frac{T}{T+1}$ and moreover,

$$
T=\inf \left\{t: M_{t}-\frac{t}{t+1}=0\right\}
$$

[^8](think, why). We take
$$
T_{n}=\min \left\{t \in[0, \infty): M_{t}-\frac{t}{t+1} \leq \frac{1}{n}\right\} .
$$

Now we have to prove Theorem 4c1)
We consider $\left(M_{t}\right)_{t \in[0,1]}$ (larger intervals are treated similarly); thus,

$$
M(t)=\mathbb{E}\left(X \mid \mathcal{F}_{t}\right)
$$

for some $X \in L_{1}\left(\mathcal{F}_{1}\right)$ (namely, $X=M_{1}$). Our first goal is to show that it is sufficient to ensure a.s. continuity of $M(\cdot)$ for a dense set of $X \in L_{1}\left(\mathcal{F}_{1}\right)$.

4 c 3 Proposition. For every $X \in L_{1}\left(\mathcal{F}_{1}\right)$ there exist $X_{n} \in L_{1}\left(\mathcal{F}_{1}\right)$ such that
(a) $\mathbb{E}\left|X_{n}-X\right| \rightarrow 0$ as $n \rightarrow \infty$,
(b) each martingale

$$
M_{n}(t)=\mathbb{E}\left(X_{n} \mid \mathcal{F}_{t}\right)
$$

can be upgraded to a random continuous function,
(c) $M_{n}(\cdot)$ converge in $C[0,1]$ almost surely; that is,

$$
\max _{t \in[0,1]}\left|M_{n}(t)-M_{\infty}(t)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for some random continuous function $M_{\infty}(\cdot)$.
Proof of Th. [4c1, given Prop. 4c3. The equivalence class $M(t)$ contains $M_{\infty}(t)$, since

$$
\begin{aligned}
& \mathbb{E}\left|M(t)-M_{n}(t)\right|=\mathbb{E}\left|\mathbb{E}\left(X-X_{n} \mid \mathcal{F}_{t}\right)\right| \leq \\
& \leq \mathbb{E}\left(\mathbb{E}\left(\left|X-X_{n}\right| \mid \mathcal{F}_{t}\right)\right)=\mathbb{E}\left|X-X_{n}\right| \rightarrow 0
\end{aligned}
$$

and therefore $M_{n_{k}}(t) \rightarrow M(t)$ a.s. (for an appropriate subsequence).
$4 \mathbf{c} 4$ Exercise. Let $\left(M_{t}\right)_{t}$ be a Brownian martingale, and $T \subset[0,1]$ a countable set. Then

$$
\mathbb{P}\left(\sup _{t \in T}|M(t)| \geq c\right) \leq \frac{\mathbb{E}|M(1)|}{c} \quad \text { for } c \in(0, \infty)
$$

Prove it.
4c5 Exercise. Prove Item (c) of Prop. 4c3, assuming Items (a) and (b).

It remains to ensure a.s. continuity (in t) of $M(t)=\mathbb{E}\left(X \mid \mathcal{F}_{t}\right)$ for all X of a dense set of $\mathcal{X} \subset L_{1}\left(\mathcal{F}_{1}\right)$. Moreover, it is enough if linear combinations of these X are dense. There are several reasonable choices of such \mathcal{X}. You may try bounded uniformly continuous functions $C[0, \infty) \rightarrow \mathbb{R}$, or $X=f\left(B\left(t_{1}\right), \ldots, B\left(t_{n}\right)\right)$ for bounded continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, or $X=$ $\int_{0}^{1} \exp (\mathrm{i} f(t) B(t)) \mathrm{d} t$ etc. I prefer indicators $X=\mathbb{1}_{A}$ of events of the form

$$
\begin{equation*}
A=\left\{a_{1} \leq B\left(t_{1}\right) \leq b_{1}, \ldots, a_{n} \leq B\left(t_{n}\right) \leq b_{n}\right\} \tag{4c6}
\end{equation*}
$$

4 c 7 Exercise. Let $0<t_{1}<\cdots<t_{n}<1$, and $-\infty<a_{k}<b_{k}<\infty$ for $k=1, \ldots, n$. Then the random function

$$
M(t)=\mathbb{E}\left(\prod_{k=1}^{n} \mathbb{1}_{\left[a_{k}, b_{k}\right]}\left(B\left(t_{k}\right)\right) \mid \mathcal{F}_{t}\right)
$$

is continuous a.s.
Prove it.
Linear combinations of (arbitrary) indicators are dense in $L_{1}\left(\mathcal{F}_{1}\right)$. It remains to prove that sets of the form (4c6) and their disjoint unions are dense in $\mathcal{F}_{1}(\bmod 0)$ according to the metric $\operatorname{dist}(A, B)=\mathbb{P}(A \backslash B)+\mathbb{P}(B \backslash A)$. This claim follows easily from the next general lemma.

4 c 8 Lemma. Let (Ω, \mathcal{F}, P) be a probability space, and $\mathcal{A} \subset \mathcal{F}$ an algebra of sets that generates $\mathcal{F}(\bmod 0)$. Then:
(a) For every $C \in \mathcal{F}$ and $\varepsilon>0$ there exist $A_{1}, A_{2}, \cdots \in \mathcal{A}$ such that $C \subset A_{1} \cup A_{2} \cup \ldots$ and $P\left(A_{1} \cup A_{2} \cup \ldots\right) \leq P(C)+\varepsilon$. In other words, there exists $A \in \mathcal{A}_{\sigma}$ such that $C \subset A$ and $P(A) \leq P(C)+\varepsilon$.
(b) For every $C \in \mathcal{F}$ there exist $B_{1}, B_{2}, \cdots \in \mathcal{A}_{\sigma}$ such that $B_{1} \supset B_{2} \supset \ldots$, $C \subset B_{1} \cap B_{2} \ldots$, and $P(C)=P\left(B_{1} \cap B_{2} \ldots\right)$. In other words, there exists $B \in \mathcal{A}_{\sigma \delta}$ such that $C \subset B$ and $P(B \backslash C)=0$.
(c) For every $C \in \mathcal{F}$ and $\varepsilon>0$ there exists $A \in \mathcal{A}$ such that $P(A \backslash C)+$ $P(C \backslash A) \leq \varepsilon$.

See [1], Appendix A.3.
The proof of Theorem 4c1 is thus finished.
On the other hand, our approach to conditioning gives us another way of upgrading a martingale to a random function, at least when $X=M(1)=$ $\varphi(B(\cdot))$ for a bounded Borel function $\varphi: C[0,1] \rightarrow \mathbb{R} .{ }^{1}$ Namely,

$$
\begin{equation*}
M(t)\left(\omega_{1}\right)=\mathbb{E}\left(X \mid \mathcal{F}_{t}\right)\left(\omega_{1}\right)=\int \varphi\left(B(\cdot)\left(\omega_{1}\right) \bigsqcup^{t} B(\cdot)\left(\omega_{2}\right)\right) P\left(\mathrm{~d} \omega_{2}\right) \tag{4c9}
\end{equation*}
$$

[^9]Several questions appear naturally. What happens if we change φ on a negligible (w.r.t. the Wiener measure) set? What happens if φ is not bounded? And, above all: is it a random continuous function?

4 c 10 Exercise. Let $\varphi, \varphi_{1}, \varphi_{2}, \cdots: C[0,1] \rightarrow[-1,1]$ be Borel functions such that $\varphi_{n}(x) \uparrow \varphi(x)($ as $n \rightarrow \infty)$ for every $x \in C[0,1]$, and M, M_{1}, M_{2}, \ldots random functions corresponding to $\varphi, \varphi_{1}, \varphi_{2}, \ldots$ according to (4c9). If each M_{k} is a.s. continuous, then M is a.s. continuous.

Prove it.
Due to 4 c 7 we have an algebra $\mathcal{A} \subset \mathcal{B}_{1}$ such that
(a) \mathcal{A} generates \mathcal{B}_{1},
(b) for every $A \in \mathcal{A}$ the random function $M_{A}(t)=\mathbb{P}\left(A \mid \mathcal{F}_{t}\right)$ is a.s. continuous.

By 4c10, $M_{B}(\cdot)$ is a.s. continuous for all $B \in \mathcal{A}_{\sigma}$ and moreover, all $B \in$ $\mathcal{A}_{\sigma \delta}$.

4c11 Exercise. If $C \in \mathcal{B}_{1}$ is negligible in the sense that $\mathbb{P}(B(\cdot) \in C)=0$, then $\mathbb{P}\left(\forall t M_{C}(t)=0\right)=1$.

Prove it.
Combining 4c11 and 4c8(b) we get the following.
$4 \mathbf{c} 12$ Theorem. For every Borel set $G \subset C[0,1]$, the following random function is a.s. continuous:

$$
M_{G}(t)=\mathbb{P}\left(B(\cdot) \in G \mid \mathcal{F}_{t}\right)
$$

that is,

$$
M_{G}(t)\left(\omega_{1}\right)=\mathbb{P}\left(\left\{\omega_{2}: B(\cdot)\left(\omega_{1}\right) \bigsqcup^{t} B(\cdot)\left(\omega_{2}\right) \in G\right)\right\} .
$$

4c13 Exercise. $\forall G \quad \mathbb{P}\left(M_{G}(\cdot)\right.$ is continuous $)=1$, however, $\mathbb{P}\left(\forall G M_{G}(\cdot)\right.$ is continuous $)=0$; here G runs over all Borel subsets of $C[0,1]$.

Prove it.
4 c 14 Exercise. Let $A \in \mathcal{F}_{t}$ for all $t>0$; then either $\mathbb{P}(A)=0$ or $\mathbb{P}(A)=1$. ('Blumenthal's $0-1$ law')

Prove it.
In other words, $\mathcal{F}_{0+}=\mathcal{F}_{0}(\bmod 0)$. See also [1], Sect. 7.2, (2.5).
4 c 15 Exercise. Give another proof to 2b6, using 4c14 (and not the distribution of T_{x}).

4c16 Exercise. For every $f:(0, \infty) \rightarrow(0, \infty)$ the random variable

$$
\limsup _{t \rightarrow 0+} \frac{B(t)}{f(t)} \in[0, \infty]
$$

is degenerate (that is, equal a.s. to a constant).
Prove it.
4 c 17 Exercise. Generalize 4 c 14 for $A \in \cap_{\varepsilon>0} \mathcal{F}_{T+\varepsilon}$, where T is a stopping time. That is, show that $\mathcal{F}_{T+}=\mathcal{F}_{T}(\bmod 0)$.
4 c 18 Exercise. Generalize 4 c 10 to the case when $\varphi_{k}: C[0,1] \rightarrow[0, \infty)$ are bounded, while $\varphi: C[0,1] \rightarrow[0, \infty)$ need not be bounded, but $\mathbb{E} \varphi(B(\cdot))<$ ∞.

4c19 Exercise. Let $\varphi: C[0,1] \rightarrow \mathbb{R}$ be a Borel function such that $\mathbb{E} \varphi(B(\cdot))<$ ∞. Then the random function

$$
M(t)=\mathbb{E}\left(\varphi(B(\cdot)) \mid \mathcal{F}_{t}\right)
$$

is a.s. continuous.
Prove it.

4d Hints to exercises

4a12. $\mathbb{E}\left(B^{4}(T \wedge n)-6(T \wedge n) B^{2}(T \wedge n)\right)=-3(T \wedge n)^{2}$; use T as an integrable majorant in the left-hand side...
$4 a 13 \mathbb{E}\left(\mathrm{e}^{\lambda^{2} T / 2} \mathbb{1}_{[0, t]}(T)\right) \leq \frac{1}{\cos \lambda}$ for all $\lambda \in[0, \pi / 2)$ and $t \in(0, \infty)$.
4c4) recall 3c11.
4c5] $\sum_{n} \mathbb{P}\left(\max _{[0,1]}\left|M_{n}-M_{n+1}\right| \geq 1 / n^{2}\right) \leq \sum_{n} n^{2} \mathbb{E}\left|X_{n}-X_{n+1}\right|<\infty$.
4c7. Consider the integral of the density; note that $B\left(t_{k}\right) \neq a_{k}, B\left(t_{k}\right) \neq b_{k}$ a.s.

4c10. By (4c9) and the bounded convergence theorem, $\mathbb{P}\left(\forall t \in[0,1] M_{n}(t) \uparrow\right.$ $M(t))=1$. On the other hand, similarly to 4c5, $M_{n}(\cdot)$ converge in $C[0,1]$ to some $M_{\infty}(\cdot)$ a.s., if $\varphi_{n} \rightarrow \varphi$ fast enough (take a subsequence). Therefore $M(\cdot)=M_{\infty}(\cdot)$ a.s.

4c11. 4c8(b) gives a negligible $B \in \mathcal{A}_{\sigma \delta}$ such that $C \subset B$; thas, $M_{C}(\cdot) \leq$ $M_{B}(\cdot), M_{B}(\cdot)$ is continuous, and $\mathbb{E} M_{B}(t)=\mathbb{E} M_{B}(1)=0$.

4c13: Consider $G=G_{x}=\{f: f(1) \leq x\}$ for all $x \in \mathbb{R}$.
4c14; consider $\mathbb{P}\left(A \mid \mathcal{F}_{t}\right)$.
4c19] $\varphi=\varphi^{+}-\varphi^{-}$; use 4c18, each φ_{k} being a linear combination of indicators.

References

[1] R. Durrett, Probability: theory and examples, 1996.

Index

Blumenthal, 49
conditional distribution, 43
conditional expectation, 44
conditional probability, 43
martingale, 45
total expectation, 44 total probability, 44
upgraded, 46
$\mathcal{B}_{T}, 43$
\mathcal{F}_{T},43
$\mathcal{F}_{\infty}, 43$
$f \stackrel{a}{\square} g$,43
f_{+t}, 38
$f_{1,0}, f_{0,2}, 38$

[^0]: ${ }^{1}$ Compare it with the proof of (2a7).
 ${ }^{2}$ As before, $p_{t}(x)=(2 \pi t)^{-1 / 2} \exp \left(-\frac{x^{2}}{2 t}\right)$.

[^1]: ${ }^{1}$ Assuming integrability. Of course, p_{t} does not work for $t=0$.
 ${ }^{2}$ Or rather, time reversed heat equation with coefficient $1 / 2$; the standard heat equation contains $\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}$.

[^2]: ${ }^{1}$ Here $\ln ^{+} a=\max (0, \ln a)$.

[^3]: ${ }^{1}$ See [1], Sect. 7.5, Theorem (5.9).
 ${ }^{2}$ A.N. Tychonoff, Matem. Sbornik 32 (1935), 199-216.
 ${ }^{3}$ See (1.18)-(1.24) on page 212 in: F. John, "Partial differential equations", Springer (fourth edition).

[^4]: ${ }^{1}$ See also [1], Sect. 7.5, Th. (5.7).

[^5]: ${ }^{1}$ Recall Lemma B in Correction to 2 f .
 ${ }^{2}$ Often $\mathcal{F}_{\infty}=\mathcal{F}$; always $\mathcal{F}_{\infty} \subset \mathcal{F} ;$ and sometimes $\mathcal{F}_{\infty} \neq \mathcal{F}$, recall $3 \mathrm{c}(\Omega \times$ $\left.\{0,1, \ldots, n\}^{\infty}\right)$.

[^6]: ${ }^{1}$ An example in the framework of densities: the conditional density of X given $Y=0$ is proportional to $p_{X, Y}(x, 0)$, but the conditional density of X given $Y / X=0$ is proportional to $|x| p_{X, Y}(x, 0)$.

[^7]: ${ }^{1}$ A Brownian martingale is a martingale w.r.t. the Brownian filtration $\left(\mathcal{F}_{t}\right)_{t}$. Generally, a martingale w.r.t. a given filtration is defined similarly.

[^8]: ${ }^{1}$ In the sense discussed in 1e (after 1e6).
 ${ }^{2}$ Generally, a martingale (w.r.t. any filtration) can be upgraded to a random r.c.l.l function.
 ${ }^{3}$ The idea is, to consider the expected remaining time, $\mathbb{E}\left(T-t \mid \mathcal{F}_{t}\right)$. However, T need not be integrable.

[^9]: ${ }^{1}$ I often write $\varphi(B(\cdot))$ instead of $\varphi\left(\left.B(\cdot)\right|_{[0,1]}\right)$.

