5 Localization

5a Heat equation localized 52
5b Local martingales 55
5c Heat equation revisited 56
5d Finite lifetime 57
5e Hints to exercises 58

Local aspects (derivatives) and global aspects (growth on infinity) are entangled in Sect. 4. Now we'll see how to disentangle them.

5a Heat equation localized

5a1 Lemma. Let $K \subset[0, \infty) \times \mathbb{R}$ be a compact set, and T a stopping time such that ${ }^{1}$

$$
\mathbb{P}(\forall t(t \wedge T, B(t \wedge T)) \in K)=1
$$

Let $G \subset[0, \infty) \times \mathbb{R}$ be a relatively open set, ${ }^{2} G \supset K$, and $u: G \rightarrow \mathbb{R}$ a continuous function having continuous derivatives $u_{1,0}, u_{0,1}, u_{0,2}$ and satisfying the PDE $u_{1,0}+\frac{1}{2} u_{0,2}=0 .{ }^{3}$ Then the following process is a martingale:

$$
M(t)=u(t \wedge T, B(t \wedge T))
$$

The proof will be given after some preparation. If T is a stopping time such that $\exists t \mathbb{P}(T \leq t)=1$, then (recall 3a5 and 4a10)

$$
\begin{equation*}
\mathbb{E} B(T)=0, \quad \mathbb{E} B^{2}(T)=\mathbb{E} T \tag{5a2}
\end{equation*}
$$

5a3 Exercise. Let T be a stopping time, $f \in C[0, \infty)$, and $t \in[0, T(f)]$. Then the function

$$
g \mapsto T(f \stackrel{t}{\sqcup} g)-t
$$

is a stopping time.
Prove it.

[^0]5a4 Exercise. Let T_{1}, T_{2} be stopping times, $\exists t \mathbb{P}\left(T_{2} \leq t\right)=1$. Then the equalities

$$
\begin{align*}
\mathbb{E}\left(B\left(T_{2}\right)-B\left(T_{1}\right) \mid \mathcal{F}_{T_{1}}\right) & =0, \tag{5a5}\\
\mathbb{E}\left(\left(B\left(T_{2}\right)-B\left(T_{1}\right)\right)^{2} \mid \mathcal{F}_{T_{1}}\right) & =\mathbb{E}\left(T_{2}-T_{1} \mid \mathcal{F}_{T_{1}}\right) \tag{5a6}
\end{align*}
$$

hold almost surely on the event $\left\{T_{1} \leq T_{2}\right\}$.
Prove it.
Proof of Lemma 5a1. Denote $M(t)=u(t \wedge T, B(t \wedge T))$. We have to prove that $\mathbb{E}\left(M(t) \mid \mathcal{F}_{s}\right)=M(s)$ for $s \leq t$. It is sufficient to prove that

$$
\begin{equation*}
\mathbb{E}\left(M(t) \mid \mathcal{F}_{s}\right)-M(s)=o(t-s) \quad \text { a.s. for } s \leq t ; \tag{5a7}
\end{equation*}
$$

here and henceforth all $o(\ldots)$ are uniform (in everything; this time, in s, t, ω). Here is why (5a7) is sufficient:

$$
\mathbb{E}\left(\mathbb{E}\left(M(t+\varepsilon) \mid \mathcal{F}_{t}\right) \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(M(t+\varepsilon) \mid \mathcal{F}_{s}\right)
$$

(think, why), thus,

$$
\begin{gathered}
\left|\mathbb{E}\left(M(t+\varepsilon) \mid \mathcal{F}_{s}\right)-\mathbb{E}\left(M(t) \mid \mathcal{F}_{s}\right)\right|=\left|\mathbb{E}\left(\mathbb{E}\left(M(t+\varepsilon) \mid \mathcal{F}_{t}\right)-M(t) \mid \mathcal{F}_{s}\right)\right| \leq \\
\leq \mathbb{E}\left(\left|\mathbb{E}\left(M(t+\varepsilon) \mid \mathcal{F}_{t}\right)-M(t)\right| \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(o(\varepsilon) \mid \mathcal{F}_{s}\right)=o(\varepsilon)
\end{gathered}
$$

It remains to prove (5a7).
On the event $\{T<s\}$ we have

$$
\mathbb{E}\left(M(t) \mid \mathcal{F}_{s}\right)-M(s)=\mathbb{E}\left(u(T, B(T)) \mid \mathcal{F}_{s}\right)-u(T, B(T))=0 \quad \text { a.s. }
$$

thus, it is sufficient to prove (5a7) on the event $\{T \geq s\}$. From now on we assume $T \geq s$.

We define R by

$$
\begin{aligned}
& \quad u(t \wedge T, B(t \wedge T))-u(s, B(s))=u_{1,0}(s, B(s))(t \wedge T-s)+ \\
& +u_{0,1}(s, B(s))(B(t \wedge T)-B(s))+\frac{1}{2} u_{0,2}(s, B(s))(B(t \wedge T)-B(s))^{2}+R
\end{aligned}
$$

take $\mathbb{E}\left(\ldots \mid \mathcal{F}_{s}\right)$, use (5a5), (5a6) and get

$$
\begin{aligned}
& \mathbb{E}\left(M(t) \mid \mathcal{F}_{s}\right)-M(s)=u_{1,0}(s, B(s)) \mathbb{E}\left(t \wedge T-s \mid \mathcal{F}_{s}\right)+ \\
& \quad+u_{0,1}(s, B(s)) \cdot 0+\frac{1}{2} u_{0,2}(s, B(s)) \cdot \mathbb{E}\left(t \wedge T-s \mid \mathcal{F}_{s}\right)+\mathbb{E}\left(R \mid \mathcal{F}_{s}\right)= \\
& =\left(u_{1,0}+\frac{1}{2} u_{0,2}\right)(s, B(s)) \cdot \mathbb{E}\left(t \wedge T-s \mid \mathcal{F}_{s}\right)+\mathbb{E}\left(R \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(R \mid \mathcal{F}_{s}\right)
\end{aligned}
$$

it remains to check that $\mathbb{E}\left(R \mid \mathcal{F}_{s}\right)=o(t-s)$.
We have

$$
R=o(t \wedge T-s)+o\left((B(t \wedge T)-B(s))^{2}\right)
$$

$o(\ldots)$ are uniform (in $s, t, \omega)$ since $u_{1,0}$ and $u_{0,2}$ are uniformly continuous on K. Clearly, $t \wedge T-s \leq t-s$. It remains to prove that

$$
\int_{-\infty}^{+\infty}\left(o\left(x^{2}\right) \wedge C\right) p_{\varepsilon}(x) \mathrm{d} x=o(\varepsilon)
$$

The integral over $\mathbb{R} \backslash[-\delta, \delta]$ is exponentially small. The integral over $[-\delta, \delta]$ is much smaller than $\int x^{2} p_{\varepsilon}(x) \mathrm{d} x=\varepsilon$ if δ is small enough.

We may generalize 5 al in the spirit of 4 b 10 .
5a8 Lemma. Let $K \subset[0, \infty) \times \mathbb{R}$ be a compact set, and T a stopping time such that

$$
\mathbb{P}(\forall t(t \wedge T, B(t \wedge T)) \in K)=1
$$

Let $G \subset[0, \infty) \times \mathbb{R}$ be a relatively open set, $G \supset K$, and $u: G \rightarrow \mathbb{R}$ a continuous function having continuous derivatives $u_{1,0}, u_{0,1}, u_{0,2}$. Then the following process is a martingale:

$$
M(t)=u(t \wedge T, B(t \wedge T))-\int_{0}^{t \wedge T} v(s, B(s)) \mathrm{d} s
$$

where $v=u_{1,0}+\frac{1}{2} u_{0,2}$.
Proof. Similarly to the proof of 5a1 we get

$$
\begin{aligned}
& \mathbb{E}\left(M(t) \mid \mathcal{F}_{s}\right)-M(s)= \\
& \begin{aligned}
=v(s, B(s)) \cdot \mathbb{E}(t & \left(\wedge T-s \mid \mathcal{F}_{s}\right)+\mathbb{E}\left(R \mid \mathcal{F}_{s}\right)-\mathbb{E}\left(\int_{s}^{t \wedge T} v(r, B(r)) \mathrm{d} r \mid \mathcal{F}_{s}\right)= \\
= & \mathbb{E}\left(R \mid \mathcal{F}_{s}\right)-\mathbb{E}\left(\int_{s}^{t \wedge T}(v(r, B(r))-v(s, B(s))) \mathrm{d} r \mid \mathcal{F}_{s}\right)
\end{aligned}
\end{aligned}
$$

By the uniform continuity of v on K, for every ε there exists δ such that $|v(r, B(r))-v(s, B(s))| \leq \varepsilon$ whenever $|r-s| \leq \delta$ and $|B(r)-B(s)| \leq \delta$. Assuming $t-s \leq \delta$ we have

$$
\begin{aligned}
& \mathbb{E}\left(\int_{s}^{t \wedge T}|v(r, B(r))-v(s, B(s))| \mathrm{d} r \mid \mathcal{F}_{s}\right) \leq \\
& \quad \leq \varepsilon(t \wedge T-s)+2\left(\max _{K}|v(\cdot)|\right) \mathbb{P}\left(\max _{[s, t \wedge T]}|B(\cdot)-B(s)|>\delta \mid \mathcal{F}_{s}\right) \leq \\
& \leq \varepsilon(t-s)+o(t-s)
\end{aligned}
$$

Therefore it is $o(t-s)$.

5b Local martingales

5b1 Definition. A Brownian local martingale ${ }^{1}$ is a random continuous function $\left(M_{t}\right)_{t \in[0, \infty)}$ (on a probability space carrying a Brownian motion $\left.\left(B_{t}\right)_{t}\right)$ such that there exists a sequence of stopping times T_{1}, T_{2}, \ldots (so-called localizing sequence) satisfying

$$
\begin{gathered}
T_{n} \uparrow+\infty \text { a.s.; } \\
\left(M_{t \wedge T_{n}}\right)_{t} \quad \text { is a Brownian martingale (for each } n \text {). }
\end{gathered}
$$

5b2 Proposition. Let $u:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function having continuous derivatives $u_{1,0}, u_{0,1}, u_{0,2}$. Then the following process is a Brownian local martingale:

$$
M(t)=u(t, B(t))-\int_{0}^{t} v(s, B(s)) \mathrm{d} s
$$

where $v=u_{1,0}+\frac{1}{2} u_{0,2}$.
Proof. Let $T_{n}=\inf \{t:(t, B(t)) \notin[0, n) \times(-n, n)\}$, then clearly $T_{n} \uparrow \infty$, and $\left(M\left(t \wedge T_{n}\right)\right)_{t}$ is a martingale by Lemma 5a8,

5b3 Corollary. Let u satisfy the conditions of Prop. 5b2 and the PDE $u_{1,0}+\frac{1}{2} u_{0,2}=0$. Then the process $M(t)=u(t, B(t))$ is a local martingale.

Recall Tychonoff's counterexample mentioned in 4a (after 4a12); it is a function that satisfies the PDE (4a4) but violates (4a1). By 5b3 it leads to a local martingale that is not a martingale. Somehow, the expectation escapes to the spatial infinity when $t \rightarrow 1-.^{2}$

5b4 Exercise. The following is a local martingale but not a martingale: ${ }^{3}$

$$
M(t)= \begin{cases}p_{1-t}(B(t)) & \text { for } t \in[0,1) \\ 0 & \text { for } t \in[1, \infty)\end{cases}
$$

Prove it.

[^1]5b5 Proposition. Let $\left(M_{t}\right)_{t}$ be a local martingale, $\left(T_{n}\right)_{n}$ a localizing sequence, and

$$
\sup _{n} \mathbb{E} M_{t \wedge T_{n}}^{2}<\infty \quad \text { for all } t
$$

Then $\left(M_{t}\right)_{t}$ is a martingale.
5b6 Corollary. A local martingale $\left(M_{t}\right)_{t}$ satisfying

$$
\mathbb{E} \max _{s \in[0, t]} M_{s}^{2}<\infty \quad \text { for all } t
$$

is a martingale.
5b7 Exercise. Prove that

$$
\left\|M_{t \wedge T_{n+k}}-M_{t \wedge T_{n}}\right\|_{1} \leq 2 \sqrt{\mathbb{P}\left(T_{n}<t\right)}\left(\left\|M_{t \wedge T_{n+k}}\right\|_{2}+\left\|M_{t \wedge T_{n}}\right\|_{2}\right) .
$$

5b8 Exercise. Prove that $M_{t} \in L_{1}$ and $M_{t \wedge T_{n}} \rightarrow M_{t}$ in L_{1} as $n \rightarrow \infty$.
5b9 Exercise. Prove Prop. 5b5,
The condition $\mathbb{E} M_{t}^{2}<\infty$ on a local martingale does not guarantee that it is a martingale! This condition fails for 5 a10 (and Tychonoff's counterexample), however, later (in Sect. 6c) we'll see a local martingale $M(\cdot)$ satisfying $\sup _{t \in[0, \infty)} \mathbb{E} \mathrm{e}^{|M(t)|}<\infty$ but still not a martingale. ${ }^{1}$

5c Heat equation revisited

5c1 Theorem. ${ }^{2}$ Let u satisfy the conditions of Prop. 5b2 Assume that

$$
\begin{array}{ll}
\frac{1}{x^{2}} \ln ^{+}|u(t, x)| \rightarrow 0 & \text { as } x \rightarrow \pm \infty \\
\frac{1}{x^{2}} \ln ^{+}|v(t, x)| \rightarrow 0 & \text { as } x \rightarrow \pm \infty
\end{array}
$$

uniformly in $t \in[0, b]$ for every b; here $v=u_{1,0}+\frac{1}{2} u_{0,2}$, that is,

$$
v(t, x)=\left(\frac{\partial}{\partial t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\right) u(t, x) .
$$

Then the following process is a Brownian martingale:

$$
M(t)=u(t, B(t))-\int_{0}^{t} v(s, B(s)) \mathrm{d} s
$$

[^2]Theorem 4 b 10 is thus generalized; the condition $\frac{1}{x^{2}} \ln ^{+}\left|u_{i, j}(t, x)\right| \rightarrow 0$ appears to be unnecessary (unless $(i, j)=(0,0))$.

Note especially the case $v=0$.
Also Prop. 4a9 is now generalized: Condition (4a1) is equivalent to the PDE (4a4) for all functions satisfying the conditions of Theorem 5c1

Proof of Theorem [5c1]. Let $T_{n}=\inf \{t:(t, B(t)) \notin[0, n) \times(-n, n)\}$ (as in the proof of (5b2). We have

$$
\begin{aligned}
& \mathbb{P}\left(\max _{[0, t]}|B(\cdot)| \geq c\right) \leq 2 \mathbb{P}\left(\max _{[0, t]} B(\cdot) \geq c\right)=2 \mathbb{P}(|B(t)| \geq c) \\
& |u(t, B(t))| \leq C_{\delta} \exp \left(\delta B^{2}(t)\right), \quad|v(t, B(t))| \leq C_{\delta} \exp \left(\delta B^{2}(t)\right)
\end{aligned}
$$

and we may choose $\delta>0$ at will. Thus,

$$
\begin{aligned}
& \mathbb{E} \max _{[0, t]} M^{2}(\cdot) \leq \mathbb{E}\left(C_{\delta} \exp \left(\delta \max _{[0, t]} B^{2}(\cdot)\right)+t C_{\delta} \exp \left(\delta \max _{[0, t]} B^{2}(\cdot)\right)\right)^{2}= \\
& \quad=C_{\delta}^{2}(1+t)^{2} \mathbb{E} \exp 2 \delta \max _{[0, t]} B^{2}(\cdot) \leq C_{\delta}^{2}(1+t)^{2} \cdot 2 \mathbb{E} \exp 2 \delta B^{2}(t)<\infty
\end{aligned}
$$

if δ is small enough (namely, $2 \delta<\frac{1}{2 t}$). Cor. 5b6 completes the proof.

5d Finite lifetime

5d1 Definition. Let T be a stopping time. A random continuous function on $[0, T)$ is a function ${ }^{1}$

$$
X:\{(t, \omega) \in[0, \infty) \times \Omega: t<T(\omega)\} \rightarrow \mathbb{R}
$$

such that for every t the function $X(t, \cdot)$ on $\{\omega: T(\omega)>t\}$ is measurable, and for almost every ω the function $X(\cdot, \omega)$ on $[0, T(\omega))$ is continuous.

5 d 2 Definition. A random continuous function on $[0, T)$ is a Brownian local martingale ${ }^{2}$ on $[0, T)$ if there exists a sequence of stopping times T_{1}, T_{2}, \ldots (called localizing sequence) satisfying

$$
\begin{array}{ll}
& T_{n}<T \text { and } T_{n} \uparrow T \text { a.s.; } \\
\left(M_{t \wedge T_{n}}\right)_{t} & \text { is a Brownian martingale (for each } n) .
\end{array}
$$

[^3]5 d 3 Proposition. Let $G \subset[0, \infty) \times \mathbb{R}$ be a relatively open set, T a stopping time,

$$
\mathbb{P}(\forall t \in[0, T)(t, B(t)) \in G)=1
$$

$u: G \rightarrow \mathbb{R}$ a continuous function having continuous derivatives $u_{1,0}, u_{0,1}, u_{0,2}$. Then the following process is a Brownian local martingale on $[0, T)$:

$$
M(t)=u(t, B(t))-\int_{0}^{t} v(s, B(s)) \mathrm{d} s \quad \text { for } t \in[0, T)
$$

where $v=u_{1,0}+\frac{1}{2} u_{0,2}$.
Proof. We take relatively open sets $G_{1} \subset G_{2} \subset \cdots \subset G$ such that $(0,0) \in G_{1}$, $G_{1} \cup G_{2} \cup \cdots=G$ and the closure \bar{G}_{n} of G_{n} is a compact subset of G (for each $n) .{ }^{1}$ We define stopping times $T_{n}=\inf \left\{t: t \geq T\right.$ or $\left.(t, B(t)) \notin G_{n}\right\}$ and observe that $T_{n} \uparrow T$ a.s. (since otherwise a compact curve is included in G but not in any G_{n}). By Lemma 5a8 (applied to \bar{G}_{n} and T_{n}) the process $t \mapsto M\left(t \wedge T_{n}\right)$ is a martingale.

5e Hints to exercises

5a3 recall Def. 2 ff .
$5 a 4$ use 5 a 3
5b4. The closed set $\{(t, B(t)): t \in[0, \infty)\}$ a.s. does not contain $(1,0)$.
5b7, $\left\|\mathbb{1}_{T_{n}<t}\right\|_{2}=\sqrt{\mathbb{P}\left(T_{n}<t\right)}$.
5b8: $M_{t \wedge T_{n}}$ converges to something in L_{1}, and to M_{t} a.s.
5b9: $\mathbb{E}\left(M_{t \wedge T_{n}} \mid \mathcal{F}_{s}\right) \rightarrow \mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right)$ in L_{1}.

References

[1] D. Revuz, M. Yor, Continuous martingales and Brownian motion (second edition), 1994.
[2] L.C.G. Rogers, D. Williams, Diffusions, Markov processes, and martingales, vol. 1 (second edition), 1994.

Index

local martingale, 55 relatively open, 52 localizing sequence, 55

[^4]
[^0]: ${ }^{1}$ It is evidently equivalent to $\forall t \mathbb{P}((t \wedge T, B(t \wedge T)) \in K)=1$. As before, $t \wedge T$ means $\min (t, T)$.
 ${ }^{2}$ Just the intersection of the closed half-plane $[0, \infty) \times \mathbb{R}$ and an open subset of the plane \mathbb{R}^{2}.
 ${ }^{3}$ As before, $f_{i, j}(t, x)=\frac{\partial^{i+j}}{\partial t^{i} \partial x^{j}} f(t, x)$.

[^1]: ${ }^{1}$ This is a local martingale w.r.t. the Brownian filtration $\left(\mathcal{F}_{t}\right)_{t}$. Generally, a local martingale w.r.t. a given filtration is defined similarly, but need not be continuous (rather, r.c.l.l.). I often omit the word 'Brownian'.
 ${ }^{2}$ In reversed time, heat comes from the spatial infinity by a giant fast oscillating heat wave. A terrible spectacle!
 ${ }^{3}$ As before, $p_{t}(x)=(2 \pi t)^{-1 / 2} \exp \left(-\frac{x^{2}}{2 t}\right)$.

[^2]: 1 "... we stress the fact that local martingales are much more general than martingales and warn the reader against the common mistaken belief that local martingales need only be integrable in order to be martingales." [1] page 117.
 ${ }^{2}$ See also [2], p. 36 .

[^3]: ${ }^{1}$ Or rather, equivalence class.
 ${ }^{2}$ A martingale, in contrast to a local martingale, is defined on the whole $[0, \infty)$.

[^4]: ${ }^{1}$ For example: G_{n} consists of all points $(t, x) \in G$ such that $t<n,|x|<n$, and the closed $1 / n$-neighborhood of (t, x) in $[0, \infty) \times \mathbb{R}$ is contained in G.

