5 Localization

$\ldots 52$	2
58	5
50	3
$\dots 5'$	7
58	3
	$ \dots 5 $ $ \dots 5 $ $ \dots 5 $

Local aspects (derivatives) and global aspects (growth on infinity) are entangled in Sect. 4. Now we'll see how to disentangle them.

5a Heat equation localized

5a1 Lemma. Let $K \subset [0, \infty) \times \mathbb{R}$ be a compact set, and T a stopping time such that¹

$$\mathbb{P}\big(\forall t \ (t \wedge T, B(t \wedge T)) \in K\big) = 1.$$

Let $G \subset [0, \infty) \times \mathbb{R}$ be a relatively open set,² $G \supset K$, and $u : G \to \mathbb{R}$ a continuous function having continuous derivatives $u_{1,0}, u_{0,1}, u_{0,2}$ and satisfying the PDE $u_{1,0} + \frac{1}{2}u_{0,2} = 0.^3$ Then the following process is a martingale:

$$M(t) = u(t \wedge T, B(t \wedge T)).$$

The proof will be given after some preparation. If T is a stopping time such that $\exists t \mathbb{P}(T \leq t) = 1$, then (recall 3a5 and 4a10)

(5a2)
$$\mathbb{E} B(T) = 0, \quad \mathbb{E} B^2(T) = \mathbb{E} T.$$

5a3 Exercise. Let T be a stopping time, $f \in C[0, \infty)$, and $t \in [0, T(f)]$. Then the function

$$g \mapsto T(f \stackrel{\iota}{\sqcup} g) - t$$

is a stopping time.

Prove it.

³As before, $f_{i,j}(t,x) = \frac{\partial^{i+j}}{\partial t^i \partial x^j} f(t,x).$

¹It is evidently equivalent to $\forall t \ \mathbb{P}((t \wedge T, B(t \wedge T)) \in K) = 1$. As before, $t \wedge T$ means $\min(t, T)$.

²Just the intersection of the closed half-plane $[0, \infty) \times \mathbb{R}$ and an open subset of the plane \mathbb{R}^2 .

Tel Aviv University, 2008

5a4 Exercise. Let T_1, T_2 be stopping times, $\exists t \mathbb{P}(T_2 \leq t) = 1$. Then the equalities

(5a5)
$$\mathbb{E}\left(B(T_2) - B(T_1) \middle| \mathcal{F}_{T_1}\right) = 0,$$

(5a6)
$$\mathbb{E}\left(\left(B(T_2) - B(T_1)\right)^2 \middle| \mathcal{F}_{T_1}\right) = \mathbb{E}\left(T_2 - T_1 \middle| \mathcal{F}_{T_1}\right)$$

hold almost surely on the event $\{T_1 \leq T_2\}$.

Prove it.

Proof of Lemma 5a1. Denote $M(t) = u(t \wedge T, B(t \wedge T))$. We have to prove that $\mathbb{E}(M(t) | \mathcal{F}_s) = M(s)$ for $s \leq t$. It is sufficient to prove that

(5a7)
$$\mathbb{E}(M(t) | \mathcal{F}_s) - M(s) = o(t-s) \quad \text{a.s. for } s \le t;$$

here and henceforth all o(...) are uniform (in everything; this time, in s, t, ω). Here is why (5a7) is sufficient:

$$\mathbb{E}\left(\mathbb{E}\left(M(t+\varepsilon) \left| \mathcal{F}_{t}\right)\right| \mathcal{F}_{s}\right) = \mathbb{E}\left(M(t+\varepsilon) \left| \mathcal{F}_{s}\right)\right)$$

(think, why), thus,

$$|\mathbb{E}(M(t+\varepsilon)|\mathcal{F}_s) - \mathbb{E}(M(t)|\mathcal{F}_s)| = |\mathbb{E}(\mathbb{E}(M(t+\varepsilon)|\mathcal{F}_t) - M(t)|\mathcal{F}_s)| \le \le \mathbb{E}(|\mathbb{E}(M(t+\varepsilon)|\mathcal{F}_t) - M(t)||\mathcal{F}_s) = \mathbb{E}(o(\varepsilon)|\mathcal{F}_s) = o(\varepsilon).$$

It remains to prove (5a7).

On the event $\{T < s\}$ we have

$$\mathbb{E}\left(M(t) \left| \mathcal{F}_{s}\right) - M(s) = \mathbb{E}\left(u(T, B(T)) \left| \mathcal{F}_{s}\right) - u(T, B(T)) = 0 \quad \text{a.s.},\right.$$

thus, it is sufficient to prove (5a7) on the event $\{T \ge s\}$. From now on we assume $T \ge s$.

We define R by

$$u(t \wedge T, B(t \wedge T)) - u(s, B(s)) = u_{1,0}(s, B(s))(t \wedge T - s) + u_{0,1}(s, B(s))(B(t \wedge T) - B(s)) + \frac{1}{2}u_{0,2}(s, B(s))(B(t \wedge T) - B(s))^2 + R,$$

take $\mathbb{E}(\ldots | \mathcal{F}_s)$, use (5a5), (5a6) and get

$$\mathbb{E}\left(M(t)\left|\mathcal{F}_{s}\right)-M(s)=u_{1,0}(s,B(s))\mathbb{E}\left(t\wedge T-s\left|\mathcal{F}_{s}\right.\right)+u_{0,1}(s,B(s))\cdot0+\frac{1}{2}u_{0,2}(s,B(s))\cdot\mathbb{E}\left(t\wedge T-s\left|\mathcal{F}_{s}\right.\right)+\mathbb{E}\left(R\left|\mathcal{F}_{s}\right.\right)=\left(u_{1,0}+\frac{1}{2}u_{0,2}\right)(s,B(s))\cdot\mathbb{E}\left(t\wedge T-s\left|\mathcal{F}_{s}\right.\right)+\mathbb{E}\left(R\left|\mathcal{F}_{s}\right.\right)=\mathbb{E}\left(R\left|\mathcal{F}_{s}\right.\right);$$

Tel Aviv University, 2008

Brownian motion

it remains to check that $\mathbb{E}(R|\mathcal{F}_s) = o(t-s).$

We have

$$R = o(t \wedge T - s) + o\left((B(t \wedge T) - B(s))^2\right);$$

 $o(\ldots)$ are uniform (in s, t, ω) since $u_{1,0}$ and $u_{0,2}$ are uniformly continuous on K. Clearly, $t \wedge T - s \leq t - s$. It remains to prove that

$$\int_{-\infty}^{+\infty} (o(x^2) \wedge C) p_{\varepsilon}(x) \, \mathrm{d}x = o(\varepsilon) \, .$$

The integral over $\mathbb{R} \setminus [-\delta, \delta]$ is exponentially small. The integral over $[-\delta, \delta]$ is much smaller than $\int x^2 p_{\varepsilon}(x) dx = \varepsilon$ if δ is small enough. \Box

We may generalize 5a1 in the spirit of 4b10.

5a8 Lemma. Let $K \subset [0, \infty) \times \mathbb{R}$ be a compact set, and T a stopping time such that

$$\mathbb{P}\big(\forall t \ (t \wedge T, B(t \wedge T)) \in K\big) = 1$$

Let $G \subset [0, \infty) \times \mathbb{R}$ be a relatively open set, $G \supset K$, and $u : G \to \mathbb{R}$ a continuous function having continuous derivatives $u_{1,0}, u_{0,1}, u_{0,2}$. Then the following process is a martingale:

$$M(t) = u(t \wedge T, B(t \wedge T)) - \int_0^{t \wedge T} v(s, B(s)) \,\mathrm{d}s \,,$$

where $v = u_{1,0} + \frac{1}{2}u_{0,2}$.

Proof. Similarly to the proof of 5a1 we get

$$\mathbb{E}(M(t) | \mathcal{F}_s) - M(s) =$$

$$= v(s, B(s)) \cdot \mathbb{E}(t \wedge T - s | \mathcal{F}_s) + \mathbb{E}(R | \mathcal{F}_s) - \mathbb{E}\left(\int_s^{t \wedge T} v(r, B(r)) dr | \mathcal{F}_s\right) =$$

$$= \mathbb{E}(R | \mathcal{F}_s) - \mathbb{E}\left(\int_s^{t \wedge T} (v(r, B(r)) - v(s, B(s))) dr | \mathcal{F}_s\right).$$

By the uniform continuity of v on K, for every ε there exists δ such that $|v(r, B(r)) - v(s, B(s))| \le \varepsilon$ whenever $|r - s| \le \delta$ and $|B(r) - B(s)| \le \delta$. Assuming $t - s \le \delta$ we have

$$\mathbb{E}\left(\int_{s}^{t\wedge T} |v(r, B(r)) - v(s, B(s))| \, \mathrm{d}r \, \Big| \, \mathcal{F}_{s}\right) \leq \\ \leq \varepsilon(t \wedge T - s) + 2\Big(\max_{K} |v(\cdot)|\Big) \mathbb{P}\left(\max_{[s, t\wedge T]} |B(\cdot) - B(s)| > \delta \, \Big| \, \mathcal{F}_{s}\right) \leq \\ \leq \varepsilon(t - s) + o(t - s) \, .$$

Therefore it is o(t-s).

Brownian motion

5b Local martingales

5b1 Definition. A Brownian local martingale¹ is a random continuous function $(M_t)_{t \in [0,\infty)}$ (on a probability space carrying a Brownian motion $(B_t)_t$) such that there exists a sequence of stopping times T_1, T_2, \ldots (so-called localizing sequence) satisfying

> $T_n \uparrow +\infty$ a.s.; $(M_{t \land T_n})_t$ is a Brownian martingale (for each n).

5b2 Proposition. Let $u : [0, \infty) \times \mathbb{R} \to \mathbb{R}$ be a continuous function having continuous derivatives $u_{1,0}, u_{0,1}, u_{0,2}$. Then the following process is a Brownian local martingale:

$$M(t) = u(t, B(t)) - \int_0^t v(s, B(s)) \,\mathrm{d}s \,,$$

where $v = u_{1,0} + \frac{1}{2}u_{0,2}$.

Proof. Let $T_n = \inf\{t : (t, B(t)) \notin [0, n) \times (-n, n)\}$, then clearly $T_n \uparrow \infty$, and $(M(t \land T_n))_t$ is a martingale by Lemma 5a8.

5b3 Corollary. Let u satisfy the conditions of Prop. 5b2 and the PDE $u_{1,0} + \frac{1}{2}u_{0,2} = 0$. Then the process M(t) = u(t, B(t)) is a local martingale.

Recall Tychonoff's counterexample mentioned in 4a (after 4a12); it is a function that satisfies the PDE (4a4) but violates (4a1). By 5b3 it leads to a local martingale that is not a martingale. Somehow, the expectation escapes to the spatial infinity when $t \to 1-$.²

5b4 Exercise. The following is a local martingale but not a martingale:³

$$M(t) = \begin{cases} p_{1-t}(B(t)) & \text{for } t \in [0,1), \\ 0 & \text{for } t \in [1,\infty). \end{cases}$$

Prove it.

³As before, $p_t(x) = (2\pi t)^{-1/2} \exp(-\frac{x^2}{2t})$.

¹This is a local martingale w.r.t. the Brownian filtration $(\mathcal{F}_t)_t$. Generally, a local martingale w.r.t. a given filtration is defined similarly, but need not be continuous (rather, r.c.l.l.). I often omit the word 'Brownian'.

²In reversed time, heat comes from the spatial infinity by a giant fast oscillating heat wave. A terrible spectacle!

5b5 Proposition. Let $(M_t)_t$ be a local martingale, $(T_n)_n$ a localizing sequence, and

$$\sup_{n} \mathbb{E} M_{t \wedge T_n}^2 < \infty \quad \text{for all } t \,.$$

Then $(M_t)_t$ is a martingale.

5b6 Corollary. A local martingale $(M_t)_t$ satisfying

$$\mathbb{E} \max_{s \in [0,t]} M_s^2 < \infty \quad \text{for all } t$$

is a martingale.

5b7 Exercise. Prove that

$$\|M_{t \wedge T_{n+k}} - M_{t \wedge T_n}\|_1 \le 2\sqrt{\mathbb{P}(T_n < t)(\|M_{t \wedge T_{n+k}}\|_2 + \|M_{t \wedge T_n}\|_2)}.$$

5b8 Exercise. Prove that $M_t \in L_1$ and $M_{t \wedge T_n} \to M_t$ in L_1 as $n \to \infty$.

5b9 Exercise. Prove Prop. 5b5.

The condition $\mathbb{E} M_t^2 < \infty$ on a local martingale does not guarantee that it is a martingale! This condition fails for 5a10 (and Tychonoff's counterexample), however, later (in Sect. 6c) we'll see a local martingale $M(\cdot)$ satisfying $\sup_{t \in [0,\infty)} \mathbb{E} e^{|M(t)|} < \infty$ but still not a martingale.¹

5c Heat equation revisited

5c1 Theorem. ² Let u satisfy the conditions of Prop. 5b2. Assume that

$$\frac{1}{x^2} \ln^+ |u(t,x)| \to 0 \quad \text{as } x \to \pm \infty ,$$
$$\frac{1}{x^2} \ln^+ |v(t,x)| \to 0 \quad \text{as } x \to \pm \infty$$

uniformly in $t \in [0, b]$ for every b; here $v = u_{1,0} + \frac{1}{2}u_{0,2}$, that is,

$$v(t,x) = \left(\frac{\partial}{\partial t} + \frac{1}{2}\frac{\partial^2}{\partial x^2}\right)u(t,x).$$

Then the following process is a Brownian martingale:

$$M(t) = u(t, B(t)) - \int_0^t v(s, B(s)) \,\mathrm{d}s \,.$$

²See also [2], p. 36.

¹"... we stress the fact that local martingales are *much more general* than martingales and warn the reader against the common mistaken belief that local martingales need only be integrable in order to be martingales." [1] page 117.

Brownian motion

Theorem 4b10 is thus generalized; the condition $\frac{1}{x^2} \ln^+ |u_{i,j}(t,x)| \to 0$ appears to be unnecessary (unless (i,j) = (0,0)).

Note especially the case v = 0.

Also Prop. 4a9 is now generalized: Condition (4a1) is equivalent to the PDE (4a4) for all functions satisfying the conditions of Theorem 5c1.

Proof of Theorem 5c1. Let $T_n = \inf\{t : (t, B(t)) \notin [0, n) \times (-n, n)\}$ (as in the proof of 5b2). We have

$$\mathbb{P}\left(\max_{[0,t]} |B(\cdot)| \ge c\right) \le 2 \mathbb{P}\left(\max_{[0,t]} B(\cdot) \ge c\right) = 2 \mathbb{P}\left(|B(t)| \ge c\right);$$
$$|u(t, B(t))| \le C_{\delta} \exp\left(\delta B^{2}(t)\right), \quad |v(t, B(t))| \le C_{\delta} \exp\left(\delta B^{2}(t)\right)$$

and we may choose $\delta > 0$ at will. Thus,

$$\mathbb{E} \max_{[0,t]} M^2(\cdot) \le \mathbb{E} \left(C_{\delta} \exp\left(\delta \max_{[0,t]} B^2(\cdot)\right) + tC_{\delta} \exp\left(\delta \max_{[0,t]} B^2(\cdot)\right) \right)^2 = C_{\delta}^2 (1+t)^2 \mathbb{E} \exp 2\delta \max_{[0,t]} B^2(\cdot) \le C_{\delta}^2 (1+t)^2 \cdot 2 \mathbb{E} \exp 2\delta B^2(t) < \infty$$

if δ is small enough (namely, $2\delta < \frac{1}{2t}$). Cor. 5b6 completes the proof.

5d Finite lifetime

5d1 Definition. Let T be a stopping time. A random continuous function on [0, T) is a function¹

$$X : \{ (t, \omega) \in [0, \infty) \times \Omega : t < T(\omega) \} \to \mathbb{R}$$

such that for every t the function $X(t, \cdot)$ on $\{\omega : T(\omega) > t\}$ is measurable, and for almost every ω the function $X(\cdot, \omega)$ on $[0, T(\omega))$ is continuous.

5d2 Definition. A random continuous function on [0, T) is a *Brownian local* martingale² on [0, T) if there exists a sequence of stopping times T_1, T_2, \ldots (called localizing sequence) satisfying

$$T_n < T$$
 and $T_n \uparrow T$ a.s.;
 $(M_{t \land T_n})_t$ is a Brownian martingale (for each n).

¹Or rather, equivalence class.

²A martingale, in contrast to a local martingale, is defined on the whole $[0, \infty)$.

Tel Aviv University, 2008

5d3 Proposition. Let $G \subset [0, \infty) \times \mathbb{R}$ be a relatively open set, T a stopping time,

$$\mathbb{P}\left(\forall t \in [0,T) \ (t,B(t)) \in G\right) = 1,$$

 $u: G \to \mathbb{R}$ a continuous function having continuous derivatives $u_{1,0}, u_{0,1}, u_{0,2}$. Then the following process is a Brownian local martingale on [0, T):

$$M(t) = u(t, B(t)) - \int_0^t v(s, B(s)) \,\mathrm{d}s \quad \text{for } t \in [0, T) \,,$$

where $v = u_{1,0} + \frac{1}{2}u_{0,2}$.

Proof. We take relatively open sets $G_1 \subset G_2 \subset \cdots \subset G$ such that $(0,0) \in G_1$, $G_1 \cup G_2 \cup \cdots = G$ and the closure \overline{G}_n of G_n is a compact subset of G (for each n).¹ We define stopping times $T_n = \inf\{t : t \geq T \text{ or } (t, B(t)) \notin G_n\}$ and observe that $T_n \uparrow T$ a.s. (since otherwise a compact curve is included in G but not in any G_n). By Lemma 5a8 (applied to \overline{G}_n and T_n) the process $t \mapsto M(t \wedge T_n)$ is a martingale.

5e Hints to exercises

5a3: recall Def. 2f5. 5a4: use 5a3. 5b4: The closed set $\{(t, B(t)) : t \in [0, \infty)\}$ a.s. does not contain (1, 0). 5b7: $\|\mathbb{1}_{T_n < t}\|_2 = \sqrt{\mathbb{P}(T_n < t)}$. 5b8: $M_{t \wedge T_n}$ converges to something in L_1 , and to M_t a.s. 5b9: $\mathbb{E}(M_{t \wedge T_n} | \mathcal{F}_s) \to \mathbb{E}(M_t | \mathcal{F}_s)$ in L_1 .

References

- D. Revuz, M. Yor, Continuous martingales and Brownian motion (second edition), 1994.
- [2] L.C.G. Rogers, D. Williams, *Diffusions, Markov processes, and martin*gales, vol. 1 (second edition), 1994.

Index

local martingale, 55 localizing sequence, 55 relatively open, 52

¹For example: G_n consists of all points $(t, x) \in G$ such that t < n, |x| < n, and the closed 1/n-neighborhood of (t, x) in $[0, \infty) \times \mathbb{R}$ is contained in G.