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Local aspects (derivatives) and global aspects (growth on infinity) are
entangled in Sect. 4. Now we’ll see how to disentangle them.

5a Heat equation localized

5a1 Lemma. Let K ⊂ [0,∞)×R be a compact set, and T a stopping time
such that1

P
(

∀t (t ∧ T, B(t ∧ T )) ∈ K
)

= 1 .

Let G ⊂ [0,∞) × R be a relatively open set,2 G ⊃ K, and u : G → R a con-
tinuous function having continuous derivatives u1,0, u0,1, u0,2 and satisfying
the PDE u1,0 + 1

2
u0,2 = 0.3 Then the following process is a martingale:

M(t) = u
(

t ∧ T, B(t ∧ T )
)

.

The proof will be given after some preparation. If T is a stopping time
such that ∃t P

(

T ≤ t
)

= 1, then (recall 3a5 and 4a10)

(5a2) E B(T ) = 0 , E B2(T ) = E T .

5a3 Exercise. Let T be a stopping time, f ∈ C[0,∞), and t ∈ [0, T (f)].
Then the function

g 7→ T (f
t
⊔ g) − t

is a stopping time.
Prove it.

1It is evidently equivalent to ∀t P
(

(t ∧ T, B(t ∧ T )) ∈ K
)

= 1. As before, t ∧ T means
min(t, T ).

2Just the intersection of the closed half-plane [0,∞) × R and an open subset of the
plane R

2.
3As before, fi,j(t, x) = ∂i+j

∂ti∂xj f(t, x).
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5a4 Exercise. Let T1, T2 be stopping times, ∃t P
(

T2 ≤ t
)

= 1. Then the
equalities

E
(

B(T2) − B(T1)
∣

∣FT1

)

= 0 ,(5a5)

E
(

(B(T2) − B(T1))
2
∣

∣FT1

)

= E
(

T2 − T1

∣

∣FT1

)

(5a6)

hold almost surely on the event {T1 ≤ T2}.
Prove it.

Proof of Lemma 5a1. Denote M(t) = u(t ∧ T, B(t ∧ T )). We have to prove
that E

(

M(t)
∣

∣Fs

)

= M(s) for s ≤ t. It is sufficient to prove that

(5a7) E
(

M(t)
∣

∣Fs

)

− M(s) = o(t − s) a.s. for s ≤ t ;

here and henceforth all o(. . . ) are uniform (in everything; this time, in s, t, ω).
Here is why (5a7) is sufficient:

E
(

E
(

M(t + ε)
∣

∣Ft

)
∣

∣Fs

)

= E
(

M(t + ε)
∣

∣Fs

)

(think, why), thus,

|E
(

M(t + ε)
∣

∣Fs

)

− E
(

M(t)
∣

∣Fs

)

| = |E
(

E
(

M(t + ε)
∣

∣Ft

)

− M(t)
∣

∣Fs

)

| ≤

≤ E
(

|E
(

M(t + ε)
∣

∣Ft

)

− M(t)|
∣

∣Fs

)

= E
(

o(ε)
∣

∣Fs

)

= o(ε) .

It remains to prove (5a7).
On the event {T < s} we have

E
(

M(t)
∣

∣Fs

)

− M(s) = E
(

u(T, B(T ))
∣

∣Fs

)

− u(T, B(T )) = 0 a.s.,

thus, it is sufficient to prove (5a7) on the event {T ≥ s}. From now on we
assume T ≥ s.

We define R by

u(t ∧ T, B(t ∧ T )) − u(s, B(s)) = u1,0(s, B(s))(t ∧ T − s)+

+ u0,1(s, B(s))(B(t ∧ T ) − B(s)) +
1

2
u0,2(s, B(s))(B(t ∧ T ) − B(s))2 + R ,

take E
(

. . .
∣

∣Fs

)

, use (5a5), (5a6) and get

E
(

M(t)
∣

∣Fs

)

− M(s) = u1,0(s, B(s))E
(

t ∧ T − s
∣

∣Fs

)

+

+ u0,1(s, B(s)) · 0 +
1

2
u0,2(s, B(s)) · E

(

t ∧ T − s
∣

∣Fs

)

+ E
(

R
∣

∣Fs

)

=

=
(

u1,0 +
1

2
u0,2

)

(s, B(s)) · E
(

t ∧ T − s
∣

∣Fs

)

+ E
(

R
∣

∣Fs

)

= E
(

R
∣

∣Fs

)

;
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it remains to check that E
(

R
∣

∣Fs

)

= o(t − s).
We have

R = o(t ∧ T − s) + o
(

(B(t ∧ T ) − B(s))2
)

;

o(. . . ) are uniform (in s, t, ω) since u1,0 and u0,2 are uniformly continuous on
K. Clearly, t ∧ T − s ≤ t − s. It remains to prove that

∫ +∞

−∞

(

o(x2) ∧ C
)

pε(x) dx = o(ε) .

The integral over R \ [−δ, δ] is exponentially small. The integral over [−δ, δ]
is much smaller than

∫

x2 pε(x) dx = ε if δ is small enough.

We may generalize 5a1 in the spirit of 4b10.

5a8 Lemma. Let K ⊂ [0,∞)×R be a compact set, and T a stopping time
such that

P
(

∀t (t ∧ T, B(t ∧ T )) ∈ K
)

= 1 .

Let G ⊂ [0,∞) × R be a relatively open set, G ⊃ K, and u : G → R a
continuous function having continuous derivatives u1,0, u0,1, u0,2. Then the
following process is a martingale:

M(t) = u
(

t ∧ T, B(t ∧ T )
)

−

∫ t∧T

0

v(s, B(s)) ds ,

where v = u1,0 + 1
2
u0,2.

Proof. Similarly to the proof of 5a1 we get

E
(

M(t)
∣

∣Fs

)

− M(s) =

= v(s, B(s)) ·E
(

t∧T − s
∣

∣Fs

)

+ E
(

R
∣

∣Fs

)

−E

(
∫ t∧T

s

v(r, B(r)) dr

∣

∣

∣

∣

Fs

)

=

= E
(

R
∣

∣Fs

)

− E

(
∫ t∧T

s

(

v(r, B(r)) − v(s, B(s))
)

dr

∣

∣

∣

∣

Fs

)

.

By the uniform continuity of v on K, for every ε there exists δ such that
|v(r, B(r)) − v(s, B(s))| ≤ ε whenever |r − s| ≤ δ and |B(r) − B(s)| ≤ δ.
Assuming t − s ≤ δ we have

E

(
∫ t∧T

s

|v(r, B(r)) − v(s, B(s))| dr

∣

∣

∣

∣

Fs

)

≤

≤ ε(t ∧ T − s) + 2
(

max
K

|v(·)|
)

P

(

max
[s,t∧T ]

|B(·) − B(s)| > δ

∣

∣

∣

∣

Fs

)

≤

≤ ε(t − s) + o(t − s) .

Therefore it is o(t − s).
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5b Local martingales

5b1 Definition. A Brownian local martingale1 is a random continuous func-
tion (Mt)t∈[0,∞) (on a probability space carrying a Brownian motion (Bt)t)
such that there exists a sequence of stopping times T1, T2, . . . (so-called lo-
calizing sequence) satisfying

Tn ↑ +∞ a.s.;

(Mt∧Tn
)t is a Brownian martingale (for each n).

5b2 Proposition. Let u : [0,∞)× R → R be a continuous function having
continuous derivatives u1,0, u0,1, u0,2. Then the following process is a Brown-
ian local martingale:

M(t) = u
(

t, B(t)
)

−

∫ t

0

v
(

s, B(s)
)

ds ,

where v = u1,0 + 1
2
u0,2.

Proof. Let Tn = inf{t : (t, B(t)) /∈ [0, n) × (−n, n)}, then clearly Tn ↑ ∞,
and

(

M(t ∧ Tn)
)

t is a martingale by Lemma 5a8.

5b3 Corollary. Let u satisfy the conditions of Prop. 5b2 and the PDE
u1,0 + 1

2
u0,2 = 0. Then the process M(t) = u(t, B(t)) is a local martingale.

Recall Tychonoff’s counterexample mentioned in 4a (after 4a12); it is a
function that satisfies the PDE (4a4) but violates (4a1). By 5b3 it leads to a
local martingale that is not a martingale. Somehow, the expectation escapes
to the spatial infinity when t → 1−.2

5b4 Exercise. The following is a local martingale but not a martingale:3

M(t) =

{

p1−t(B(t)) for t ∈ [0, 1),

0 for t ∈ [1,∞).

Prove it.

1This is a local martingale w.r.t. the Brownian filtration (Ft)t. Generally, a local
martingale w.r.t. a given filtration is defined similarly, but need not be continuous (rather,
r.c.l.l.). I often omit the word ‘Brownian’.

2In reversed time, heat comes from the spatial infinity by a giant fast oscillating heat
wave. A terrible spectacle!

3As before, pt(x) = (2πt)−1/2 exp(−x2

2t ).
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5b5 Proposition. Let (Mt)t be a local martingale, (Tn)n a localizing se-
quence, and

sup
n

E M2
t∧Tn

< ∞ for all t .

Then (Mt)t is a martingale.

5b6 Corollary. A local martingale (Mt)t satisfying

E max
s∈[0,t]

M2
s < ∞ for all t

is a martingale.

5b7 Exercise. Prove that

‖Mt∧Tn+k
− Mt∧Tn

‖1 ≤ 2
√

P
(

Tn < t
)(

‖Mt∧Tn+k
‖2 + ‖Mt∧Tn

‖2

)

.

5b8 Exercise. Prove that Mt ∈ L1 and Mt∧Tn
→ Mt in L1 as n → ∞.

5b9 Exercise. Prove Prop. 5b5.

The condition E M2
t < ∞ on a local martingale does not guarantee that it

is a martingale! This condition fails for 5a10 (and Tychonoff’s counterexam-
ple), however, later (in Sect. 6c) we’ll see a local martingale M(·) satisfying
supt∈[0,∞) E e|M(t)| < ∞ but still not a martingale.1

5c Heat equation revisited

5c1 Theorem. 2 Let u satisfy the conditions of Prop. 5b2. Assume that

1

x2
ln+ |u(t, x)| → 0 as x → ±∞ ,

1

x2
ln+ |v(t, x)| → 0 as x → ±∞

uniformly in t ∈ [0, b] for every b; here v = u1,0 + 1
2
u0,2, that is,

v(t, x) =
( ∂

∂t
+

1

2

∂2

∂x2

)

u(t, x) .

Then the following process is a Brownian martingale:

M(t) = u
(

t, B(t)
)

−

∫ t

0

v
(

s, B(s)
)

ds .

1“. . . we stress the fact that local martingales are much more general than martingales
and warn the reader against the common mistaken belief that local martingales need only
be integrable in order to be martingales.” [1] page 117.

2See also [2], p. 36.
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Theorem 4b10 is thus generalized; the condition 1
x2 ln+ |ui,j(t, x)| → 0

appears to be unnecessary (unless (i, j) = (0, 0)).
Note especially the case v = 0.
Also Prop. 4a9 is now generalized: Condition (4a1) is equivalent to the

PDE (4a4) for all functions satisfying the conditions of Theorem 5c1.

Proof of Theorem 5c1. Let Tn = inf{t : (t, B(t)) /∈ [0, n) × (−n, n)} (as in
the proof of 5b2). We have

P

(

max
[0,t]

|B(·)| ≥ c
)

≤ 2 P

(

max
[0,t]

B(·) ≥ c
)

= 2 P
(

|B(t)| ≥ c
)

;

|u
(

t, B(t)
)

| ≤ Cδ exp
(

δB2(t)
)

, |v
(

t, B(t)
)

| ≤ Cδ exp
(

δB2(t)
)

and we may choose δ > 0 at will. Thus,

E max
[0,t]

M2(·) ≤ E

(

Cδ exp
(

δ max
[0,t]

B2(·)
)

+ tCδ exp
(

δ max
[0,t]

B2(·)
)

)2

=

= C2
δ (1 + t)2

E exp 2δ max
[0,t]

B2(·) ≤ C2
δ (1 + t)2 · 2 E exp 2δB2(t) < ∞

if δ is small enough (namely, 2δ < 1
2t

). Cor. 5b6 completes the proof.

5d Finite lifetime

5d1 Definition. Let T be a stopping time. A random continuous function

on [0, T ) is a function1

X : {(t, ω) ∈ [0,∞) × Ω : t < T (ω)} → R

such that for every t the function X(t, ·) on {ω : T (ω) > t} is measurable,
and for almost every ω the function X(·, ω) on [0, T (ω)

)

is continuous.

5d2 Definition. A random continuous function on [0, T ) is a Brownian local

martingale2 on [0, T ) if there exists a sequence of stopping times T1, T2, . . .
(called localizing sequence) satisfying

Tn < T and Tn ↑ T a.s.;

(Mt∧Tn
)t is a Brownian martingale (for each n).

1Or rather, equivalence class.
2A martingale, in contrast to a local martingale, is defined on the whole [0,∞).
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5d3 Proposition. Let G ⊂ [0,∞)×R be a relatively open set, T a stopping
time,

P
(

∀t ∈ [0, T ) (t, B(t)) ∈ G
)

= 1 ,

u : G → R a continuous function having continuous derivatives u1,0, u0,1, u0,2.
Then the following process is a Brownian local martingale on [0, T ):

M(t) = u
(

t, B(t)
)

−

∫ t

0

v
(

s, B(s)
)

ds for t ∈ [0, T ) ,

where v = u1,0 + 1
2
u0,2.

Proof. We take relatively open sets G1 ⊂ G2 ⊂ · · · ⊂ G such that (0, 0) ∈ G1,
G1 ∪ G2 ∪ · · · = G and the closure Gn of Gn is a compact subset of G (for
each n).1 We define stopping times Tn = inf{t : t ≥ T or (t, B(t)) /∈ Gn}
and observe that Tn ↑ T a.s. (since otherwise a compact curve is included in
G but not in any Gn). By Lemma 5a8 (applied to Gn and Tn) the process
t 7→ M(t ∧ Tn) is a martingale.

5e Hints to exercises

5a3: recall Def. 2f5.

5a4: use 5a3.

5b4: The closed set {(t, B(t)) : t ∈ [0,∞)} a.s. does not contain (1, 0).

5b7: ‖1lTn<t‖2 =
√

P
(

Tn < t
)

.

5b8: Mt∧Tn
converges to something in L1, and to Mt a.s.

5b9: E
(

Mt∧Tn

∣

∣Fs

)

→ E
(

Mt

∣

∣Fs

)

in L1.
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1For example: Gn consists of all points (t, x) ∈ G such that t < n, |x| < n, and the
closed 1/n-neighborhood of (t, x) in [0,∞) × R is contained in G.
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