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6a Time change

6al Theorem. ! (Dambis, Dubins-Schwartz) Every Brownian local martin-
gale M(-) is of the form

where B(-) is (distributed as) Brownian motion (on an extended probability
space), and A(+) is a random increasing continuous function.

Assume for a while that supy .., [M(-)] = oo a.s.

Proof of Theorem under the additional assumption. The stopping times
T{™ introduced in Sect. 3a (when embedding simple random walks into the
Brownian motion) are functions C[0,00) — [0, 00]; we may apply them to

M(-) (instead of B(-)). The process M (t A Tl(o)) is a martingale by 5b6, thus
IP’(M(Tl(O)) =-1)=05= IP’(M(Tl(O)) = 1). Continuing similarly to 3a we
get a chain of embedded simple random walks (M (T,E’”)))n; here 7™ means
™ (M ()), of course. The joint distribution of these random walks is the

same as in Sect. 3a. We construct the corresponding Brownian motion B(-)
as in 3a,

linrln M(T,EZL)) = B(t) whenever li:zn ;—ZLL =t,

and get

n

M(T;™) = B(m™)

1See also [1] p. 75; [2] p. 174; [B] p. 173. The theorem holds for all continuous local
martingales (Brownian or not).
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where 73" means T, (é (-)).! Note that
7m) < rm2) - if and only if 7™ < T(™)
for all mq, ny, ma, ny. It follows that

7im) — A(T(m))

n

for some increasing function A(-); this function is unbounded since 7™ are

unbounded, and continuous since the set {Ty(Lm) :m,n = 1,2,...} is dense.
The equality M(T,gm)) = B(A(T,gm))) implies M(t) = B(A(t)) unless M(-)
is constant in a neighborhood of ¢. By monotonicity it holds for all ¢. O

Waiving the assumption supyg ) [M(+)| = oo we face a difficulty: it may

happen that the embedded simple random walk (M (T,gm)))n is defined only
for finitely many n. Thus, it is no more a random walk. Rather, it is a
(rescaled) unfinished random walk, as defined below.

6a2 Definition. An unfinished random walk is a sequence (Xg, Xy,...) of
measurable X, : Q — Z U {0} such that

X():O,
X, =0 implies X, =0
X1 €4{X, -1, X,+1,0} if X, €Z;

P(Xn+1 :l‘n+1’X0:l‘0,...,Xn:ZL'n) S

whenever xg, ..., 2,41 € Z, IP(XO =20,...,Xp = :L‘n) > 0.

6a3 Exercise. The rescaled embedded walk (2™ M (Té’”’))n is an unfinished
random walk (for every m).
Prove it.

6a4 Definition. A continuation of an unfinished random walk (X,), is a
sequence of pairs (X,Y,,) of measurable X/ : Q' — ZU{0},,Y,: Q' — Z
such that

(X3, X1,...) is distributed like (Xo, X1,...);
Y, =X whenever X| € Z;

P(Yn+1 -Y, = —1’X0,Yb,...,XmYn) :%
:P(Yn—f—l _Yn - —I}Xo,Yb,...,Xn,Yn) a.s.

1Or do you prefer to write M(T,Sm)(M())) = E(T,Sm)(B(-)))?
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Note that (Y},), is necessarily (distributed as) the simple random walk.

6a5 Exercise. Every unfinished random walk has a continuation.
Prove it.

6a6 Exercise. Prove Theorem in full generality.

Note that A(-) need not be strictly increasing, since M (-) may be constant
on some intervals (in contrast to B(-)).

6a7 Remark. Theorem is generalized readily to a local martingale M (-)
on [0,7); accordingly, A(-) is defined on [0, 7).

6a8 Corollary. Almost surely, M(-) either has a finite limit (at infinity), or
is unbounded from below and above. Especially, the event ‘M (t) — 400 as
t — oo’ is of probability 0, as well as the event ‘M(t) — —oo as t — oo’
The same holds in the case of finite lifetime; then, of course, ‘¢t — oo’ should
be replaced with ‘¢t — T—".

6a9 Corollary. If M (-) is of finite variation on some (maybe random) time
interval, then it is constant on this interval.

6b Quadratic variation

Given a time interval [0,¢] and a path of M(-) on [0,t], we can find the
corresponding A(t) by counting steps of embedded random walks,

(6b1) T0W ¢ implies —7 — A(t).

Nm 22m

Thus, a segment of a path of M(-) determines uniquely the corresponding
segment of a path of B(:). The converse is generally wrong. Here is a
counterexample:

0 if t € [0, 1],
M(t) = < B(t) — B(1) if t € [1,00) and B(1) > 0,
2(B(t) — B(1)) ift € [l,00) and B(1) < 0.

6b2 Exercise. Find A(-) for this case, and verify the non-uniqueness.

In fact, ([BRI]) gives just one out of several ‘deterministic’ approaches to
A(+); these approaches coincide for almost all, but not all paths. Regret-
fully, (BLIl) does not suggest many important properties of A(-). Another,
‘nondeterministic’ approach, given below, does suggest.
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6b3 Proposition. Let M(-) and A(-) be as in Theorem [Ball, then the fol-
lowing process is a local martingale:

t M2(t) — A(t).

On the first sight it follows immediately from the fact that M?(t)—A(t) =
B2(A(t)) — A(t) +2M(0)B(A(t)) + M?(0), since B%(s) — s is distributed like
B?(s) — s. Be careful, however. It is clear that B(-) has the strong Markov
property w.r.t. its own filtration, but it does not mean the strong Markov
property w.r.t. the filtration of B(-).

6b4 Exercise. Give a counterexample to the following wrong claim: for
every stopping time T' there exists a stopping time T' such that T'(B(-)) =
T(B(-)) a.s.

It is possible to prove the strong Markov property of B(-) w.r.t. the fil-
tration of B(-), thus giving a ‘continuous’ proof to [Gb3l Alternatively, one
may use a ‘discrete’ proof sketched below.

6b5 Exercise. Let an unfinished random walk (X,), be bounded in the
sense that there exists K such that for all n, X,, € [-K, K]U{0} a.s. Define
N =sup{n: X, € Z}. Then EN < oo and

EX% —EN| <2E|Xy|.
Prove it.

Proof of Proposition[603. Let T be a stopping time such that 3¢ IP’(T <
t) =1 and 3C P(maxqr |[M(-)| < C) = 1, we'll prove that E (M?*(T) —
A(T )) = 0. (The conditional version of this equality, given the past, is proved
similarly.)

We restrict the embedded random walk (M (T}L’”)))n to n such that T.™ <
T and get a (rescaled) unfinished random walk. We apply to it:

E (2" M(T\"))? —EN| < 2E |2"M(Ty")|;
EMP(TY) ~ B | <27 2B |M(I{Y) <2720
On the other hand,
IM(TU™) = M(T)| <27™  ass.

and

22—mHA(T) a.s. as m — 00.
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6b6 Exercise. A(-) is the only random increasing continuous function such
that the process t — M?(t) — A(t) is a local martingale.
Prove it.

6b7 Corollary. (a) If M(-) is a local martingale such that M (0) = 0 and
the process t — M?(t) —t also is a local martingale then M (-) is (distributed
as) Brownian motion.

(b) If M(-) is a local martingale on [0,7") such that M(0) = 0 and the
process t — M?(t)—t also is a local martingale on [0, 7') then there exists (on
an extended probability space) a Brownian motion B(-) such that M(t) =
B(t) for all t € [0,T).

We state it only for Brownian local martingales, but it holds (with the
same proof) for all continuous local martingales! and is well-known as Lévy’s
characterization of Brownian motion.?

The process A(+) is called the quadratic variation of M(+)? (see [3], pp. 292,
303), the increasing process of M(-) (see [B], p. 119), the bracket (M, M) (see
[B], p. 119 again). Let us denote this important process by

t
A = [ (ame)*
it is just a notation, but very suggestive, especially in the form dA(t) =
(dM(t))*.

6b8 Exercise. Let M;(-), M5(-) be Brownian local martingales, then the
following function of a,b € R is a quadratic form (for each ¢):

/(;t (adMl() + bdMQ())2 .

(Of course, adM; () + bdMs(-) means d(aM;(-) + bMs(+)).)
Prove it.

6b9 Exercise. Define fg dM;(-)dMy(-), verify that it is bilinear, and that

[ aveane = [avey

'Do not think that it holds for discontinuous local martingales; a counterexample is
M(-) such that ¢t — M (t) + t is the Poisson process.

2See also [1] p. 75; [2] p. 157; [5] p. 143; [6] p. 2.

*Despite the fact that A(t) is not equal to the supremum of Y| (M (tx) — Mtr_1))*
overalln and 0 <t¢g <---<t, <t.
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and that the following process is a local martingale:

£ My (t)My(t) — /t AM, ()M () .

All said is generalized readily to local martingales on [0,7). Of course,
dealing with M;, My we should consider them both on the same [0, 7).

6¢c Planar Brownian motion

The planar (that is, two-dimensional) Brownian motion B®)(-) is nothing
but two independent one-dimensional Brownian motions; say,

B (t)(w,w2) = (BU(B)(w1), BV (t)(w2)) ,

where BW is the one-dimensional Brownian motion on a probability space
QW and B® is the two-dimensional Brownian motion on the probability
space Q) = QM) x Q).

The two-dimensional Brownian motion is a random continuous function
[0, 00) — R2. Tt has stationary independent increments. The distribution of
B®(t) has a two-dimensional density

2
p(@) = 1 1, 22) = 0 )l (22) = 5 exp (— 1))

note the rotation invariance. It is a strong Markov process.! Still, all Brow-

nian martingales are continuous, and 4c¢2 holds. Of course, from now on

by a ‘Brownian (local) martingale’ we mean: w.r.t. the filtration of a given

Brownian motion, be it one-dimensional or two-dimensional. The relation to

the heat equation holds as before, but the differential operator 2 + %5)—2 is

ot 22
now replaced with

o* 0

0 1
a*#aﬁag%
T

A is the Laplacian. Local martingales are defined as before.

The technique of embedded random walks (Sect. 3, Sect. [Gal) is essentially
one-dimensional, but still useful, as we’ll see soon.

A smooth function h : R? — R is called harmonic, if Ah = 0. If h is
harmonic then the process

M(t) = h(BP (1))

1Of course, the sub-o-field F; is now generated by both coordinates of B (s), s € [0,].
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is a local martingale (by the two-dimensional counterpart of 5b3). It follows
immediately that for every bounded domain G C R? containing the origin,
the exit point distribution® is the so-called harmonic measure,? — a probabil-
ity measure y on the boundary of G such that [ hdu = h(0) for all harmonic
functions h on R? (or on a neighborhood of the closure of G).

In order to find the quadratic variation of M (-) we apply the two-dimensional
counterpart of Prop. 5b2 to M?(t) = h?(B®(t)) and get

/Ot(dM(~))2 = /OtA(hz)(B(Q)(s))ds = /Ot|Vh(B(2)(s))|2ds,
since Ah = |Vh|? for harmonic & (think, why). In this sense,
(dh(B®(1)))? = |VR(B@(¢))|*dt for harmonic h.
6¢cl Exercise. For any two harmonic functions hq, ho,
dhy (B® (t))dhy(BP (1)) = (Vhy, Vhy)(BP(t))dt .
Prove it.

The Brownian motion on the complex plane C will be denoted Bc(-).
The function

z—lInlz|, thatis, (z,y)— In\/z?+y?

is not a harmonic function on C (or R?), however, Aln|-| =0 on C\ {0}.
Does it mean that In|Bc(t) — 1| is a local martingale? We introduce the
stopping time 7" = inf{t : Bc(t) = 1} and note that In|B¢(t) — 1| is a local
martingale on [0,7) by the two-dimensional counterpart of 5d3. It cannot
tend to —oo (recall Bag), which shows that P(3¢ Bc(t) = 1) = 0. Similarly,

P(3t Be(t)=2) =0 forevery z € C\ {0};
it follows easily that
P(3t >0 Be(t)=0) =0.

6¢c2 Exercise. Give an example of a Brownian local martingale M (-) satis-
fying sup;c(p, o) E elM® < o0 but still not a martingale.

!That is, the distribution of B®)(T¢) where T = min{t : B (t) ¢ G}.
2See also [E] p. 48.
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6¢3 Theorem. ! (a) If M;(-), My(-) are local martingales such that M;(0) =
0, M5(0) =0 and

/Ot(dM1<-))2 —t, /Ot(dMQ(.))2 —¢, /Ot M, (-)dMy(-) = 0

for all ¢, then the two-dimensional process (M (-), Ma(-)) is (distributed as)
the planar Brownian motion.
(b) If My(-), My(+) are local martingales on [0,7") such that

/Ot(dMl(-))2 =t, /Ot(dMQ(.))2 =, /Ot AM, (-)dMs(-) = 0

for all t € [0,T), then there exist (on an extended probability space) two
independent Brownian motions Bi(-), By(-) such that M;(t) = Bi(t) and
My(t) = By(t) for all t € [0,T).

First, consider Bc3l(a).

6c4 Exercise. Let a;,as € R, a? + a3 # 0. Prove that the process

t
+ a2M2 <7>

2 2
aj + aj

t
X(t) = M(i)
(t) = a1 M a? + a3

is distributed like the Brownian motion.

6¢c5 Exercise. Let aq,as € R. Prove that

Emm@mmw+@Mw»:ap@é@@mm)

6¢c6 Exercise. Let ay,as, b, by € R, a? + a3 # 0, b2 + b2 # 0. Prove that the
following process is distributed like the Brownian motion:

X (t) = ar My (A(t)) + aaM(A(t)) for t € ]0,1],
X(t) = X(1) + by (M (A(t)) — Mi(A(1))) + ba(Ma(A(t)) — Ma(A(1))) fort e [1,00),

where

A {a#a% for t € [0, 1],

A(l) + ﬁ for ¢t € [1, 00).

1See also [1] p. 78; [P p. 157.
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6¢c7 Exercise. Let ay, as, by, by € R. Prove that
E expi(aiMi(1) + bi(Mi(t) — Mi(1)) + a2 Ms(1) + ba(Ms(t) — Ma(1))) =
1 1
= exp (— 5(af +a3) — 503+ )t~ 1))
6¢c8 Exercise. Prove Theorem Bc3|(a).

Item (b) of Theorem [Bc3is reduced to Item (a) by glueing two-dimensional

processes,
V() (wnwn) = M()(wr) U BOC)(ws).

True, M(T) is not defined; however, the left limit M (7T—) exists a.s. on the
event {T' < oo} by BER7(b) applied to M; and M, separately.

6d Conformal local martingales

6d1 Definition. ' A planar local martingale M (-) = (M;(-), Ma(-)) on [0, T)
is called conformal, if

/Ot(dMl(-))2 = /Ot(dMQ(.))2 and /Ot AM; ()dMy(-) = 0

for all t € [0,7).

An important example: M(t) = f(Bc(t)) where f : C — C is an entire
function. Indeed, h; = Re f and hy = Im f are harmonic functions on C,
and

IVhi(2)| = |f'(2)] = [Vha(2)], (Vha(2), Vha(2)) = 0.

A more general example: M(t) = f(Bc(t)) for t € [0,T), where f: G —
C is an analytic function, G C C a domain,2 0 € G, and T = inf{t : Be(t) ¢
G}.

6d2 Exercise. If M(-) is of the form

where B(-) is distributed as Be(-) and A(+) is a random increasing continuous
function, then M(-) is conformal.
Prove it.

!See also [ p. 181.
2That is, a connected open set.
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6d3 Theorem. ! Every conformal local martingale M () on [0,7) is of the
form

M(t) = M(0) + B(A(t))

where B(-) is distributed as the complex-valued Brownian motion Bg(-), and

A(t):/o (<1z\41(-))2=/O (dMs(+))?* for t € [0,7).

Proof. We define B(-) on [0, A(c0)) by M(t) = M(0) + B(A(t)) (which is
correct...) and observe that t — BZ(A(t)) — A(t) is a local martingale,
therefore s — B2(s) — s is a local martingale,? that is, fot (dBl(-))2 =t for
t < A(c0). Similarly, fot (dBQ(‘ )? =t and fo dB;(-)dBy(-) = 0. It remains
to apply Theorem O

6d4 Exercise. Given ¢ € (0,7) and r € (1,00), we consider two stopping
times

Ts; = min{¢ : |arg(1 + Bc(t))| = ¢},
T! = min{t : |1 + Bc(t)| = r}

and the probability P (T' <TV ) Prove that this probability is a function of
L lnr only.

The cases ¢ = 7/4, ¢ = /2, ¢ — 7m— and ¢ — 0+ are especially
interesting.?

6e Hints to exercises

For each m use Badl and [Bad. Show that these constructions for m and
m + 1 are consistent, and get the needed Brownian motion.

Bh2: recall the Brownian scaling.

M' recall [6b2

- induction; p_,py € [0,0.5]; py((z+ 1) —a? = 1) + p_((z — 1)* -
x —1) —2w(p+ p-),and [py —p | <1—p_ —py.

6hOk use Gadl

1See also [ p. 45; [5] p. 182. )

2Do not bother about [Eb4, now we go the other direction: for every stopping time T'

there exists a stopping time T such that T(M(-)) = T(B®@(.)).
3See also [B] p. 187, Exercise (2.18).
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Bb& (aM; + bM>)? is a linear combination of M2, M3 and (M; + Ms)?;
use [0b0

GcTl recall BRI

try M(t) = const - In |Be(t) — 1].
use Bh7(a).
use Bcdl
. use BL7(a) again.
- use [Bedl
GcR generalizing BcT] calculate E exp i o (M (t) =M (tr—1))+> Br(Ma(ty)—
Mz(tk—1)))-
B4 use the analytic function z — 2 (or alternatively, z — In 2).

A EAER
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