6 Time change

6a Time change 59
6b Quadratic variation 61
6c Planar Brownian motion 64
6d Conformal local martingales 67
6e Hints to exercises 68

6a Time change

6a1 Theorem. ${ }^{1}$ (Dambis, Dubins-Schwartz) Every Brownian local martingale $M(\cdot)$ is of the form

$$
M(t)=M(0)+\tilde{B}(A(t))
$$

where $\tilde{B}(\cdot)$ is (distributed as) Brownian motion (on an extended probability space), and $A(\cdot)$ is a random increasing continuous function.

Assume for a while that $\sup _{[0, \infty)}|M(\cdot)|=\infty$ a.s.
Proof of Theorem 6a1 under the additional assumption. The stopping times $T_{n}^{(m)}$ introduced in Sect. 3a (when embedding simple random walks into the Brownian motion) are functions $C[0, \infty) \rightarrow[0, \infty]$; we may apply them to $M(\cdot)$ (instead of $B(\cdot))$. The process $M\left(t \wedge T_{1}^{(0)}\right)$ is a martingale by 5 b 6 , thus $\mathbb{P}\left(M\left(T_{1}^{(0)}\right)=-1\right)=0.5=\mathbb{P}\left(M\left(T_{1}^{(0)}\right)=1\right)$. Continuing similarly to 3 a we get a chain of embedded simple random walks $\left(M\left(T_{n}^{(m)}\right)\right)_{n}$; here $T_{n}^{(m)}$ means $T_{n}^{(m)}(M(\cdot))$, of course. The joint distribution of these random walks is the same as in Sect. 3a. We construct the corresponding Brownian motion $\tilde{B}(\cdot)$ as in 3a,

$$
\lim _{m} M\left(T_{n_{m}}^{(m)}\right)=\tilde{B}(t) \quad \text { whenever } \quad \lim _{m} \frac{n_{m}}{2^{2 m}}=t
$$

and get

$$
M\left(T_{n}^{(m)}\right)=\tilde{B}\left(\tau_{n}^{(m)}\right)
$$

[^0]where $\tau_{n}^{(m)}$ means $T_{n}^{(m)}(\tilde{B}(\cdot)) .{ }^{1}$ Note that
$$
\tau_{n_{1}}^{\left(m_{1}\right)} \leq \tau_{n_{2}}^{\left(m_{2}\right)} \quad \text { if and only if } \quad T_{n_{1}}^{\left(m_{1}\right)} \leq T_{n_{2}}^{\left(m_{2}\right)}
$$
for all $m_{1}, n_{1}, m_{2}, n_{2}$. It follows that
$$
\tau_{n}^{(m)}=A\left(T_{n}^{(m)}\right)
$$
for some increasing function $A(\cdot)$; this function is unbounded since $\tau_{n}^{(m)}$ are unbounded, and continuous since the set $\left\{\tau_{n}^{(m)}: m, n=1,2, \ldots\right\}$ is dense. The equality $M\left(T_{n}^{(m)}\right)=\tilde{B}\left(A\left(T_{n}^{(m)}\right)\right)$ implies $M(t)=\tilde{B}(A(t))$ unless $M(\cdot)$ is constant in a neighborhood of t. By monotonicity it holds for all t.

Waiving the assumption $\sup _{[0, \infty)}|M(\cdot)|=\infty$ we face a difficulty: it may happen that the embedded simple random walk $\left(M\left(T_{n}^{(m)}\right)\right)_{n}$ is defined only for finitely many n. Thus, it is no more a random walk. Rather, it is a (rescaled) unfinished random walk, as defined below.
6a2 Definition. An unfinished random walk is a sequence (X_{0}, X_{1}, \ldots) of measurable $X_{n}: \Omega \rightarrow \mathbb{Z} \cup\{\emptyset\}$ such that

$$
\begin{gathered}
X_{0}=0 ; \\
X_{n}=\emptyset \quad \text { implies } X_{n+1}=\emptyset ; \\
X_{n+1} \in\left\{X_{n}-1, X_{n}+1, \emptyset\right\} \text { if } X_{n} \in \mathbb{Z} ; \\
\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right) \leq \frac{1}{2}
\end{gathered}
$$

whenever $x_{0}, \ldots, x_{n+1} \in \mathbb{Z}, \mathbb{P}\left(X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right)>0$.
6a3 Exercise. The rescaled embedded walk $\left(2^{m} M\left(T_{n}^{(m)}\right)\right)_{n}$ is an unfinished random walk (for every m).

Prove it.
6a4 Definition. A continuation of an unfinished random walk $\left(X_{n}\right)_{n}$ is a sequence of pairs $\left(X_{n}^{\prime}, Y_{n}\right)$ of measurable $X_{n}^{\prime}: \Omega^{\prime} \rightarrow \mathbb{Z} \cup\{\emptyset\}, Y_{n}: \Omega^{\prime} \rightarrow \mathbb{Z}$ such that

$$
\begin{aligned}
& \left(X_{0}^{\prime}, X_{1}^{\prime}, \ldots\right) \text { is distributed like }\left(X_{0}, X_{1}, \ldots\right) \\
& \quad Y_{n}=X_{n}^{\prime} \text { whenever } X_{n}^{\prime} \in \mathbb{Z} \\
& \mathbb{P}\left(Y_{n+1}-Y_{n}=-1 \mid X_{0}, Y_{0}, \ldots, X_{n}, Y_{n}\right)=\frac{1}{2}= \\
& \quad=\mathbb{P}\left(Y_{n+1}-Y_{n}=-1 \mid X_{0}, Y_{0}, \ldots, X_{n}, Y_{n}\right) \quad \text { a.s. }
\end{aligned}
$$

[^1]Note that $\left(Y_{n}\right)_{n}$ is necessarily (distributed as) the simple random walk.
6a5 Exercise. Every unfinished random walk has a continuation.
Prove it.
6a6 Exercise. Prove Theorem 6a1 in full generality.
Note that $A(\cdot)$ need not be strictly increasing, since $M(\cdot)$ may be constant on some intervals (in contrast to $B(\cdot)$).

6a7 Remark. Theorem 6al is generalized readily to a local martingale $M(\cdot)$ on $[0, T)$; accordingly, $A(\cdot)$ is defined on $[0, T)$.

6a8 Corollary. Almost surely, $M(\cdot)$ either has a finite limit (at infinity), or is unbounded from below and above. Especially, the event ' $M(t) \rightarrow+\infty$ as $t \rightarrow \infty$ ' is of probability 0 , as well as the event ' $M(t) \rightarrow-\infty$ as $t \rightarrow \infty$ '. The same holds in the case of finite lifetime; then, of course, ' $t \rightarrow \infty$ ' should be replaced with ' $t \rightarrow T-$ '.

6a9 Corollary. If $M(\cdot)$ is of finite variation on some (maybe random) time interval, then it is constant on this interval.

6b Quadratic variation

Given a time interval $[0, t]$ and a path of $M(\cdot)$ on $[0, t]$, we can find the corresponding $A(t)$ by counting steps of embedded random walks,

$$
\begin{equation*}
T_{n_{m}}^{(m)} \rightarrow t \quad \text { implies } \quad \frac{n_{m}}{2^{2 m}} \rightarrow A(t) \tag{6b1}
\end{equation*}
$$

Thus, a segment of a path of $M(\cdot)$ determines uniquely the corresponding segment of a path of $\tilde{B}(\cdot)$. The converse is generally wrong. Here is a counterexample:

$$
M(t)= \begin{cases}0 & \text { if } t \in[0,1] \\ B(t)-B(1) & \text { if } t \in[1, \infty) \text { and } B(1)>0 \\ 2(B(t)-B(1)) & \text { if } t \in[1, \infty) \text { and } B(1)<0\end{cases}
$$

6b2 Exercise. Find $A(\cdot)$ for this case, and verify the non-uniqueness.
In fact, (6b1) gives just one out of several 'deterministic' approaches to $A(\cdot)$; these approaches coincide for almost all, but not all paths. Regretfully, (6b1) does not suggest many important properties of $A(\cdot)$. Another, 'nondeterministic' approach, given below, does suggest.

6b3 Proposition. Let $M(\cdot)$ and $A(\cdot)$ be as in Theorem 6al, then the following process is a local martingale:

$$
t \mapsto M^{2}(t)-A(t) .
$$

On the first sight it follows immediately from the fact that $M^{2}(t)-A(t)=$ $\tilde{B}^{2}(A(t))-A(t)+2 M(0) \tilde{B}(A(t))+M^{2}(0)$, since $\tilde{B}^{2}(s)-s$ is distributed like $B^{2}(s)-s$. Be careful, however. It is clear that $\tilde{B}(\cdot)$ has the strong Markov property w.r.t. its own filtration, but it does not mean the strong Markov property w.r.t. the filtration of $B(\cdot)$.

6b4 Exercise. Give a counterexample to the following wrong claim: for every stopping time T there exists a stopping time \tilde{T} such that $T(B(\cdot))=$ $\tilde{T}(\tilde{B}(\cdot))$ a.s.

It is possible to prove the strong Markov property of $\tilde{B}(\cdot)$ w.r.t. the filtration of $B(\cdot)$, thus giving a 'continuous' proof to 6b3. Alternatively, one may use a 'discrete' proof sketched below.

6b5 Exercise. Let an unfinished random walk $\left(X_{n}\right)_{n}$ be bounded in the sense that there exists K such that for all $n, X_{n} \in[-K, K] \cup\{\emptyset\}$ a.s. Define $N=\sup \left\{n: X_{n} \in \mathbb{Z}\right\}$. Then $\mathbb{E} N<\infty$ and

$$
\left|\mathbb{E} X_{N}^{2}-\mathbb{E} N\right| \leq 2 \mathbb{E}\left|X_{N}\right|
$$

Prove it.
Proof of Proposition 663, Let T be a stopping time such that $\exists t \mathbb{P}(T \leq$ $t)=1$ and $\exists C \mathbb{P}\left(\max _{[0, T]}|M(\cdot)| \leq C\right)=1$, we'll prove that $\mathbb{E}\left(M^{2}(T)-\right.$ $A(T))=0$. (The conditional version of this equality, given the past, is proved similarly.)

We restrict the embedded random walk $\left(M\left(T_{n}^{(m)}\right)\right)_{n}$ to n such that $T_{n}^{(m)} \leq$ T and get a (rescaled) unfinished random walk. We apply 6b5 to it:

$$
\begin{gathered}
\left|\mathbb{E}\left(2^{m} M\left(T_{N}^{(m)}\right)\right)^{2}-\mathbb{E} N\right| \leq 2 \mathbb{E}\left|2^{m} M\left(T_{N}^{(m)}\right)\right| \\
\left|\mathbb{E} M^{2}\left(T_{N}^{(m)}\right)-\mathbb{E} \frac{N}{2^{2 m}}\right| \leq 2^{-m} \cdot 2 \mathbb{E}\left|M\left(T_{N}^{(m)}\right)\right| \leq 2^{-m} \cdot 2 C .
\end{gathered}
$$

On the other hand,

$$
\left|M\left(T_{N}^{(m)}\right)-M(T)\right| \leq 2^{-m} \quad \text { a.s. }
$$

and

$$
\frac{N}{2^{2 m}} \rightarrow A(T) \quad \text { a.s. as } m \rightarrow \infty
$$

6b6 Exercise. $A(\cdot)$ is the only random increasing continuous function such that the process $t \mapsto M^{2}(t)-A(t)$ is a local martingale.

Prove it.
6b7 Corollary. (a) If $M(\cdot)$ is a local martingale such that $M(0)=0$ and the process $t \mapsto M^{2}(t)-t$ also is a local martingale then $M(\cdot)$ is (distributed as) Brownian motion.
(b) If $M(\cdot)$ is a local martingale on $[0, T)$ such that $M(0)=0$ and the process $t \mapsto M^{2}(t)-t$ also is a local martingale on $[0, T)$ then there exists (on an extended probability space) a Brownian motion $\tilde{B}(\cdot)$ such that $M(t)=$ $B(t)$ for all $t \in[0, T)$.

We state it only for Brownian local martingales, but it holds (with the same proof) for all continuous local martingales ${ }^{1}$ and is well-known as Lévy's characterization of Brownian motion. ${ }^{2}$

The process $A(\cdot)$ is called the quadratic variation of $M(\cdot)^{3}$ (see [3], pp. 292, 303), the increasing process of $M(\cdot)$ (see [5], p. 119), the bracket $\langle M, M\rangle$ (see [5] p. 119 again). Let us denote this important process by

$$
A(t)=\int_{0}^{t}(\mathrm{~d} M(\cdot))^{2}
$$

it is just a notation, but very suggestive, especially in the form $\mathrm{d} A(t)=$ $(\mathrm{d} M(t))^{2}$.

6b8 Exercise. Let $M_{1}(\cdot), M_{2}(\cdot)$ be Brownian local martingales, then the following function of $a, b \in \mathbb{R}$ is a quadratic form (for each t):

$$
\int_{0}^{t}\left(a \mathrm{~d} M_{1}(\cdot)+b \mathrm{~d} M_{2}(\cdot)\right)^{2} .
$$

(Of course, $a \mathrm{~d} M_{1}(\cdot)+b \mathrm{~d} M_{2}(\cdot)$ means $\left.\mathrm{d}\left(a M_{1}(\cdot)+b M_{2}(\cdot)\right).\right)$
Prove it.
6b9 Exercise. Define $\int_{0}^{t} \mathrm{~d} M_{1}(\cdot) \mathrm{d} M_{2}(\cdot)$, verify that it is bilinear, and that

$$
\int_{0}^{t} \mathrm{~d} M(\cdot) \mathrm{d} M(\cdot)=\int_{0}^{t}(\mathrm{~d} M(\cdot))^{2}
$$

[^2]and that the following process is a local martingale:
$$
t \mapsto M_{1}(t) M_{2}(t)-\int_{0}^{t} \mathrm{~d} M_{1}(\cdot) \mathrm{d} M_{2}(\cdot)
$$

All said is generalized readily to local martingales on $[0, T)$. Of course, dealing with M_{1}, M_{2} we should consider them both on the same $[0, T)$.

6c Planar Brownian motion

The planar (that is, two-dimensional) Brownian motion $B^{(2)}(\cdot)$ is nothing but two independent one-dimensional Brownian motions; say,

$$
B^{(2)}(t)\left(\omega_{1}, \omega_{2}\right)=\left(B^{(1)}(t)\left(\omega_{1}\right), B^{(1)}(t)\left(\omega_{2}\right)\right)
$$

where $B^{(1)}$ is the one-dimensional Brownian motion on a probability space $\Omega^{(1)}$, and $B^{(2)}$ is the two-dimensional Brownian motion on the probability space $\Omega^{(2)}=\Omega^{(1)} \times \Omega^{(1)}$.

The two-dimensional Brownian motion is a random continuous function $[0, \infty) \rightarrow \mathbb{R}^{2}$. It has stationary independent increments. The distribution of $B^{(2)}(t)$ has a two-dimensional density

$$
p_{t}^{(2)}(x)=p_{t}^{(2)}\left(x_{1}, x_{2}\right)=p_{t}^{(1)}\left(x_{1}\right) p_{t}^{(1)}\left(x_{2}\right)=\frac{1}{2 \pi t} \exp \left(-\frac{|x|^{2}}{2 t}\right) ;
$$

note the rotation invariance. It is a strong Markov process. ${ }^{1}$ Still, all Brownian martingales are continuous, and 4 c 2 holds. Of course, from now on by a 'Brownian (local) martingale' we mean: w.r.t. the filtration of a given Brownian motion, be it one-dimensional or two-dimensional. The relation to the heat equation holds as before, but the differential operator $\frac{\partial}{\partial t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}$ is now replaced with

$$
\frac{\partial}{\partial t}+\frac{1}{2}(\underbrace{\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}}_{\Delta})
$$

Δ is the Laplacian. Local martingales are defined as before.
The technique of embedded random walks (Sect. 3, Sect. 6a) is essentially one-dimensional, but still useful, as we'll see soon.

A smooth function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called harmonic, if $\Delta h=0$. If h is harmonic then the process

$$
M(t)=h\left(B^{(2)}(t)\right)
$$

[^3]is a local martingale (by the two-dimensional counterpart of 5b3). It follows immediately that for every bounded domain $G \subset \mathbb{R}^{2}$ containing the origin, the exit point distribution ${ }^{1}$ is the so-called harmonic measure, ${ }^{2}$ - a probability measure μ on the boundary of G such that $\int h \mathrm{~d} \mu=h(0)$ for all harmonic functions h on \mathbb{R}^{2} (or on a neighborhood of the closure of G).

In order to find the quadratic variation of $M(\cdot)$ we apply the two-dimensional counterpart of Prop. 5b2 to $M^{2}(t)=h^{2}\left(B^{(2)}(t)\right)$ and get

$$
\int_{0}^{t}(\mathrm{~d} M(\cdot))^{2}=\int_{0}^{t} \Delta\left(h^{2}\right)\left(B^{(2)}(s)\right) \mathrm{d} s=\int_{0}^{t}\left|\nabla h\left(B^{(2)}(s)\right)\right|^{2} \mathrm{~d} s
$$

since $\Delta h=|\nabla h|^{2}$ for harmonic h (think, why). In this sense,

$$
\left(\mathrm{d} h\left(B^{(2)}(t)\right)\right)^{2}=\left|\nabla h\left(B^{(2)}(t)\right)\right|^{2} \mathrm{~d} t \quad \text { for harmonic } h .
$$

6c1 Exercise. For any two harmonic functions h_{1}, h_{2},

$$
\mathrm{d} h_{1}\left(B^{(2)}(t)\right) \mathrm{d} h_{2}\left(B^{(2)}(t)\right)=\left\langle\nabla h_{1}, \nabla h_{2}\right\rangle\left(B^{(2)}(t)\right) \mathrm{d} t
$$

Prove it.
The Brownian motion on the complex plane \mathbb{C} will be denoted $B_{\mathbb{C}}(\cdot)$.
The function

$$
z \mapsto \ln |z|, \quad \text { that is, } \quad(x, y) \mapsto \ln \sqrt{x^{2}+y^{2}}
$$

is not a harmonic function on $\mathbb{C}\left(\right.$ or $\left.\mathbb{R}^{2}\right)$, however, $\Delta \ln |\cdot|=0$ on $\mathbb{C} \backslash\{0\}$. Does it mean that $\ln \left|B_{\mathbb{C}}(t)-1\right|$ is a local martingale? We introduce the stopping time $T=\inf \left\{t: B_{\mathbb{C}}(t)=1\right\}$ and note that $\ln \left|B_{\mathbb{C}}(t)-1\right|$ is a local martingale on $[0, T)$ by the two-dimensional counterpart of 5 d 3 . It cannot tend to $-\infty$ (recall 6a8), which shows that $\mathbb{P}\left(\exists t B_{\mathbb{C}}(t)=1\right)=0$. Similarly,

$$
\mathbb{P}\left(\exists t B_{\mathbb{C}}(t)=z\right)=0 \quad \text { for every } z \in \mathbb{C} \backslash\{0\} ;
$$

it follows easily that

$$
\mathbb{P}\left(\exists t>0 \quad B_{\mathbb{C}}(t)=0\right)=0
$$

6c2 Exercise. Give an example of a Brownian local martingale $M(\cdot)$ satisfying $\sup _{t \in[0, \infty)} \mathbb{E} \mathrm{e}^{|M(t)|}<\infty$ but still not a martingale.

[^4]6c3 Theorem. ${ }^{1}$ (a) If $M_{1}(\cdot), M_{2}(\cdot)$ are local martingales such that $M_{1}(0)=$ $0, M_{2}(0)=0$ and

$$
\int_{0}^{t}\left(\mathrm{~d} M_{1}(\cdot)\right)^{2}=t, \quad \int_{0}^{t}\left(\mathrm{~d} M_{2}(\cdot)\right)^{2}=t, \quad \int_{0}^{t} \mathrm{~d} M_{1}(\cdot) \mathrm{d} M_{2}(\cdot)=0
$$

for all t, then the two-dimensional process $\left(M_{1}(\cdot), M_{2}(\cdot)\right)$ is (distributed as) the planar Brownian motion.
(b) If $M_{1}(\cdot), M_{2}(\cdot)$ are local martingales on $[0, T)$ such that

$$
\int_{0}^{t}\left(\mathrm{~d} M_{1}(\cdot)\right)^{2}=t, \quad \int_{0}^{t}\left(\mathrm{~d} M_{2}(\cdot)\right)^{2}=t, \quad \int_{0}^{t} \mathrm{~d} M_{1}(\cdot) \mathrm{d} M_{2}(\cdot)=0
$$

for all $t \in[0, T)$, then there exist (on an extended probability space) two independent Brownian motions $\tilde{B}_{1}(\cdot), \tilde{B}_{2}(\cdot)$ such that $M_{1}(t)=\tilde{B}_{1}(t)$ and $M_{2}(t)=\tilde{B}_{2}(t)$ for all $t \in[0, T)$.

First, consider 6c3(a).
6c4 Exercise. Let $a_{1}, a_{2} \in \mathbb{R}, a_{1}^{2}+a_{2}^{2} \neq 0$. Prove that the process

$$
X(t)=a_{1} M_{1}\left(\frac{t}{a_{1}^{2}+a_{2}^{2}}\right)+a_{2} M_{2}\left(\frac{t}{a_{1}^{2}+a_{2}^{2}}\right)
$$

is distributed like the Brownian motion.
6c5 Exercise. Let $a_{1}, a_{2} \in \mathbb{R}$. Prove that

$$
\mathbb{E} \operatorname{expi}\left(a_{1} M_{1}(t)+a_{2} M_{2}(t)\right)=\exp \left(-\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}\right) t\right)
$$

6c6 Exercise. Let $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}, a_{1}^{2}+a_{2}^{2} \neq 0, b_{1}^{2}+b_{2}^{2} \neq 0$. Prove that the following process is distributed like the Brownian motion:

$$
\begin{gathered}
X(t)=a_{1} M_{1}(A(t))+a_{2} M_{2}(A(t)) \quad \text { for } t \in[0,1] \\
X(t)=X(1)+b_{1}\left(M_{1}(A(t))-M_{1}(A(1))\right)+b_{2}\left(M_{2}(A(t))-M_{2}(A(1))\right) \quad \text { for } t \in[1, \infty),
\end{gathered}
$$

where

$$
A(t)= \begin{cases}\frac{t}{a_{1}^{2}+a_{2}^{2}} & \text { for } t \in[0,1] \\ A(1)+\frac{t-1}{b_{1}^{2}+b_{2}^{2}} & \text { for } t \in[1, \infty)\end{cases}
$$

[^5]6c7 Exercise. Let $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}$. Prove that

$$
\begin{array}{r}
\mathbb{E} \operatorname{expi}\left(a_{1} M_{1}(1)+b_{1}\left(M_{1}(t)-M_{1}(1)\right)+a_{2} M_{2}(1)+b_{2}\left(M_{2}(t)-M_{2}(1)\right)\right)= \\
=\exp \left(-\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}\right)-\frac{1}{2}\left(b_{1}^{2}+b_{2}^{2}\right)(t-1)\right) .
\end{array}
$$

6c8 Exercise. Prove Theorem 6c3(a).
Item (b) of Theorem 6c3 is reduced to Item (a) by glueing two-dimensional processes,

$$
\tilde{M}(\cdot)\left(\omega_{1}, \omega_{2}\right)=M(\cdot)\left(\omega_{1}\right) \stackrel{T\left(\omega_{1}\right)}{\sqcup} B^{(2)}(\cdot)\left(\omega_{2}\right)
$$

True, $M(T)$ is not defined; however, the left limit $M(T-)$ exists a.s. on the event $\{T<\infty\}$ by 6b7(b) applied to M_{1} and M_{2} separately.

6d Conformal local martingales

6d1 Definition. ${ }^{1}$ A planar local martingale $M(\cdot)=\left(M_{1}(\cdot), M_{2}(\cdot)\right)$ on $[0, T)$ is called conformal, if

$$
\int_{0}^{t}\left(\mathrm{~d} M_{1}(\cdot)\right)^{2}=\int_{0}^{t}\left(\mathrm{~d} M_{2}(\cdot)\right)^{2} \quad \text { and } \quad \int_{0}^{t} \mathrm{~d} M_{1}(\cdot) \mathrm{d} M_{2}(\cdot)=0
$$

for all $t \in[0, T)$.
An important example: $M(t)=f\left(B_{\mathbb{C}}(t)\right)$ where $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function. Indeed, $h_{1}=\operatorname{Re} f$ and $h_{2}=\operatorname{Im} f$ are harmonic functions on \mathbb{C}, and

$$
\left|\nabla h_{1}(z)\right|=\left|f^{\prime}(z)\right|=\left|\nabla h_{2}(z)\right|, \quad\left\langle\nabla h_{1}(z), \nabla h_{2}(z)\right\rangle=0 .
$$

A more general example: $M(t)=f\left(B_{\mathbb{C}}(t)\right)$ for $t \in[0, T)$, where $f: G \rightarrow$ \mathbb{C} is an analytic function, $G \subset \mathbb{C}$ a domain, ${ }^{2} 0 \in G$, and $T=\inf \left\{t: B_{\mathbb{C}}(t) \notin\right.$ $G\}$.

6d2 Exercise. If $M(\cdot)$ is of the form

$$
M(t)=M(0)+\tilde{B}(A(t))
$$

where $\tilde{B}(\cdot)$ is distributed as $B_{\mathbb{C}}(\cdot)$ and $A(\cdot)$ is a random increasing continuous function, then $M(\cdot)$ is conformal.

Prove it.

[^6]6d3 Theorem. ${ }^{1}$ Every conformal local martingale $M(\cdot)$ on $[0, T)$ is of the form

$$
M(t)=M(0)+\tilde{B}(A(t))
$$

where $\tilde{B}(\cdot)$ is distributed as the complex-valued Brownian motion $B_{\mathbb{C}}(\cdot)$, and

$$
A(t)=\int_{0}^{t}\left(\mathrm{~d} M_{1}(\cdot)\right)^{2}=\int_{0}^{t}\left(\mathrm{~d} M_{2}(\cdot)\right)^{2} \quad \text { for } t \in[0, T)
$$

Proof. We define $\tilde{B}(\cdot)$ on $[0, A(\infty))$ by $M(t)=M(0)+\tilde{B}(A(t))$ (which is correct...) and observe that $t \mapsto \tilde{B}_{1}^{2}(A(t))-A(t)$ is a local martingale, therefore $s \mapsto \tilde{B}_{1}^{2}(s)-s$ is a local martingale, ${ }^{2}$ that is, $\int_{0}^{t}\left(\mathrm{~d} \tilde{B}_{1}(\cdot)\right)^{2}=t$ for $t<A(\infty)$. Similarly, $\int_{0}^{t}\left(\mathrm{~d} \tilde{B}_{2}(\cdot)\right)^{2}=t$ and $\int_{0}^{t} \mathrm{~d} \tilde{B}_{1}(\cdot) \mathrm{d} \tilde{B}_{2}(\cdot)=0$. It remains to apply Theorem 6c3,

6d4 Exercise. Given $\varphi \in(0, \pi)$ and $r \in(1, \infty)$, we consider two stopping times

$$
\begin{aligned}
T_{\varphi}^{\prime} & =\min \left\{t:\left|\arg \left(1+B_{\mathbb{C}}(t)\right)\right|=\varphi\right\}, \\
T_{r}^{\prime \prime} & =\min \left\{t:\left|1+B_{\mathbb{C}}(t)\right|=r\right\}
\end{aligned}
$$

and the probability $\mathbb{P}\left(T_{\varphi}^{\prime}<T_{r}^{\prime \prime}\right)$. Prove that this probability is a function of $\frac{1}{\varphi} \ln r$ only.

The cases $\varphi=\pi / 4, \varphi=\pi / 2, \varphi \rightarrow \pi-$ and $\varphi \rightarrow 0+$ are especially interesting. ${ }^{3}$

6e Hints to exercises

6a6. For each m use 6a3 and 6a5. Show that these constructions for m and $m+1$ are consistent, and get the needed Brownian motion.

6b2) recall the Brownian scaling.
6b4 recall 6b2,
6b5. induction; $p_{-}, p_{+} \in[0,0.5] ; p_{+}\left((x+1)^{2}-x^{2}-1\right)+p_{-}\left((x-1)^{2}-\right.$ $\left.x^{2}-1\right)=2 x\left(p_{+}-p_{-}\right)$, and $\left|p_{+}-p_{-}\right| \leq 1-p_{-}-p_{+}$.

6b6 use 6a9

[^7]6b8: $\left(a M_{1}+b M_{2}\right)^{2}$ is a linear combination of M_{1}^{2}, M_{2}^{2} and $\left(M_{1}+M_{2}\right)^{2}$; use 6b6

6c1) recall 6b9
6c2) try $M(t)=$ const $\cdot \ln \left|B_{\mathbb{C}}(t)-1\right|$.
6c4) use 6b7(a).
6c5 use 6c4
6c6] use 6b7(a) again.
6c7] use 6c6
6c8] generalizing 6c7] calculate $\mathbb{E} \exp \mathrm{i}\left(\sum \alpha_{k}\left(M_{1}\left(t_{k}\right)-M_{1}\left(t_{k-1}\right)\right)+\sum \beta_{k}\left(M_{2}\left(t_{k}\right)-\right.\right.$ $\left.M_{2}\left(t_{k-1}\right)\right)$).

6d4) use the analytic function $z \mapsto z^{\alpha}$ (or alternatively, $z \mapsto \ln z$).

References

[1] R. Durrett, Brownian motion and martingales in analysis, 1984.
[2] I. Karatzas, S.E. Shreve, Brownian motion and stochastic calculus, 1988.
[3] L.B. Koralov, Y.G. Sinai, Theory of probability and random processes (second edition), 2007.
[4] G.F. Lawler, Conformally invariant processes in the plane, 2005.
[5] D. Revuz, M. Yor, Continuous martingales and Brownian motion (second edition), 1994.
[6] L.C.G. Rogers, D. Williams, Diffusions, Markov processes, and martingales, vol. 1 (second edition), 1994.

Index

conformal, 67
harmonic
function, 64
measure, 65
Laplacian, 64
quadratic variation, 63
$B_{\mathbb{C}}(\cdot), 65$ $B^{(2)}(\cdot), 64$
$\Delta, 64$
$(\mathrm{d} M(\cdot))^{2}, 63$

[^0]: ${ }^{1}$ See also [1] p. 75; [2] p. 174; [5] p. 173. The theorem holds for all continuous local martingales (Brownian or not).

[^1]: ${ }^{1}$ Or do you prefer to write $M\left(T_{n}^{(m)}(M(\cdot))\right)=\tilde{B}\left(T_{n}^{(m)}(\tilde{B}(\cdot))\right)$?

[^2]: ${ }^{1}$ Do not think that it holds for discontinuous local martingales; a counterexample is $M(\cdot)$ such that $t \mapsto M(t)+t$ is the Poisson process.
 ${ }^{2}$ See also [1] p. 75; 2] p. 157; 5] p. 143; 6] p. 2.
 ${ }^{3}$ Despite the fact that $A(t)$ is not equal to the supremum of $\left.\sum_{k=1}^{n}\left(M\left(t_{k}\right)-M_{(} t_{k-1}\right)\right)^{2}$ over all n and $0 \leq t_{0} \leq \cdots \leq t_{n} \leq t$.

[^3]: ${ }^{1}$ Of course, the sub- σ-field \mathcal{F}_{t} is now generated by both coordinates of $B^{(2)}(s), s \in[0, t]$.

[^4]: ${ }^{1}$ That is, the distribution of $B^{(2)}\left(T_{G}\right)$ where $T_{G}=\min \left\{t: B^{(2)}(t) \notin G\right\}$.
 ${ }^{2}$ See also [4] p. 48.

[^5]: ${ }^{1}$ See also [1] p. 78; [2] p. 157.

[^6]: ${ }^{1}$ See also [5] p. 181.
 ${ }^{2}$ That is, a connected open set.

[^7]: ${ }^{1}$ See also [4] p. 45; [5] p. 182.
 ${ }^{2}$ Do not bother about 6 b 4 now we go the other direction: for every stopping time \tilde{T} there exists a stopping time T such that $T(M(\cdot))=\tilde{T}\left(\tilde{B}^{(2)}(\cdot)\right)$.
 ${ }^{3}$ See also [5] p. 187, Exercise (2.18).

