6 Time change

6a	Time change	59
6b	Quadratic variation	61
6c	Planar Brownian motion	64
6 d	Conformal local martingales	67
6e	Hints to exercises	68

6a Time change

6a1 Theorem. ¹ (Dambis, Dubins-Schwartz) Every Brownian local martingale $M(\cdot)$ is of the form

$$M(t) = M(0) + \tilde{B}(A(t))$$

where $\tilde{B}(\cdot)$ is (distributed as) Brownian motion (on an extended probability space), and $A(\cdot)$ is a random increasing continuous function.

Assume for a while that $\sup_{[0,\infty)} |M(\cdot)| = \infty$ a.s.

Proof of Theorem 6a1 under the additional assumption. The stopping times $T_n^{(m)}$ introduced in Sect. 3a (when embedding simple random walks into the Brownian motion) are functions $C[0, \infty) \to [0, \infty]$; we may apply them to $M(\cdot)$ (instead of $B(\cdot)$). The process $M(t \wedge T_1^{(0)})$ is a martingale by 5b6, thus $\mathbb{P}\left(M(T_1^{(0)}) = -1\right) = 0.5 = \mathbb{P}\left(M(T_1^{(0)}) = 1\right)$. Continuing similarly to 3a we get a chain of embedded simple random walks $\left(M(T_n^{(m)})\right)_n$; here $T_n^{(m)}$ means $T_n^{(m)}\left(M(\cdot)\right)$, of course. The joint distribution of these random walks is the same as in Sect. 3a. We construct the corresponding Brownian motion $\tilde{B}(\cdot)$ as in 3a,

$$\lim_{m} M(T_{n_m}^{(m)}) = \tilde{B}(t) \quad \text{whenever} \quad \lim_{m} \frac{n_m}{2^{2m}} = t \,,$$

and get

$$M(T_n^{(m)}) = \tilde{B}(\tau_n^{(m)}),$$

 $^{^1\}mathrm{See}$ also [1] p. 75; [2] p. 174; [5] p. 173. The theorem holds for all continuous local martingales (Brownian or not).

Tel Aviv University, 2008

Brownian motion

where $\tau_n^{(m)}$ means $T_n^{(m)}(\tilde{B}(\cdot))$.¹ Note that

$$\tau_{n_1}^{(m_1)} \le \tau_{n_2}^{(m_2)}$$
 if and only if $T_{n_1}^{(m_1)} \le T_{n_2}^{(m_2)}$

for all m_1, n_1, m_2, n_2 . It follows that

$$\tau_n^{(m)} = A(T_n^{(m)})$$

for some increasing function $A(\cdot)$; this function is unbounded since $\tau_n^{(m)}$ are unbounded, and continuous since the set $\{\tau_n^{(m)} : m, n = 1, 2, ...\}$ is dense. The equality $M(T_n^{(m)}) = \tilde{B}(A(T_n^{(m)}))$ implies $M(t) = \tilde{B}(A(t))$ unless $M(\cdot)$ is constant in a neighborhood of t. By monotonicity it holds for all t. \Box

Waiving the assumption $\sup_{[0,\infty)} |M(\cdot)| = \infty$ we face a difficulty: it may happen that the embedded simple random walk $(M(T_n^{(m)}))_n$ is defined only for finitely many n. Thus, it is no more a random walk. Rather, it is a (rescaled) unfinished random walk, as defined below.

6a2 Definition. An unfinished random walk is a sequence $(X_0, X_1, ...)$ of measurable $X_n : \Omega \to \mathbb{Z} \cup \{\emptyset\}$ such that

$$X_0 = 0;$$

$$X_n = \emptyset \quad \text{implies} \quad X_{n+1} = \emptyset;$$

$$X_{n+1} \in \{X_n - 1, X_n + 1, \emptyset\} \quad \text{if } X_n \in \mathbb{Z};$$

$$\mathbb{P}\left(X_{n+1} = x_{n+1} \, \middle| \, X_0 = x_0, \dots, X_n = x_n\right) \le \frac{1}{2}$$

whenever $x_0, ..., x_{n+1} \in \mathbb{Z}, \mathbb{P}(X_0 = x_0, ..., X_n = x_n) > 0.$

6a3 Exercise. The rescaled embedded walk $(2^m M(T_n^{(m)}))_n$ is an unfinished random walk (for every m).

Prove it.

6a4 Definition. A continuation of an unfinished random walk $(X_n)_n$ is a sequence of pairs (X'_n, Y_n) of measurable $X'_n : \Omega' \to \mathbb{Z} \cup \{\emptyset\}, , Y_n : \Omega' \to \mathbb{Z}$ such that

$$(X'_{0}, X'_{1}, ...) \text{ is distributed like } (X_{0}, X_{1}, ...);$$

$$Y_{n} = X'_{n} \text{ whenever } X'_{n} \in \mathbb{Z};$$

$$\mathbb{P}(Y_{n+1} - Y_{n} = -1 | X_{0}, Y_{0}, ..., X_{n}, Y_{n}) = \frac{1}{2} =$$

$$= \mathbb{P}(Y_{n+1} - Y_{n} = -1 | X_{0}, Y_{0}, ..., X_{n}, Y_{n}) \text{ a.s}$$

¹Or do you prefer to write $M(T_n^{(m)}(M(\cdot))) = \tilde{B}(T_n^{(m)}(\tilde{B}(\cdot)))?$

Note that $(Y_n)_n$ is necessarily (distributed as) the simple random walk.

6a5 Exercise. Every unfinished random walk has a continuation. Prove it.

6a6 Exercise. Prove Theorem 6a1 in full generality.

Note that $A(\cdot)$ need not be strictly increasing, since $M(\cdot)$ may be constant on some intervals (in contrast to $B(\cdot)$).

6a7 Remark. Theorem 6a1 is generalized readily to a local martingale $M(\cdot)$ on [0, T); accordingly, $A(\cdot)$ is defined on [0, T).

6a8 Corollary. Almost surely, $M(\cdot)$ either has a finite limit (at infinity), or is unbounded from below *and* above. Especially, the event $M(t) \to +\infty$ as $t \to \infty$ ' is of probability 0, as well as the event $M(t) \to -\infty$ as $t \to \infty$ '. The same holds in the case of finite lifetime; then, of course, $t \to \infty$ ' should be replaced with $t \to T-$ '.

6a9 Corollary. If $M(\cdot)$ is of finite variation on some (maybe random) time interval, then it is constant on this interval.

6b Quadratic variation

Given a time interval [0, t] and a path of $M(\cdot)$ on [0, t], we can find the corresponding A(t) by counting steps of embedded random walks,

(6b1)
$$T_{n_m}^{(m)} \to t \text{ implies } \frac{n_m}{2^{2m}} \to A(t).$$

Thus, a segment of a path of $M(\cdot)$ determines uniquely the corresponding segment of a path of $\tilde{B}(\cdot)$. The converse is generally wrong. Here is a counterexample:

$$M(t) = \begin{cases} 0 & \text{if } t \in [0, 1], \\ B(t) - B(1) & \text{if } t \in [1, \infty) \text{ and } B(1) > 0, \\ 2(B(t) - B(1)) & \text{if } t \in [1, \infty) \text{ and } B(1) < 0. \end{cases}$$

6b2 Exercise. Find $A(\cdot)$ for this case, and verify the non-uniqueness.

In fact, (6b1) gives just one out of several 'deterministic' approaches to $A(\cdot)$; these approaches coincide for almost all, but not all paths. Regret-fully, (6b1) does not suggest many important properties of $A(\cdot)$. Another, 'nondeterministic' approach, given below, does suggest.

$$t \mapsto M^2(t) - A(t)$$
.

On the first sight it follows immediately from the fact that $M^2(t) - A(t) = \tilde{B}^2(A(t)) - A(t) + 2M(0)\tilde{B}(A(t)) + M^2(0)$, since $\tilde{B}^2(s) - s$ is distributed like $B^2(s) - s$. Be careful, however. It is clear that $\tilde{B}(\cdot)$ has the strong Markov property w.r.t. its own filtration, but it does not mean the strong Markov property w.r.t. the filtration of $B(\cdot)$.

6b4 Exercise. Give a counterexample to the following wrong claim: for every stopping time T there exists a stopping time \tilde{T} such that $T(B(\cdot)) = \tilde{T}(\tilde{B}(\cdot))$ a.s.

It is possible to prove the strong Markov property of $B(\cdot)$ w.r.t. the filtration of $B(\cdot)$, thus giving a 'continuous' proof to 6b3. Alternatively, one may use a 'discrete' proof sketched below.

6b5 Exercise. Let an unfinished random walk $(X_n)_n$ be bounded in the sense that there exists K such that for all $n, X_n \in [-K, K] \cup \{\emptyset\}$ a.s. Define $N = \sup\{n : X_n \in \mathbb{Z}\}$. Then $\mathbb{E} N < \infty$ and

$$\left|\mathbb{E} X_N^2 - \mathbb{E} N\right| \le 2 \mathbb{E} \left|X_N\right|.$$

Prove it.

Proof of Proposition 6b3. Let T be a stopping time such that $\exists t \ \mathbb{P}(T \leq t) = 1$ and $\exists C \ \mathbb{P}(\max_{[0,T]} | M(\cdot) | \leq C) = 1$, we'll prove that $\mathbb{E}(M^2(T) - A(T)) = 0$. (The conditional version of this equality, given the past, is proved similarly.)

We restrict the embedded random walk $(M(T_n^{(m)}))_n$ to n such that $T_n^{(m)} \leq T$ and get a (rescaled) unfinished random walk. We apply 6b5 to it:

$$\left| \mathbb{E} \left(2^m M(T_N^{(m)}) \right)^2 - \mathbb{E} N \right| \le 2 \mathbb{E} \left| 2^m M(T_N^{(m)}) \right|;$$
$$\left| \mathbb{E} M^2(T_N^{(m)}) - \mathbb{E} \frac{N}{2^{2m}} \right| \le 2^{-m} \cdot 2 \mathbb{E} \left| M(T_N^{(m)}) \right| \le 2^{-m} \cdot 2C.$$

On the other hand,

$$|M(T_N^{(m)}) - M(T)| \le 2^{-m}$$
 a.s.

and

$$\frac{N}{2^{2m}} \to A(T)$$
 a.s. as $m \to \infty$.

3.7

6b6 Exercise. $A(\cdot)$ is the only random increasing continuous function such that the process $t \mapsto M^2(t) - A(t)$ is a local martingale.

Prove it.

6b7 Corollary. (a) If $M(\cdot)$ is a local martingale such that M(0) = 0 and the process $t \mapsto M^2(t) - t$ also is a local martingale then $M(\cdot)$ is (distributed as) Brownian motion.

(b) If $M(\cdot)$ is a local martingale on [0, T) such that M(0) = 0 and the process $t \mapsto M^2(t) - t$ also is a local martingale on [0, T) then there exists (on an extended probability space) a Brownian motion $\tilde{B}(\cdot)$ such that M(t) = B(t) for all $t \in [0, T)$.

We state it only for Brownian local martingales, but it holds (with the same proof) for all continuous local martingales¹ and is well-known as Lévy's characterization of Brownian motion.²

The process $A(\cdot)$ is called the quadratic variation of $M(\cdot)^3$ (see [3], pp. 292, 303), the increasing process of $M(\cdot)$ (see [5], p. 119), the bracket $\langle M, M \rangle$ (see [5], p. 119 again). Let us denote this important process by

$$A(t) = \int_0^t \left(\mathrm{d}M(\cdot) \right)^2;$$

it is just a notation, but very suggestive, especially in the form $dA(t) = (dM(t))^2$.

6b8 Exercise. Let $M_1(\cdot), M_2(\cdot)$ be Brownian local martingales, then the following function of $a, b \in \mathbb{R}$ is a quadratic form (for each t):

$$\int_0^t \left(a \mathrm{d} M_1(\cdot) + b \mathrm{d} M_2(\cdot) \right)^2.$$

(Of course, $adM_1(\cdot) + bdM_2(\cdot)$ means $d(aM_1(\cdot) + bM_2(\cdot))$.) Prove it.

6b9 Exercise. Define $\int_0^t dM_1(\cdot) dM_2(\cdot)$, verify that it is bilinear, and that

$$\int_0^t \mathrm{d}M(\cdot)\mathrm{d}M(\cdot) = \int_0^t (\mathrm{d}M(\cdot))^2 \,,$$

¹Do not think that it holds for discontinuous local martingales; a counterexample is $M(\cdot)$ such that $t \mapsto M(t) + t$ is the Poisson process.

²See also [1] p. 75; [2] p. 157; [5] p. 143; [6] p. 2.

³Despite the fact that A(t) is not equal to the supremum of $\sum_{k=1}^{n} (M(t_k) - M(t_{k-1}))^2$ over all n and $0 \le t_0 \le \cdots \le t_n \le t$.

and that the following process is a local martingale:

$$t \mapsto M_1(t)M_2(t) - \int_0^t \mathrm{d}M_1(\cdot)\mathrm{d}M_2(\cdot) \,.$$

All said is generalized readily to local martingales on [0, T). Of course, dealing with M_1, M_2 we should consider them both on the same [0, T).

6c Planar Brownian motion

The planar (that is, two-dimensional) Brownian motion $B^{(2)}(\cdot)$ is nothing but two *independent* one-dimensional Brownian motions; say,

$$B^{(2)}(t)(\omega_1,\omega_2) = \left(B^{(1)}(t)(\omega_1), B^{(1)}(t)(\omega_2)\right),$$

where $B^{(1)}$ is the one-dimensional Brownian motion on a probability space $\Omega^{(1)}$, and $B^{(2)}$ is the two-dimensional Brownian motion on the probability space $\Omega^{(2)} = \Omega^{(1)} \times \Omega^{(1)}$.

The two-dimensional Brownian motion is a random continuous function $[0, \infty) \to \mathbb{R}^2$. It has stationary independent increments. The distribution of $B^{(2)}(t)$ has a two-dimensional density

$$p_t^{(2)}(x) = p_t^{(2)}(x_1, x_2) = p_t^{(1)}(x_1)p_t^{(1)}(x_2) = \frac{1}{2\pi t}\exp\left(-\frac{|x|^2}{2t}\right);$$

note the rotation invariance. It is a strong Markov process.¹ Still, all Brownian martingales are continuous, and 4c2 holds. Of course, from now on by a 'Brownian (local) martingale' we mean: w.r.t. the filtration of a given Brownian motion, be it one-dimensional or two-dimensional. The relation to the heat equation holds as before, but the differential operator $\frac{\partial}{\partial t} + \frac{1}{2} \frac{\partial^2}{\partial x^2}$ is now replaced with

$$\frac{\partial}{\partial t} + \frac{1}{2} \Big(\underbrace{\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}}_{\Delta} \Big);$$

 Δ is the Laplacian. Local martingales are defined as before.

The technique of embedded random walks (Sect. 3, Sect. 6a) is essentially one-dimensional, but still useful, as we'll see soon.

A smooth function $h : \mathbb{R}^2 \to \mathbb{R}$ is called *harmonic*, if $\Delta h = 0$. If h is harmonic then the process

$$M(t) = h\big(B^{(2)}(t)\big)$$

¹Of course, the sub- σ -field \mathcal{F}_t is now generated by both coordinates of $B^{(2)}(s), s \in [0, t]$.

is a local martingale (by the two-dimensional counterpart of 5b3). It follows immediately that for every bounded domain $G \subset \mathbb{R}^2$ containing the origin, the exit point distribution¹ is the so-called harmonic measure,² — a probability measure μ on the boundary of G such that $\int h \, d\mu = h(0)$ for all harmonic functions h on \mathbb{R}^2 (or on a neighborhood of the closure of G).

In order to find the quadratic variation of $M(\cdot)$ we apply the two-dimensional counterpart of Prop. 5b2 to $M^2(t) = h^2(B^{(2)}(t))$ and get

$$\int_0^t (\mathrm{d}M(\cdot))^2 = \int_0^t \Delta(h^2) (B^{(2)}(s)) \,\mathrm{d}s = \int_0^t |\nabla h (B^{(2)}(s))|^2 \,\mathrm{d}s \,,$$

since $\Delta h = |\nabla h|^2$ for harmonic h (think, why). In this sense,

$$\left(\mathrm{d}h(B^{(2)}(t))\right)^2 = |\nabla h\left(B^{(2)}(t)\right)|^2 \,\mathrm{d}t \quad \text{for harmonic } h \,.$$

6c1 Exercise. For any two harmonic functions h_1, h_2 ,

$$dh_1(B^{(2)}(t))dh_2(B^{(2)}(t)) = \langle \nabla h_1, \nabla h_2 \rangle (B^{(2)}(t))dt$$

Prove it.

The Brownian motion on the complex plane \mathbb{C} will be denoted $B_{\mathbb{C}}(\cdot)$. The function

$$z\mapsto \ln |z|\,,\quad {\rm that} \ {\rm is},\quad (x,y)\mapsto \ln \sqrt{x^2+y^2}$$

is not a harmonic function on \mathbb{C} (or \mathbb{R}^2), however, $\Delta \ln |\cdot| = 0$ on $\mathbb{C} \setminus \{0\}$. Does it mean that $\ln |B_{\mathbb{C}}(t) - 1|$ is a local martingale? We introduce the stopping time $T = \inf\{t : B_{\mathbb{C}}(t) = 1\}$ and note that $\ln |B_{\mathbb{C}}(t) - 1|$ is a local martingale on [0, T) by the two-dimensional counterpart of 5d3. It cannot tend to $-\infty$ (recall 6a8), which shows that $\mathbb{P}(\exists t \ B_{\mathbb{C}}(t) = 1) = 0$. Similarly,

$$\mathbb{P}(\exists t \ B_{\mathbb{C}}(t) = z) = 0 \quad \text{for every } z \in \mathbb{C} \setminus \{0\};$$

it follows easily that

$$\mathbb{P}(\exists t > 0 \ B_{\mathbb{C}}(t) = 0) = 0.$$

6c2 Exercise. Give an example of a Brownian local martingale $M(\cdot)$ satisfying $\sup_{t \in [0,\infty)} \mathbb{E} e^{|M(t)|} < \infty$ but still not a martingale.

¹That is, the distribution of $B^{(2)}(T_G)$ where $T_G = \min\{t : B^{(2)}(t) \notin G\}$. ²See also [4] p. 48.

Tel Aviv University, 2008

Brownian motion

66

6c3 Theorem. ¹ (a) If $M_1(\cdot), M_2(\cdot)$ are local martingales such that $M_1(0) = 0, M_2(0) = 0$ and

$$\int_0^t (\mathrm{d}M_1(\cdot))^2 = t \,, \quad \int_0^t (\mathrm{d}M_2(\cdot))^2 = t \,, \quad \int_0^t \mathrm{d}M_1(\cdot)\mathrm{d}M_2(\cdot) = 0$$

for all t, then the two-dimensional process $(M_1(\cdot), M_2(\cdot))$ is (distributed as) the planar Brownian motion.

(b) If $M_1(\cdot), M_2(\cdot)$ are local martingales on [0, T) such that

$$\int_0^t (\mathrm{d}M_1(\cdot))^2 = t \,, \quad \int_0^t (\mathrm{d}M_2(\cdot))^2 = t \,, \quad \int_0^t \mathrm{d}M_1(\cdot)\mathrm{d}M_2(\cdot) = 0$$

for all $t \in [0, T)$, then there exist (on an extended probability space) two independent Brownian motions $\tilde{B}_1(\cdot), \tilde{B}_2(\cdot)$ such that $M_1(t) = \tilde{B}_1(t)$ and $M_2(t) = \tilde{B}_2(t)$ for all $t \in [0, T)$.

First, consider 6c3(a).

6c4 Exercise. Let $a_1, a_2 \in \mathbb{R}, a_1^2 + a_2^2 \neq 0$. Prove that the process

$$X(t) = a_1 M_1 \left(\frac{t}{a_1^2 + a_2^2}\right) + a_2 M_2 \left(\frac{t}{a_1^2 + a_2^2}\right)$$

is distributed like the Brownian motion.

6c5 Exercise. Let $a_1, a_2 \in \mathbb{R}$. Prove that

$$\mathbb{E} \exp i \left(a_1 M_1(t) + a_2 M_2(t) \right) = \exp \left(-\frac{1}{2} (a_1^2 + a_2^2) t \right).$$

6c6 Exercise. Let $a_1, a_2, b_1, b_2 \in \mathbb{R}$, $a_1^2 + a_2^2 \neq 0$, $b_1^2 + b_2^2 \neq 0$. Prove that the following process is distributed like the Brownian motion:

$$X(t) = a_1 M_1(A(t)) + a_2 M_2(A(t)) \quad \text{for } t \in [0, 1],$$

$$X(t) = X(1) + b_1 (M_1(A(t)) - M_1(A(1))) + b_2 (M_2(A(t)) - M_2(A(1))) \quad \text{for } t \in [1, \infty),$$

where

$$A(t) = \begin{cases} \frac{t}{a_1^2 + a_2^2} & \text{for } t \in [0, 1], \\ A(1) + \frac{t-1}{b_1^2 + b_2^2} & \text{for } t \in [1, \infty). \end{cases}$$

¹See also [1] p. 78; [2] p. 157.

6c7 Exercise. Let $a_1, a_2, b_1, b_2 \in \mathbb{R}$. Prove that

$$\mathbb{E} \exp i \left(a_1 M_1(1) + b_1 (M_1(t) - M_1(1)) + a_2 M_2(1) + b_2 (M_2(t) - M_2(1)) \right) = \\ = \exp \left(-\frac{1}{2} (a_1^2 + a_2^2) - \frac{1}{2} (b_1^2 + b_2^2) (t - 1) \right).$$

6c8 Exercise. Prove Theorem 6c3(a).

Item (b) of Theorem 6c3 is reduced to Item (a) by glueing two-dimensional processes,

$$\tilde{M}(\cdot)(\omega_1,\omega_2) = M(\cdot)(\omega_1) \stackrel{T(\omega_1)}{\sqcup} B^{(2)}(\cdot)(\omega_2).$$

True, M(T) is not defined; however, the left limit M(T-) exists a.s. on the event $\{T < \infty\}$ by 6b7(b) applied to M_1 and M_2 separately.

6d Conformal local martingales

6d1 Definition. ¹ A planar local martingale $M(\cdot) = (M_1(\cdot), M_2(\cdot))$ on [0, T) is called *conformal*, if

$$\int_0^t (dM_1(\cdot))^2 = \int_0^t (dM_2(\cdot))^2 \text{ and } \int_0^t dM_1(\cdot) dM_2(\cdot) = 0$$

for all $t \in [0, T)$.

An important example: $M(t) = f(B_{\mathbb{C}}(t))$ where $f : \mathbb{C} \to \mathbb{C}$ is an entire function. Indeed, $h_1 = \operatorname{Re} f$ and $h_2 = \operatorname{Im} f$ are harmonic functions on \mathbb{C} , and

$$|\nabla h_1(z)| = |f'(z)| = |\nabla h_2(z)|, \quad \langle \nabla h_1(z), \nabla h_2(z) \rangle = 0.$$

A more general example: $M(t) = f(B_{\mathbb{C}}(t))$ for $t \in [0, T)$, where $f : G \to \mathbb{C}$ is an analytic function, $G \subset \mathbb{C}$ a domain,² $0 \in G$, and $T = \inf\{t : B_{\mathbb{C}}(t) \notin G\}$.

6d2 Exercise. If $M(\cdot)$ is of the form

$$M(t) = M(0) + \ddot{B}(A(t))$$

where $\hat{B}(\cdot)$ is distributed as $B_{\mathbb{C}}(\cdot)$ and $A(\cdot)$ is a random increasing continuous function, then $M(\cdot)$ is conformal.

Prove it.

¹See also [5] p. 181.

²That is, a connected open set.

Tel Aviv University, 2008

$$M(t) = M(0) + \dot{B}(A(t))$$

where $B(\cdot)$ is distributed as the complex-valued Brownian motion $B_{\mathbb{C}}(\cdot)$, and

$$A(t) = \int_0^t (dM_1(\cdot))^2 = \int_0^t (dM_2(\cdot))^2 \text{ for } t \in [0, T).$$

Proof. We define $\tilde{B}(\cdot)$ on $[0, A(\infty))$ by $M(t) = M(0) + \tilde{B}(A(t))$ (which is correct...) and observe that $t \mapsto \tilde{B}_1^2(A(t)) - A(t)$ is a local martingale, therefore $s \mapsto \tilde{B}_1^2(s) - s$ is a local martingale,² that is, $\int_0^t (d\tilde{B}_1(\cdot))^2 = t$ for $t < A(\infty)$. Similarly, $\int_0^t (d\tilde{B}_2(\cdot))^2 = t$ and $\int_0^t d\tilde{B}_1(\cdot) d\tilde{B}_2(\cdot) = 0$. It remains to apply Theorem 6c3.

6d4 Exercise. Given $\varphi \in (0, \pi)$ and $r \in (1, \infty)$, we consider two stopping times

$$T'_{\varphi} = \min\{t : |\arg(1 + B_{\mathbb{C}}(t))| = \varphi\},\$$
$$T''_{r} = \min\{t : |1 + B_{\mathbb{C}}(t)| = r\}$$

and the probability $\mathbb{P}(T'_{\varphi} < T''_{r})$. Prove that this probability is a function of $\frac{1}{\varphi} \ln r$ only.

The cases $\varphi = \pi/4$, $\varphi = \pi/2$, $\varphi \to \pi-$ and $\varphi \to 0+$ are especially interesting.³

6e Hints to exercises

6a6: For each m use 6a3 and 6a5. Show that these constructions for m and m + 1 are consistent, and get the needed Brownian motion.

6b2: recall the Brownian scaling.

6b4: recall 6b2.

6b5: induction; $p_-, p_+ \in [0, 0.5]$; $p_+((x+1)^2 - x^2 - 1) + p_-((x-1)^2 - x^2 - 1) = 2x(p_+ - p_-)$, and $|p_+ - p_-| \le 1 - p_- - p_+$. 6b6: use 6a9.

0000. abe 0a0.

²Do not bother about 6b4, now we go the other direction: for every stopping time \tilde{T} there exists a stopping time T such that $T(M(\cdot)) = \tilde{T}(\tilde{B}^{(2)}(\cdot))$.

³See also [5] p. 187, Exercise (2.18).

¹See also [4] p. 45; [5] p. 182.

6b8: $(aM_1 + bM_2)^2$ is a linear combination of M_1^2 , M_2^2 and $(M_1 + M_2)^2$; use 6b6.

6c1: recall 6b9. 6c2: try $M(t) = \text{const} \cdot \ln |B_{\mathbb{C}}(t) - 1|$. 6c4: use 6b7(a). 6c5: use 6c4. 6c6: use 6b7(a) again. 6c7: use 6c6.

6c8: generalizing 6c7, calculate $\mathbb{E} \exp i \left(\sum \alpha_k (M_1(t_k) - M_1(t_{k-1})) + \sum \beta_k (M_2(t_k) - M_2(t_{k-1})) \right)$.

6d4: use the analytic function $z \mapsto z^{\alpha}$ (or alternatively, $z \mapsto \ln z$).

References

- [1] R. Durrett, Brownian motion and martingales in analysis, 1984.
- [2] I. Karatzas, S.E. Shreve, Brownian motion and stochastic calculus, 1988.
- [3] L.B. Koralov, Y.G. Sinai, *Theory of probability and random processes* (second edition), 2007.
- [4] G.F. Lawler, Conformally invariant processes in the plane, 2005.
- [5] D. Revuz, M. Yor, Continuous martingales and Brownian motion (second edition), 1994.
- [6] L.C.G. Rogers, D. Williams, *Diffusions, Markov processes, and martin*gales, vol. 1 (second edition), 1994.

Index

conformal, 67	quadratic variation, 63
harmonic function, 64 measure, 65	$egin{array}{lll} B_{\mathbb{C}}(\cdot),\ 65\ B^{(2)}(\cdot),\ 64\ \Delta,\ 64 \end{array}$
Laplacian, 64	$({\rm d}M(\cdot))^2,63$