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5 Not just two players

5a Basic models and notions, revisited

A game of n players is described by (recall (1b2))

(5&1) (81,...,8n; Ala"'aAn; Pl:---:Pn; Hla---:Hn);

the k-th player has its signal space S, action space Ay, signal distribution P, and payoff func-
tion IT;. (In general, each payoff depends on all actions and signals.) The game is called sym-

metric, if § =---=8,, Ay, =---=A,, P =---=P,, and IIi(ay, s1;a9, S35 ...} Cp, Sp) =
IT; (ag, Sk; @iys Siys -« -5 G4y Si,_, ) TOr every k and every iy, ..., 4, 1 such that {k,i1,...,i, 1} =
{1,...,n}; in other words, {k, 41, ...,4, 1} is a permutation of {1,...,n}. A symmetric game

of n players is described by (S, A, P,II,n).
The oligopoly game of Sect. 4 is a symmetric game of a specific form: § =R, A = [0, 00),
P([0,00)) =1, and

(5a2) (a1, 51502, 52; - - - G, Sn) = G(ar, s1502 + -+ an) — Lar; a2 + - -+ + ay)

(the additional restriction n = 2 stipulated in Sect. 4 is now discarded). The function IT of
2n variables amounts to a function G of 3 variables and a function L of 2 variables.
We turn to auction games of 3d, 3f, 3g, 3h. Roughly speaking, they are of the form

II(aq, s1; a9, S9; . - -5 A,y Sp) = G(al, s1;max(ag, .. ., an)) - L(al; max(as, . . ., an)) ,
however, ties breaking complicates the situation when a; = max(as, ..., a,). Here the win-
ning probability is 37, where M is the multiplicity; M = 1 if a, = a;, for a single k €
{2,...,n}; M = 2 if there exist two such k; and soon; M =n—1ifa; = ay = --- = a,. Ilf the
first player wins ties breaking, he gets G (a1+, s1; max(as, . . ., an)) —L(a1+; max(as, . . ., an));
if he looses he gets G (a1—, s1;max(as, ..., an)) — L(a;—; max(as, . ..,a,)). It means that
(5a3) TI(aq, s1;az,S2;-..;Qn,y Sp) =
B G(al,sl;b)—L(al;b) if a; # b;

(MLHG(al—, S1, b) + ﬁG(aﬁ-, S1, b)) — (MLHL(GI_’ b) + ﬁL(aﬁ-, b)) if a; = b,

here b = max(ay, ..., a,). Functions G(ay, s1; b) and L(ay;b) are continuous in a; everywhere
except for b; their values at a; = b will not be used.

Some assumptions must be added for ensuring integrability (finiteness of expectations).
Having Sy = R and Py([0,00)) = 1 we assume in addition

/ sdPy(s) < 00, that is, ES; < oo;
0

boundedness of signals is evidently sufficient. For single unit auctions the assumption

II(a, 51;-. .3 0n, Sn) < 51
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holds and ensures that +o0o does not appear in expectations; —oo may appear, which is
harmless. For the oligopoly the situation is a bit more complicated: II; (a1, s1;...;ap, Sp) <
a151 — a? < s?/4; one must assume E S? < oo; boundedness of signals is still sufficient.

We return to the general case. A strategy of player k is a probability distribution u; on
S; X Ay, whose projection to Sy is Py. Similarly to 1d,

(5ad) E(I11) =TIy (p1; pios - - - i)

if [T} = I1,(A4, S1;...; Ay, S,) where the pair (A, Sy) is distributed p;, and so on, (4,,S,)
is distributed p,, and pairs (A4y, S1),- .-, (A,, S,) are independent.! Also,

(5a5) ]E(H1‘A1,S1) =TI, (A1, Sis po;- -5 )

etc.
A strategy 1 is called a best response (of the first player) to ps, ..., pin, if

(5a6) ITy (pa; piz - - -5 ) = sup IOy (5 a3 -5 ) -

my
Best responses of other players are defined similarly. A sequence (1, ..., i,) of n strategies
is called an equilibrium, if for every k the strategy uy is a best response (of player k) to
other strategies. For a symmetric game, an equilibrium (pq, ..., p,) is called symmetric, if

H1 =" = Un.

5b A random number of players

Let N be a random variable taking on values 1,2, ... We may consider a game of IV players,
provided that it is a symmetric game. (It is meant that a player chooses his action without
knowing N.) To this end we need a signal space S, an action space A, a signal distribution
P, and many payoff functions IT,.2 Namely, IT, must be defined for every n such that
]P’(N = n) > 0; if N is bounded, we use finitely many payoff functions; but if N is
unbounded, then infinitely many payoff functions are involved. Anyway, IT,, : (AxS)" - R.
The case n = 0 is excluded, while the case n = 1 may be used or excluded, depending on
the model.

5b1l. Example. There are n,, potential players. Each one becomes a player at random,
with a probability p,iay, independently of others. The choice is made by nature (not by po-
tential players). The number of players is a random variable distributed Binom(nmax, Pplay)-
However, that is not N. Rather, NV is the number of players conditioned on the fact that a
given potential player is chosen. Due to independence,® the number N — 1 of other players
is distributed binomially,

N — 1 ~ Binom(nmay — 1,pp1ay) )

'No dependence between pairs, of course. Inside a pair dependence persists.

2Do not confuse IT, here and II; of 5a. There, n is suppressed in the notation, and Il is the payoff
function of player k. Here, n is the number of players, and II,, is the payoff function of player 1, which is
enough due to symmetry.

3Just for our example. Generally, a dependence is possible; think what happens if ppiay is chosen (by
nature) at random beforehand and is unknown to players (but its distribution is known).
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which is the relevant specification of N. Say,* P (N = 1) = (1 — pplay)™>"4 P ( N = 2) =
(Nmax — 1)Pplay (1 — Pplay)™™>"2; P (N = 0) = 0. Note that the expected number of players
iS NmaxPplay; While EN =1 + (Nmax — 1)Pplay-

5b2. Example. The same as in 5bl, but nmax is large, ppiay is small, while the expected
number of players nmaxPplay iS the relevant parameter (neither small nor large). Then we
may get rid of npmax and ppay by using Poisson approximation to the binomial distribution:

N — 1 ~ Poisson(\) .

(The small difference between nmaxPplay and (tmax — 1)Ppray is neglected.) Say, P ( N = 1) =
eNP(N=2)=XNP(N=0)=0.

A strategy p supports a symmetric equilibrium of the game of N players, by definition,
if
(5b3) ETTy (g5 455 - - -5 ) = sup BTy (5 55 ) -
7
N N=-1

A fixed number of players may be treated as a special case of a random number of players,
as far as only symmetric games and equilibria are considered.

5¢c Best response, revisited

Linearity of Iy in s; holds for all our games (single unit auctions and oligopoly), irrespective
of the number of players. Similarly to (2a12) we define the function

(5¢1) II™(s1; o - - -5 fhn) = sug IT (a1, 815 25 - - 5 pin)
a1 €A

and observe its convexity in s;. Still (recall 2al5),

(5¢2) Iy (pons s - oo i) < TIT*( Py o3 - -5 o)

for all p, and (recall 2a18) the equality holds if and only if y; is concentrated on the set of
pairs (a1, s1) such that a; is an optimal action for s;, which means

(5¢3) I1i (a1, s1; p2; - - -5 ) = TIT¥(815 pio; - - -5 i) -
Still, every action a; determines a linear function s; — II;(aq, s1; ;- - . ; fn), write it
IT;(aq, s1) for short (us,...,u, being given). The linear function is determined by two

numbers, —IT;(a;,0) = L(ay) and I1;(ay, 1) — Iy (aq,0) = G(aq, 1), and may be represented
by a point on the corresponding plane (recall 2b).

“Do not confuse it with the following (irrelevant) calculation: let M ~ Binom (nmax, Pplay), then

B (0= 1] 3 1) = Mmaxboiny (L ppiey)"

1 = (1 = pplay) ===
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For the oligopoly game, the situation is simple:

G(al, 1) =ap,
L(al) = E(al(al +A2 -+ - +An)) = al(al +EA2 4+ +]EAn) .

ai

(5c4)

L1 :al(al +]EA2 ++EAn)

T Ll
A single number EAy + --- + EA, contains all the relevant information about us, ..., ty,-
Similarly to 4b, the best response is given by

1
(5¢5) A = 5max(o,s1 —(EA +---+EA4,)).

For auction games it is more complicated, especially if Ay,..., A, have atoms. Assume

for a while that A,, ..., A, are nonatomic. Then the random variable B = max(A,,..., A,)
is also nonatomic, and (5a3) gives

J/

(5¢6) ITi (A, Si5p2; -+ - pn) = EG(ar, s1; B) = EL(ay; B) ;

G(alasl) LEC;)

there is no ties breaking here, since IP(B = al) = 0. For the same reason G(aq,s;) and
L(a;) are continuous in a;.> In fact, G(a1, s;) = s1G(ay, 1), and G(ay,1) is the winning
probability,

(5¢7) G(a1,1) = Wi(a1) =P (a1 > max(A,, ..., 4,)) =
P

:IP(A2<(1,1).. An<a1):FA2(a1)...FAn(a1),
a continuous function, indeed.
In general, As,..., A, may have atoms; taking (5a3) into account, we define
(5c8) L( )—E( M (- B) + L(a—i—'B))-
C a;) = M +1 a1—; M +1 17, ’

here B = max(A,,...,A,), and M is the multiplicity, introduced before (5a3) for the case
a; = B; for the other case (a; # B) the value of M does not matter, since here L(a;—, B) =
L(a;+, B). Equivalently,

(5¢9) L(a;) =E(L(ay;B)|B#a1)P(B+#ay)+

M 1
+L(a1—; 0)E |B=a)P(B=a)+Lia+a)E(
(171) M+]_ 1 ( 1) (1,1) M+1
°If a, — a then L(a,,b) — L(a,b) for all b except for b = a; therefore L(a,, B) — L(a, B) almost
surely; under appropriate integrability assumptions, dominated convergence theorem is applicable, giving
EL(an,B) — EL(a, B).

B=a)P(B=a).




Tel Aviv University, 2001 Probabilistic aspects of economic games 56

Similarly, we define

M 1
G(a1—, s1; B
M+1 (1= 51; )+M+1

(5¢10) G(ay, s)) = IE( G(ar+, s1; B)) ;

or equivalently,

(5c11) Gfas,s1) =E(G(ay,s1;B)|B#a1)P(B#ay)+
+G(a;—, s1;a1) (M+1|B—al)IF’(B:al)+G(a1+;a1)]E(M+1|B—a1)]P’(B:(11).

The framework of 3a leaves the payment rule unspecified, but specifies the (standard) allo-
cation rule. Thus L is just some function satisfying our assumptions, while

G(a, s1;0) =0 for aq < b,

(5¢12) G(a, s1;0) =51 fora; > b.

Therefore

(5c13) G(ai,51) = s1W(a1),

where

(5c14) W(al):]P’(B<a1)+]E<M1+1‘B:ch)IF’(B:al)
is the winning probability. Still,

(5¢15) Wi(ay) = Fa,(a1) ... Fa,(a;) if a; is a point of continuity.

In the simple case n = 2 we have M = 1 always, and W(a;) = IF’(A2 < al) +
iP( Ay =a1) = iW(a1—) + $W(a1+). In general, W(a;) is not the center of the interval
[W(a1—), W(a1+)]. Rather, it divides the interval according to

W(al) — W(G,l—)

(5¢16) W(ait) — Wla—) (m ‘ B= “1> '

It is important that

G(a1, 81) — G(al—, 81) _ L(al) — L(al—)
G(a1+, 81) — G(CLl—, 81) L(a1+) — L(al—)

(5¢17)

since both quotients are equal to E( ﬁ | B = al) , the winning probability in the case of
tie breaking. We conclude that the nonatomicity argument of 3e2,

v
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is still applicable; though, the point 8 is now not in the middle, but still on the interval,

v,

Thus 8 can be optimal for a single s only, which proves the following generalization of 3e2.

5c18. Lemma. If a; is an optimal action (against given ps, ..., u,) for more than a single
s1, and a1 # 0, then a; is not an atom of max(As, ..., A,).

Lemma 2b10 (about gaps) is easily generalized to n players; a gap of max(A,, ..., A,) is
considered instead of a gap of A,.

It is much easier, to generalize results (and proofs) of subsections 2¢ (weak monotonicity)
and 2d (integral of winning probability), since these are based on the linearity (of II; in ;)
only. Possible actions are represented by straight lines on one plane, or points on another
plane. Any set of lines (points) is acceptable, no matter how it is generated by strategies
of competitors, and how many competitors exist. Anyway, the joint distribution of S; and
G(A;) =1II,(Ay,1)—II,(A4, 0) is weakly increasing, and an increment of TI"** is the integral
of winning probability.

We turn to symmetric auctions. Having in mind symmetric equilibria, we consider now
best response to o = - - = uy, that is, F4y, = --- = F4,. The winning probability is

(5¢19) W(a) = F} ' (a) if a is a point of continuity.

If a is an atom of Ay, that is, F(a—) < F(a+) (here F = Fj,), then®

c a) = n—1 a l 1 _ %
(5¢20) Wia) = F"(at)n 1= et <1 F"(a+))

which, however, will not be used, except for example 5¢22 below. You can derive from (5¢20)
the ratio

Wia) — — 1
(a) — Wia-) =—- forn=2,
W(a+) —W(a—) 2
(5¢21) W@-W-) 1 1F@) 1
W(a+) —W(—) 3 3F(at)1+ 11283 B
and think, why it exceeds 1/n for n = 3 but not for n = 2.
6Here is the idea of a proof (if you want). Let Uy,...,U, be independent random variables distributed

uniformly on (0,1), and p € (0,1). Then

1t 1
lP’(U1>max(U2,...,Un)|U1>1—p)=—/ u"flduz—(l—(l—p)”)_
PJip np
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5c22. Example. Let A, be as in 2b1 (discrete), and n = 3, then we have

p p p
1 — 1 o, T 1 o—m
FA2:FA3 | FA2 :FA2 | 11/20 w |
1/2 — \ *
\ 1/4 —9 1{4 —0
o a o a 1/12 3 a
I 1 I 1 I 1
6 3 6 3 6 3

5c23. Example. Let A, ~ U(0,1/2) as in 2b2, and n = 3, then we have

p p p

1 _ 1 —-1_ 2 1
o ]V V
a a a

0.5 0.5 0.5

We turn to a random number of players, N. Formula (5c16) still holds, with B =
max(As, ..., Ay).” Thus, Lemma 5c18 holds. Results of Sections 2¢ (weak monotonicity)
and 2d (integral of winning probability) hold for the same reason as before. The winning
probability is (recall (5¢19))

(5c24) W(a) = EFY"!(a) if a is a point of continuity.

5c¢25. Example. Let N — 1 have Poisson distribution P()), that is (recall 5b2),

n

]P’(N:n—l-l):e_)‘/\—' forn=0,1,...
n!

The player knows that he is a player, but does not know, whether there are more players,

or not. Of course, when N = 1, the winning probability is equal to 1. If a is not an atom of
A, then

W(a):P(max(Ag,,AN)<a|N21) :EFNfl(a,):
=Y F'(@P(N=n+1)= ZF"(a)e_’\% = e exp(AF(a)) = e -F@)
n=0 n=1 :

Say, if Ay ~ U(0,1/2) and A = 3 (which means EN = 3), we get

p p

1
FA2 M
a a

0.5 0.5

1

Note that W(0+) =e* =P (N =1).

Do not confuse the conditional distribution of N given B = a; with the unconditional distribution of N.
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For the symmetric oligopoly game with a random number of players,® we have (recall
(5c4))

L(a1) =E(ai(a1 + Ao+ -+ Ay)) = a1(as + E(Az +- - + Ay)) .
However,
E(A3 4+ Ay) =E(E(A2+---+ Ay |N)) =E((N -1)EA;) = (EN — 1)(EA,).
Of course, we need EN < oo. So,
L(a) =a(a+ (EN — 1)(EA,)),
and (5cb) turns into

A = %maX(O, Si— (EN — 1)(EAy)).

For a fixed number n of players, of course,

1
A= 5 max((], Si—(n— 1)EA2) .
In presence of an entry cost, results of 4d remain valid with E A, replaced by (EN —1)(E Ay).
The best response is

4 =" if S, < 2y/c+ (EN — 1)(EA4,),
o (S1— (EN — 1)(EAy)) if S1 >2y/c+ (EN —1)(EA,);

1
2

both actions may be used when S; = 2v/c+ (EN — 1)(E A,).

5d Symmetric equilibria and revenue equivalence, revisited

Lemma 3b1l was established for the function W (z) = $Fx(z—) + £ Fx(z+). Now we modify
W according to (5¢19): W(z) = F"!'(z) for continuity points z; still a strictly increas-
ing one-to-one correspondence between W (z) and F(z). For discontinuity points we have
W(z—) < W(z) < W(z+), which is enough for the proof of the lemma. Therefore, Theorem

3b2 and Corollary 3b3 hold for any n:
e Every symmetric equilibrium is supported by a weakly increasing strategy.

e If the distribution of signals is nonatomic then every symmetric equilibrium is sup-
ported by an increasing pure strategy.

All that remains valid for a random number of players. Indeed, (5¢24) shows that W (a) =
a(F(z)) for continuity points a; here a(p) = EpV~! is a strictly increasing continuous
function. For discontinuity points W(z—) < W (z) < W(z+), once again.

Similarly to 3c (page 28), assume for a moment that the optimal action is a strictly
increasing function ¢ of a signal; that is, for every s there exists one and only one optimal

8The case N = 1 is acceptable here; we need 1 < EN < oo.
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action a = ¢(s), and in addition, s is not an atom of Ps. Then «a is not an atom of Py4, and
(5¢19) gives

n—1

. n—1
Pn(s) = W(p(s) = Fi '(6(s) = (P(¢(8) <9(5)) =(P(S<s)) =F'(s).
Adapting the proof of Lemma 3c3 accordingly, we get
P (s0) = F§~"(50)

whenever the conditions of the lemma are satisfied. (A bunch is defined exactly as in Sect. 3.)
For a random number of players,

P (s50) = EFY " (s0)

is obtained in the same way, using (5¢24) instead of (5¢19). Thus, Theorem 3c4 is generalized
as follows.

5d1. Theorem. Let u be a strategy supporting a symmetric equilibrium, with no bunch
of positive probability (w.r.t. Ps). Then

T () — TT™%(0) = /0 " a(Fs(s)) ds

for all s € [0, 00); here a(p) = p" ! for a fixed number n of players, and a(p) = Ep" ! for a
random number NV of players.

5d2. Example. Let N — 1 have Poisson distribution P(A) (recall 5¢25). Then a(p) =
EpN—1 = e 21P) and so,

Hmax(s) _ Hmax(o) — / e—)\(l—Fs(s’)) ds' .
0

Corollary 3c6 is generalized evidently. Generalization of Theorem 3c10 is straightfor-
ward; the convex function s — [J Fs(s')ds' is replaced with another convex function,
s — [, a(Fs(s")) ds'. Condition 3¢10(b) becomes

L(g(s)) = sa(Fs(s)) - / " o(Fs(s")) ds'.

Taking into account that a(Fs(-)) is the distribution function of the random variable X =
max(Ss, ..., Sy), we get (recall (3¢8) and (3c¢9))

L(p(s)) =E(X|X <s)-P(X <s).

In order to avoid some complications we assume that N > 2 with probability 1.
We apply all that to the first price auction considered (for n = 2, of course) in 3d. General
arguments work as before, and we get

P (s)
e(s)P(X <s)=E(X|X<s)P(X <s).

(. 7
-~

L(p(s))
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Theorem 3d3 is thus generalized, with
go(s)zlE(X|X§s), X = max(Ss,...,Sy).
For the second price auction (as in 3f) we get

E(pX)[X<s)P(X<s5)=E(X[X<s5)P(X<5s).

L(g(s))

It means that ¢(X) = X for almost all X, which implies (in fact, is equivalent to) ¢(S) = S
for almost all S.°
For the first price auction with reserve price and entry cost (as in 3g), Lemma 3g3 becomes

win 0 for s < s,
P (s) =
a(Fs(s)) for s > so,

and (3g6) becomes

0 for s < sy,

™) = {fsso a(Fs(s')) ds' for s > sq.

Still L(0+) = ¢ + rpo, but now py = a(Fs(so)) =P (X <s9) =P(Ay=--- = Ay =0),
thus (3g10) becomes

(so — r)a(Fs(so)) =c.
No problem with the equation, since a(-) increases on [0,1], a(0) = 0, a(1) = 1. Condition
3g11(d) becomes L(p(s)) = sa(Fs(s)) — [, a(Fs(s')) ds' = sFx(s) — [, Fx(s') ds' for Ps-
almost all s > so. However, L(a;) = ¢+ (7 + a1)a(F4(ay)) for a; > 0, and (3gl2) becomes
p(s) =—r+

f(s) ( et sFx(s) - / Fy(s) ds’)

for s > s9. The bracketed expression is equal to E (h(X )1 4(X)) by the same argument as
on page 40, but for X instead of S. Theorem 3gl3 is thus generalized, with

0 for s < s, r for s < s,
o(s) = L h(s)= ,
—T‘-i-E(h(X)‘XSS) for s > sq; s for s > sq;

(80 = 1) Fx(50) = ¢; X = max(Ss,...,Sn) .

9Distributions of X and S are equivalent (mutually absolutely continuous), and the corresponding density
can be calculated explicitly:

%(s) = Z(n - 1)F"*(s)P(N=n).

n=
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5d3. Exercise. Generalize 3h2 (all-pay auctions).

Finally, we turn to the symmetric oligopoly game. Theorem 4¢3 (and its proof) remains
valid with the following equation for ay:

2ap = E max (0,5 — (EN — 1)aq) ;
for a fixed number of players it becomes

209 = E max (0,5 — (n — 1)ao) .

or -°%-); the mean aggregate supply

Example 4c4 (S = sp always) becomes A = ag = g3y (or 2%

is ]E(Al + -+ AN) = ao]EN IEN—l—lSO (01" nL—HSO)'
In presence of an entry cost, a symmetric equilibrium is a strategy u = p,,, described
by

s 0 if S < 2y/c+ (EN — 1)ay,
1 i(S— (EN —1)ag) if S >2yc+ (EN — 1)a,
P ( _0\5—2\f+(]EN—1)ao)=1—p,
P(A=+c|S=2/c+(EN —1)a) =
the parameters ag, p must be chosen such that EA = a.

5d4. Exercise. Generalize the last part of 4d (the game of complete information, S = s
always). Show that the mean number of participants (players that do not quit) is equal to

Ev-ilve )

whenever the latter belongs to the interval (0,IEN). In that case, the mean aggregate supply
is E(A; + -+ Ay) = 2= (s0 — 21/0).



