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1 Basic notions: finite dimension

la Gaussian measures on R, or normal distributions m

1b  Gaussian measures on R", or multinormal dis-
tributions . . . ... Lo 0o o000 E

1c Gaussian measures on finite-dimensional linear
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la Gaussian measures on R, or normal distributions

1al Definition. The standard one-dimensional Gaussian measure v, known
also as the standard normal distribution N(0, 1), is defined by

1 2
1A — / —x/Qd
vl == e x

for all measurable A C R.

The image of N(0,1) under a linear map x +— a + oz (where a € R and
o € [0,00) are parameters) is called the normal distribution N(a,0?). In
other words,

N(a,0?)(A) =~"({z : a+ oz € A});
thus, N(a,0) is a single atom at a, and
2

N(a,0?)(A) = \/21_7rg /Aexp ( — %) dz

if 0 > 0.

Like the famous number =, the normal distribution appears here and
there, again and again. Some simple examples follow, just for your informa-
tion (they will not be used).

la2 Example. Let ), denote the uniform distribution (in other words, the
normalized surface measure) on the sphere S"~!(y/n) = {z € R" : |z| = \/n}
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and denote by p, the corresponding distribution of the first coordinate; that
is, fin(A) = \p(A x R*™1). Then p,, — 7! as n — oo in the sense that

(1a3) /fdunH/fdfyl as n — 0o

for every bounded continuous f : R — R. Moreover, pu, has a density,

12 n—3

n(A) = const,, - / 1- —)T dz,

AN (/) ( n

n=>6

and the density converges to the normal density. For details see Exercise
2.1.40 in a book by D. Stroock,! who cites F. Mehler (1866) and notes that “in
terms of statistical mechanics, this result can be interpreted as a derivation
of the Maxwell distribution of velocities for a gas of free particles (...)”. See
also [2], Exercise 2.12 in Sect. 2.3.

la4 Example. Let \, denote the uniform distribution (that is, the normal-
ized counting measure) on the finite set {—1,+1}", and denote by pu, the
corresponding distribution of the (linear) function (xy + - - + z,)/\/n;

n!

ol

Then p1,, — 4! (in the sense of ([&d)), which is the De Moivre (1733) - Laplace
(1770s) theorem, the simplest special case of Central Limit Theorem.

pn({k/v/n}) =27

fork=—-n,—n+2....n.

1a5 Example. Let \, denote the uniform distribution (that is, the normal-
ized Lebesgue measure) on the cube [—1,+1]*""! and p, the corresponding

distribution of the (nonlinear) function (x1,...,%2n41) — V21 Z(n41); here
(@), ..., T(2n41)) is the increasing rearrangement of (z1,...,%2,41). It ap-

pears (see [2], Example 2.2.6) that u, — ~'. In fact, u, has the density
const,, -+ (1 — %)" for |z| < v2n.

'Daniel W. Stroock, “Probability theory, an analytic view”, Cambridge 1993.
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1la6 Example. Let ), , denote the product measure

)\n,p({<x17 o ’xn)}) — p:r1+---+:vn<1 . p)n,m,...,xn _ pk<1 - p)nik
on {0, 1}"; define A, on [0, 1] x {0,1}" by
A (A x {z}) = /AAmp({(xl’ o xn)})dp = /Apk(l —p)*dp.

(It means tossing n times an unfair coin with parameter p chosen at random,
uniformly on [0,1].) The conditional distribution of p given x € {0,1}" is

o )\n(A X {x})
A ([0,1] x {7}

Denote by pa, the conditional distribution of 2v/2n(p—0.5) given € {0,1}?*
such that z; + - - - + x4, = n. It appears that p, — ~*, which is the simplest
case of asymptotic normality in Bayesian (and non-Bayesian) statistics. In
fact, p, has the density const, - (1 — —2)" for |z| < v/2n.

T
2n

) = const,, - / pF(1—p)"Fdp.
A

1a7 Example. Consider 22" trigonometric polynomials of the form

f(z) = Ln (& cos(2mw) = sin(2aw) =+ - - - & cos(2mnw) + sin(2rnw)) ;

I'V\ .
| N

each f has its distribution sy,

j17(A) = mes f1(A) = / 1a(f (@) do.

(By ‘mes’ I denote Lebesgue measure.) For most (but not all) of these f, 1/
is close to 4! (provided that n is large).

The so-called central limit problem for convex bodies, not even formulated
here, is deeper.!

Among all probability measures g on R such that [zpu(dz) = 0 and
J 2? p(dz) = 1, 4! minimizes the Poincare constant

L op 11 @) = ) p(de)pu(dy)
2y J ()2 u(dz)
(see [T, 1.10.2 and 1.6.4) and maximizes the entropy (see [1], 1.10.23).

M. Antilla, K. Ball, I. Perissinaki, “The central limit problem for convex bodies”,
Trans. Amer. Math. Soc. 355 (2003), 4723-4735.
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1b (Gaussian measures on R",
or multinormal distributions

1b1 Definition. The standard n-dimensional Gaussian measure y", known
also as the standard multinormal distribution, is defined by

Y'(A) = (27T)_"/2/ e P2 qg
A

for all measurable A C R"™.

Here x = (x1,...,2y), || = /22 4+ -+ + 22 and do = dx; ...dz,. Note

that v =~ x --- x 41, that is,

/.../fl(xl),,,fn(xn)yn(dxl...dxn) =

([ aeri@n)..( [ senian)

for measurable fi,..., f, : R — R such that the latter integrals converge. In
other words, 4" makes x1, ..., x, independent, each distributed N(0, 1).

The image v of 4" under a linear map L : R® — R" is, by definition, a
centered (or zero-mean) multinormal distribution on R™. If dim L(R™) = 0
then 7 is a single atom at 0. If 1 < dim L(R") < n — 1 then 7 is singular.
If dim L(R™) = n, that is, L is invertible, then ~ has a density of the form
x +— const - exp(—Q(z)), where @ : R" — [0, 00) is a quadratic form. In the
latter case we say that v is nondegenerate.

An arbitrary (not just centered) multinormal distribution is, by definition,
the image of a centered multinormal distribution under a shift = — x + a.

The two-dimensional case is of special interest.

First, the density of 72 is easy to integrate in polar coordinates,

1 1
// — e @I/ g day = — // e 2y drdp =1,
2T 2T

. . 1 _ 1 —
which verifies not only the constant ;- for n = 2 but also T for n = 1,

thus, (2r)~™2 for any n.

Second, ¥? is invariant under rotations (zy, xs) — (21 cos a—xy sin v, o1 sin a+
x9 cos ). Therefore the distribution of z; cos a — x9 sin @ does not depend
on a, it is N(0, 1) for any «; we get

azy + bxy ~ N(0,a® + b?) ;
N(0, a*) * N(0,b%) = N(0,a® + b%) .



Tel Aviv University, 2006 Gaussian random vectors 5}

Also, 1 cos @ — w9 sin v and x sin a + x5 cos « are independent. More gener-
ally, for a,b € R?,

(x,a) and (z,b) are independent whenever (a,b) = 0.

That is, (a,b) = 0 implies

[ st angtia. ) 77 =

Fta)yr2@n) ) ([ ot ~de)) =
(/] )] )
([ tatentian) [ atpronian)

for measurable f, g : R — R such that the latter integrals converge. No other
distribution has such properties (see [I], Sect. 1.9).

The same holds in R™. Namely, 7" makes (z,a) ~ N(0, |a|?) and (z, a;),.. .,
(x,a,,) independent whenever a4, ...,a,, are orthogonal.

Here are n-dimensional counterparts of Examples [aZHTadl

1b2 Example. Generalizing [[aZ let Ay be the uniform distribution on the
sphere SY~1(v/N) and py the corresponding distribution of the first three
coordinates. Then puy — * (Mehler, Maxwell-Boltzmann). The same holds
for all n (not just 3), and is often (unjustly) called Poincaré’s lemma (or
Poincaré’s limit).

1b3 Example. Generalizing [[adl let Ay denote the uniform distribution
on the finite set {—ey, e1, —ey, €9, —e3, €3}, where (ey, eg, €3) is the standard
basis of R®. Denote by uy the corresponding distribution of /3/N(xy+- -+
zy). Then py — +®. The same holds for all n (not just 3), see [2], Chap. 2,
Example 9.1.

1b4 Example. In order to generalize we need a median of a 3-dimen-
sional sample (x1,...,2zy). We may define it as the minimizer of the (strictly
convex) function x — |z — 21| + - -+ |z — xy|. The asymptotic normality
holds for all n (not just 3).

1b5 Example. Generalizing [[afl we replace the unfair coin with an experi-
ment having 3 outcomes whose probabilities py, ps, p3 are parameters chosen
at random uniformly on the simplex p; +ps+p3 =1, p1 > 0, po > 0, p3 > 0.
The conditional distribution of (v N(p; — 5, VN(py — 5, VN(ps — 1)) con-
verges to a degenerate multinormal distribution. The same holds for all n
(not just 3).
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1b6 Example. Similarly tolaZ most of the 25 triples (f1, f2, f3) of trigono-
metric polynomials lead to distributions close to 42. The same holds for all
n (not just 3).

Among all probability measures p on R™ such that [z pu(dx) = 0 and
[ a7 p(dz) =1 for k=1,...,n, v" minimizes the Poincare constant (see [II,
1.10.2 and 1.6.4) and maximizes the entropy.

1lc Gaussian measures
on finite-dimensional linear spaces

1cl Lemma. Let E be an m-dimensional linear space and V; : R® — E a
linear operator onto (that is, V;(R") = E). Then there exists an invertible
linear operator Vo : R™ — E such that Vi(y") = Va(+™) (written also as
v o Vl_1 =7"o V2_1), that is,

(Vi H(A)) = 4™(Vy H(A))  for all measurable A C E.

Proof (sketch). We choose an orthonormal basis (ey, ..., e,) of R” such that
€m+1s - - -, €n span the kernel {x € R™ : Vi(z) = 0}, then Vi(ey),...,Vi(en)
are a basis of E. By rotation invariance of 4™ we may assume that (eq, ..., e,)
is the standard basis of R". We have

“Yn(Vfl(A)) =y (z1,...,2) : Vi(mies + -+ -+ zpen) € A} =
YH(@1y e ) s Vi(Trer + o Tpen) € Ay =" (Vy H(A))

where Va(xy,...,2p0) = z1Vi(er) + - - + 2 Vi(em). O

1c2 Definition. A probability measure 7 on a finite-dimensional linear space
E is a centered Gaussian measure, if for some n € {0,1,2,...} there exists
a one-to-one linear operator V' : R" — E such that V(7") = .

Usually we deal only with centered Gaussian measures, and omit the word
‘centered’. When needed, we can say ‘not just centered’ or ‘shifted’.

1c3 Exercise. If V : R” — F is a linear operator (not just one-to-one) then
V(y™) is a Gaussian measure. (Centered, of course. .. )
Prove it.

1c4 Exercise. If E, Fy are finite-dimensional linear spaces, V : F; — FEs
a linear operator and v a Gaussian measure on Ej, then V() is a Gaussian
measure on Fs.

Prove it.
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1c5 Exercise. The number n in Def. is uniquely determined by ~.
Prove it.

This number is, by definition, the dimension of . If dim~ = dim F, we
say that v is nondegenerate.

1c6 Exercise. Define the support of 7 (it should be a linear subspace whose
dimension is equal to the dimension of 7).

We define the ellipsoid of concentration of v as the set of all x € E such
that (see [I, p. 5], [4, p. 98])

(1cT) If(z)]* < /f2 dy for all linear f: £ — R.

1c8 Exercise. The ellipsoid of concentration of 4" is the unit ball of R™.
Prove it.
(See also M, Exercise 2 to Sect. 9.)

1c9 Exercise. [ f?dy = sup f(z), where z runs over the ellipsoid of con-
centration of ~.
Prove it.

1c10 Exercise. If Fy, F, are finite-dimensional linear spaces, V : E; — FEj
a linear operator and v a Gaussian measure on F, then V maps the ellipsoid
of concentration of v onto the ellipsoid of concentration of V(7).

Prove it.

The ellipsoid of concentration of a nondegenerate Gaussian measure v on
E is the unit ball of a norm | - |, on £,

2l = sup {|£()| : [ fdy < 1.

The pair (£, |-|,) is a Euclidean space, and v has the density const - e leh/2,
For a degenerate v the same holds on its support.

1c11 Exercise. Let £ = E; @ E, (that is, Ey, Fs C E are linear subspaces,
EyNEy; = {0} and £y + E; = E), and Ey, By are orthogonal in (£, |- |,)
(that is, |z +y|2 = [z|2 +|y|? for 2 € E1, y € E;). Then there exist Gaussian
measures y; on E; and v, on E5 such that

/fdv = // [z +y) 1 (dz)re(dy)

for every bounded measurable f : F — R.
Prove it.
Hint: recall the proof of [[cTl
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We may write v = 77 X 79 or v = 71 * 2. Note that v, 2 are uniquely
determined by «y (just take f(x+vy) = g(z) or h(y)). These v1,y2 are projec-
tions (marginals) of v. Ellipsoids of concentration of 71, v, are both sections
and projections of the ellipsoid of concentration of ~.

Let v be a nondegenerate Gaussian measure on £ and V : F — FE; a
linear operator onto. Then E = Ey @ Fy where Ey = {z : V(z) = 0} is
the kernel and F, = E © Ej, its orthogonal (w.r.t. | - |,) complement. The
restriction V| z is an isometry E, — Ey, provided that E is equipped with

| - |v(y)- Denoting the inverse isometry by V : E; — E; we have

/fdfy B //];le2 f(z +y) m(de)r(dy) =
/ /EMEQ +y) V(9)(dz)ye(dy) =

/El ( / fV(z) +y) 72(dy))V(7)(dx),

which means that the conditional distribution 7, of z € E given V(z) =z €
By is 7, shifted by V(z). We see that all conditional measures are shifts
of a single Gaussian measure, and the shift vector depends linearly on the
condition. This is known as the normal correlation theorem; see also [3],
Sect. 9.3 and [1, 1.2.8 and 3.10.

1c12 Exercise. Consider a random trigonometric polynomial
. 1 r .
X(t) = (i cost+msint + §C2 cos 2t + 5772 sin 2t ,

where (1,71, (2,72 are independent N(0, 1) random variables. Describe the
conditional distribution of X given X (0).
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