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1a Gaussian measures on R, or normal distributions

1a1 Definition. The standard one-dimensional Gaussian measure γ1, known
also as the standard normal distribution N(0, 1), is defined by

γ1(A) =
1√
2π

∫

A

e−x2/2 dx

for all measurable A ⊂ R.

The image of N(0, 1) under a linear map x 7→ a + σx (where a ∈ R and
σ ∈ [0,∞) are parameters) is called the normal distribution N(a, σ2). In
other words,

N(a, σ2)(A) = γ1
(

{x : a + σx ∈ A}
)

;

thus, N(a, 0) is a single atom at a, and

N(a, σ2)(A) =
1√
2πσ

∫

A

exp
(

− (x − a)2

2σ2

)

dx

if σ > 0.
Like the famous number π, the normal distribution appears here and

there, again and again. Some simple examples follow, just for your informa-
tion (they will not be used).

1a2 Example. Let λn denote the uniform distribution (in other words, the
normalized surface measure) on the sphere Sn−1(

√
n) = {x ∈ R

n : |x| =
√

n}
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and denote by µn the corresponding distribution of the first coordinate; that
is, µn(A) = λn(A × R

n−1). Then µn → γ1 as n → ∞ in the sense that

(1a3)

∫

f dµn →
∫

f dγ1 as n → ∞

for every bounded continuous f : R → R. Moreover, µn has a density,

µn(A) = constn ·
∫

A∩(−√
n,
√

n)

(

1 − x2

n

)
n−3

2

dx ,

n=6

and the density converges to the normal density. For details see Exercise
2.1.40 in a book by D. Stroock,1 who cites F. Mehler (1866) and notes that “in
terms of statistical mechanics, this result can be interpreted as a derivation
of the Maxwell distribution of velocities for a gas of free particles (. . . )”. See
also [2], Exercise 2.12 in Sect. 2.3.

1a4 Example. Let λn denote the uniform distribution (that is, the normal-
ized counting measure) on the finite set {−1, +1}n, and denote by µn the
corresponding distribution of the (linear) function (x1 + · · · + xn)/

√
n;

µn

(

{k/
√

n}
)

= 2−n n!
(

n−k
2

)

!
(

n+k
2

)

!
for k = −n,−n + 2, . . . , n .

n=8

Then µn → γ1 (in the sense of (1a3)), which is the De Moivre (1733) - Laplace
(1770s) theorem, the simplest special case of Central Limit Theorem.

1a5 Example. Let λn denote the uniform distribution (that is, the normal-
ized Lebesgue measure) on the cube [−1, +1]2n+1, and µn the corresponding
distribution of the (nonlinear) function (x1, . . . , x2n+1) 7→

√
2n x(n+1); here

(x(1), . . . , x(2n+1)) is the increasing rearrangement of (x1, . . . , x2n+1). It ap-
pears (see [2], Example 2.2.6) that µn → γ1. In fact, µn has the density
constn ·

(

1 − x2

2n

)

n for |x| <
√

2n.

1Daniel W. Stroock, “Probability theory, an analytic view”, Cambridge 1993.
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1a6 Example. Let λn,p denote the product measure

λn,p

(

{(x1, . . . , xn)}
)

= px1+···+xn(1 − p)n−x1−···−xn = pk(1 − p)n−k

on {0, 1}n; define λn on [0, 1] × {0, 1}n by

λn

(

A × {x}
)

=

∫

A

λn,p

(

{(x1, . . . , xn)}
)

dp =

∫

A

pk(1 − p)k dp .

(It means tossing n times an unfair coin with parameter p chosen at random,
uniformly on [0, 1].) The conditional distribution of p given x ∈ {0, 1}n is

A 7→ λn

(

A × {x}
)

λn

(

[0, 1] × {x}
) = constn ·

∫

A

pk(1 − p)n−k dp .

Denote by µ2n the conditional distribution of 2
√

2n(p−0.5) given x ∈ {0, 1}2n

such that x1 + · · ·+ x2n = n. It appears that µn → γ1, which is the simplest
case of asymptotic normality in Bayesian (and non-Bayesian) statistics. In
fact, µn has the density constn ·

(

1 − x2

2n

)

n for |x| <
√

2n.

1a7 Example. Consider 22n trigonometric polynomials of the form

f(x) =
1√
n

(

± cos(2πω) ± sin(2πω) ± · · · ± cos(2πnω) ± sin(2πnω)
)

;

b

b

1

1 f

n=2

b

b

1

1
f

n=100

each f has its distribution µf ,

µf(A) = mes f−1(A) =

∫ 1

0

1A(f(ω)) dω .

(By ‘mes’ I denote Lebesgue measure.) For most (but not all) of these f , µf

is close to γ1 (provided that n is large).

The so-called central limit problem for convex bodies, not even formulated
here, is deeper.1

Among all probability measures µ on R such that
∫

xµ(dx) = 0 and
∫

x2 µ(dx) = 1, γ1 minimizes the Poincare constant

1

2
sup

f

∫∫

|f(x) − f(y)|2 µ(dx)µ(dy)
∫

|f ′(x)|2 µ(dx)

(see [1], 1.10.2 and 1.6.4) and maximizes the entropy (see [1], 1.10.23).

1M. Antilla, K. Ball, I. Perissinaki, “The central limit problem for convex bodies”,
Trans. Amer. Math. Soc. 355 (2003), 4723–4735.
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1b Gaussian measures on R
n,

or multinormal distributions

1b1 Definition. The standard n-dimensional Gaussian measure γn, known
also as the standard multinormal distribution, is defined by

γn(A) = (2π)−n/2

∫

A

e−|x|2/2 dx

for all measurable A ⊂ R
n.

Here x = (x1, . . . , xn), |x| =
√

x2
1 + · · · + x2

n and dx = dx1 . . .dxn. Note
that γn = γ1 × · · · × γ1, that is,

∫

· · ·
∫

f1(x1) . . . fn(xn) γn(dx1 . . .dxn) =
(

∫

f1(x)γ1(dx)

)

. . .

(
∫

fn(x)γ1(dx)

)

for measurable f1, . . . , fn : R → R such that the latter integrals converge. In
other words, γn makes x1, . . . , xn independent, each distributed N(0, 1).

The image γ of γn under a linear map L : R
n → R

n is, by definition, a
centered (or zero-mean) multinormal distribution on R

n. If dim L(Rn) = 0
then γ is a single atom at 0. If 1 ≤ dim L(Rn) ≤ n − 1 then γ is singular.
If dim L(Rn) = n, that is, L is invertible, then γ has a density of the form
x 7→ const · exp

(

−Q(x)
)

, where Q : R
n → [0,∞) is a quadratic form. In the

latter case we say that γ is nondegenerate.
An arbitrary (not just centered) multinormal distribution is, by definition,

the image of a centered multinormal distribution under a shift x 7→ x + a.
The two-dimensional case is of special interest.
First, the density of γ2 is easy to integrate in polar coordinates,

∫∫

1

2π
e−(x2

1
+x2

2
)/2 dx1dx2 =

1

2π

∫∫

e−r2/2r drdϕ = 1 ,

which verifies not only the constant 1
2π

for n = 2 but also 1√
2π

for n = 1,

thus, (2π)−n/2 for any n.
Second, γ2 is invariant under rotations (x1, x2) 7→ (x1 cos α−x2 sin α, x1 sin α+

x2 cos α). Therefore the distribution of x1 cos α − x2 sin α does not depend
on α, it is N(0, 1) for any α; we get

ax1 + bx2 ∼ N(0, a2 + b2) ;

N(0, a2) ∗ N(0, b2) = N(0, a2 + b2) .
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Also, x1 cos α− x2 sin α and x1 sin α + x2 cos α are independent. More gener-
ally, for a, b ∈ R

2,

〈x, a〉 and 〈x, b〉 are independent whenever 〈a, b〉 = 0 .

That is, 〈a, b〉 = 0 implies

∫∫

f(〈x, a〉)g(〈x, b〉) γ2(dx) =
(

∫∫

f(〈x, a〉) γ2(dx)

)(
∫∫

g(〈x, b〉) γ2(dx)

)

=

(
∫

f(|a|x)γ1(dx)

)(
∫

g(|b|x)γ1(dx)

)

for measurable f, g : R → R such that the latter integrals converge. No other
distribution has such properties (see [1], Sect. 1.9).

The same holds in R
n. Namely, γn makes 〈x, a〉 ∼ N(0, |a|2) and 〈x, a1〉,. . . ,

〈x, am〉 independent whenever a1, . . . , am are orthogonal.
Here are n-dimensional counterparts of Examples 1a2–1a7.

1b2 Example. Generalizing 1a2, let λN be the uniform distribution on the
sphere SN−1(

√
N) and µN the corresponding distribution of the first three

coordinates. Then µN → γ3 (Mehler, Maxwell-Boltzmann). The same holds
for all n (not just 3), and is often (unjustly) called Poincaré’s lemma (or
Poincaré’s limit).

1b3 Example. Generalizing 1a4, let λN denote the uniform distribution
on the finite set {−e1, e1,−e2, e2,−e3, e3}N , where (e1, e2, e3) is the standard
basis of R

3. Denote by µN the corresponding distribution of
√

3/N(x1+· · ·+
xN ). Then µN → γ3. The same holds for all n (not just 3), see [2], Chap. 2,
Example 9.1.

1b4 Example. In order to generalize 1a5 we need a median of a 3-dimen-
sional sample (x1, . . . , xN). We may define it as the minimizer of the (strictly
convex) function x 7→ |x − x1| + · · · + |x − xN |. The asymptotic normality
holds for all n (not just 3).

1b5 Example. Generalizing 1a6 we replace the unfair coin with an experi-
ment having 3 outcomes whose probabilities p1, p2, p3 are parameters chosen
at random uniformly on the simplex p1 + p2 + p3 = 1, p1 ≥ 0, p2 ≥ 0, p3 ≥ 0.
The conditional distribution of

(
√

N(p1 − 1
3
),
√

N(p2 − 1
3
),
√

N(p3 − 1
3
)
)

con-
verges to a degenerate multinormal distribution. The same holds for all n
(not just 3).
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1b6 Example. Similarly to 1a7, most of the 26N triples (f1, f2, f3) of trigono-
metric polynomials lead to distributions close to γ3. The same holds for all
n (not just 3).

Among all probability measures µ on R
n such that

∫

xµ(dx) = 0 and
∫

x2
k µ(dx) = 1 for k = 1, . . . , n, γn minimizes the Poincare constant (see [1],

1.10.2 and 1.6.4) and maximizes the entropy.

1c Gaussian measures

on finite-dimensional linear spaces

1c1 Lemma. Let E be an m-dimensional linear space and V1 : R
n → E a

linear operator onto (that is, V1(R
n) = E). Then there exists an invertible

linear operator V2 : R
m → E such that V1(γ

n) = V2(γ
m) (written also as

γn ◦ V −1
1 = γm ◦ V −1

2 ), that is,

γn(V −1
1 (A)) = γm(V −1

2 (A)) for all measurable A ⊂ E .

Proof (sketch). We choose an orthonormal basis (e1, . . . , en) of R
n such that

em+1, . . . , en span the kernel {x ∈ R
n : V1(x) = 0}, then V1(e1), . . . , V1(em)

are a basis of E. By rotation invariance of γn we may assume that (e1, . . . , en)
is the standard basis of R

n. We have

γn(V −1
1 (A)) = γn{(x1, . . . , xn) : V1(x1e1 + · · · + xmem) ∈ A} =

γm{(x1, . . . , xm) : V1(x1e1 + · · ·+ xmem) ∈ A} = γm(V −1
2 (A))

where V2(x1, . . . , xm) = x1V1(e1) + · · ·+ xmV1(em).

1c2 Definition. A probability measure γ on a finite-dimensional linear space
E is a centered Gaussian measure, if for some n ∈ {0, 1, 2, . . .} there exists
a one-to-one linear operator V : R

n → E such that V (γn) = γ.

Usually we deal only with centered Gaussian measures, and omit the word
‘centered’. When needed, we can say ‘not just centered’ or ‘shifted’.

1c3 Exercise. If V : R
n → E is a linear operator (not just one-to-one) then

V (γn) is a Gaussian measure. (Centered, of course. . . )
Prove it.

1c4 Exercise. If E1, E2 are finite-dimensional linear spaces, V : E1 → E2

a linear operator and γ a Gaussian measure on E1, then V (γ) is a Gaussian
measure on E2.

Prove it.
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1c5 Exercise. The number n in Def. 1c2 is uniquely determined by γ.
Prove it.

This number is, by definition, the dimension of γ. If dim γ = dim E, we
say that γ is nondegenerate.

1c6 Exercise. Define the support of γ (it should be a linear subspace whose
dimension is equal to the dimension of γ).

We define the ellipsoid of concentration of γ as the set of all x ∈ E such
that (see [1, p. 5], [4, p. 98])

(1c7) |f(x)|2 ≤
∫

f 2 dγ for all linear f : E → R .

1c8 Exercise. The ellipsoid of concentration of γn is the unit ball of R
n.

Prove it.
(See also [4], Exercise 2 to Sect. 9.)

1c9 Exercise.
∫

f 2 dγ = sup f(x), where x runs over the ellipsoid of con-
centration of γ.

Prove it.

1c10 Exercise. If E1, E2 are finite-dimensional linear spaces, V : E1 → E2

a linear operator and γ a Gaussian measure on E1, then V maps the ellipsoid
of concentration of γ onto the ellipsoid of concentration of V (γ).

Prove it.

The ellipsoid of concentration of a nondegenerate Gaussian measure γ on
E is the unit ball of a norm | · |γ on E,

|x|γ = sup
{

|f(x)| :
∫

f 2 dγ ≤ 1
}

.

The pair (E, | · |γ) is a Euclidean space, and γ has the density const · e−|x|2γ/2.
For a degenerate γ the same holds on its support.

1c11 Exercise. Let E = E1 ⊕E2 (that is, E1, E2 ⊂ E are linear subspaces,
E1 ∩ E2 = {0} and E1 + E2 = E), and E1, E2 are orthogonal in (E, | · |γ)
(that is, |x+y|2γ = |x|2γ + |y|2γ for x ∈ E1, y ∈ E2). Then there exist Gaussian
measures γ1 on E1 and γ2 on E2 such that

∫

f dγ =

∫∫

f(x + y) γ1(dx)γ2(dy)

for every bounded measurable f : E → R.
Prove it.
Hint: recall the proof of 1c1.



Tel Aviv University, 2006 Gaussian random vectors 8

We may write γ = γ1 × γ2 or γ = γ1 ∗ γ2. Note that γ1, γ2 are uniquely
determined by γ (just take f(x+ y) = g(x) or h(y)). These γ1, γ2 are projec-
tions (marginals) of γ. Ellipsoids of concentration of γ1, γ2 are both sections
and projections of the ellipsoid of concentration of γ.

Let γ be a nondegenerate Gaussian measure on E and V : E → E1 a
linear operator onto. Then E = Ẽ1 ⊕ E2 where E2 = {x : V (x) = 0} is
the kernel and Ẽ1 = E ⊖ E2 its orthogonal (w.r.t. | · |γ) complement. The
restriction V |Ẽ1

is an isometry Ẽ1 → E1, provided that E1 is equipped with

| · |V (γ). Denoting the inverse isometry by Ṽ : E1 → Ẽ1 we have

∫

f dγ =

∫∫

Ẽ1×E2

f(x + y) γ1(dx)γ2(dy) =

∫∫

E1×E2

f(Ṽ (x) + y) V (γ)(dx)γ2(dy) =

∫

E1

(
∫

E

f(Ṽ (x) + y) γ2(dy)

)

V (γ)(dx) ,

which means that the conditional distribution γx of z ∈ E given V (z) = x ∈
E1 is γ2 shifted by Ṽ (x). We see that all conditional measures are shifts
of a single Gaussian measure, and the shift vector depends linearly on the
condition. This is known as the normal correlation theorem; see also [3],
Sect. 9.3 and [1], 1.2.8 and 3.10.

1c12 Exercise. Consider a random trigonometric polynomial

X(t) = ζ1 cos t + η1 sin t +
1

2
ζ2 cos 2t +

1

2
η2 sin 2t ,

where ζ1, η1, ζ2, η2 are independent N(0, 1) random variables. Describe the
conditional distribution of X given X(0).
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