1 Basic notions: finite dimension

1a Gaussian measures on \mathbb{R}, or normal distributions 1
1b Gaussian measures on \mathbb{R}^{n}, or multinormal distributions

4
1c Gaussian measures on finite-dimensional linear spaces 6

1a Gaussian measures on \mathbb{R}, or normal distributions

1a1 Definition. The standard one-dimensional Gaussian measure γ^{1}, known also as the standard normal distribution $\mathrm{N}(0,1)$, is defined by

$$
\gamma^{1}(A)=\frac{1}{\sqrt{2 \pi}} \int_{A} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x
$$

for all measurable $A \subset \mathbb{R}$.

The image of $\mathrm{N}(0,1)$ under a linear map $x \mapsto a+\sigma x$ (where $a \in \mathbb{R}$ and $\sigma \in[0, \infty)$ are parameters) is called the normal distribution $\mathrm{N}\left(a, \sigma^{2}\right)$. In other words,

$$
\mathrm{N}\left(a, \sigma^{2}\right)(A)=\gamma^{1}(\{x: a+\sigma x \in A\}) ;
$$

thus, $\mathrm{N}(a, 0)$ is a single atom at a, and

$$
\mathrm{N}\left(a, \sigma^{2}\right)(A)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{A} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right) \mathrm{d} x
$$

if $\sigma>0$.
Like the famous number π, the normal distribution appears here and there, again and again. Some simple examples follow, just for your information (they will not be used).

1a2 Example. Let λ_{n} denote the uniform distribution (in other words, the normalized surface measure) on the sphere $S^{n-1}(\sqrt{n})=\left\{x \in \mathbb{R}^{n}:|x|=\sqrt{n}\right\}$
and denote by μ_{n} the corresponding distribution of the first coordinate; that is, $\mu_{n}(A)=\lambda_{n}\left(A \times \mathbb{R}^{n-1}\right)$. Then $\mu_{n} \rightarrow \gamma^{1}$ as $n \rightarrow \infty$ in the sense that

$$
\begin{equation*}
\int f \mathrm{~d} \mu_{n} \rightarrow \int f \mathrm{~d} \gamma^{1} \quad \text { as } n \rightarrow \infty \tag{1a3}
\end{equation*}
$$

for every bounded continuous $f: \mathbb{R} \rightarrow \mathbb{R}$. Moreover, μ_{n} has a density,

$$
\mu_{n}(A)=\text { const }_{n} \cdot \int_{A \cap(-\sqrt{n}, \sqrt{n})}\left(1-\frac{x^{2}}{n}\right)^{\frac{n-3}{2}} \mathrm{~d} x
$$

and the density converges to the normal density. For details see Exercise 2.1.40 in a book by D. Stroock, ${ }^{1}$ who cites F. Mehler (1866) and notes that "in terms of statistical mechanics, this result can be interpreted as a derivation of the Maxwell distribution of velocities for a gas of free particles (...)". See also [2], Exercise 2.12 in Sect. 2.3.

1a4 Example. Let λ_{n} denote the uniform distribution (that is, the normalized counting measure) on the finite set $\{-1,+1\}^{n}$, and denote by μ_{n} the corresponding distribution of the (linear) function $\left(x_{1}+\cdots+x_{n}\right) / \sqrt{n}$;

Then $\mu_{n} \rightarrow \gamma^{1}$ (in the sense of (1a31), which is the De Moivre (1733) - Laplace (1770s) theorem, the simplest special case of Central Limit Theorem.

1a5 Example. Let λ_{n} denote the uniform distribution (that is, the normalized Lebesgue measure) on the cube $[-1,+1]^{2 n+1}$, and μ_{n} the corresponding distribution of the (nonlinear) function $\left(x_{1}, \ldots, x_{2 n+1}\right) \mapsto \sqrt{2 n} x_{(n+1)}$; here $\left(x_{(1)}, \ldots, x_{(2 n+1)}\right)$ is the increasing rearrangement of $\left(x_{1}, \ldots, x_{2 n+1}\right)$. It appears (see [2], Example 2.2.6) that $\mu_{n} \rightarrow \gamma^{1}$. In fact, μ_{n} has the density const $_{n} \cdot\left(1-\frac{x^{2}}{2 n}\right)^{n}$ for $|x|<\sqrt{2 n}$.

[^0]1a6 Example. Let $\lambda_{n, p}$ denote the product measure

$$
\lambda_{n, p}\left(\left\{\left(x_{1}, \ldots, x_{n}\right)\right\}\right)=p^{x_{1}+\cdots+x_{n}}(1-p)^{n-x_{1}-\cdots-x_{n}}=p^{k}(1-p)^{n-k}
$$

on $\{0,1\}^{n}$; define λ_{n} on $[0,1] \times\{0,1\}^{n}$ by

$$
\lambda_{n}(A \times\{x\})=\int_{A} \lambda_{n, p}\left(\left\{\left(x_{1}, \ldots, x_{n}\right)\right\}\right) \mathrm{d} p=\int_{A} p^{k}(1-p)^{k} \mathrm{~d} p .
$$

(It means tossing n times an unfair coin with parameter p chosen at random, uniformly on $[0,1]$.) The conditional distribution of p given $x \in\{0,1\}^{n}$ is

$$
A \mapsto \frac{\lambda_{n}(A \times\{x\})}{\lambda_{n}([0,1] \times\{x\})}=\text { const }_{n} \cdot \int_{A} p^{k}(1-p)^{n-k} \mathrm{~d} p
$$

Denote by $\mu_{2 n}$ the conditional distribution of $2 \sqrt{2 n}(p-0.5)$ given $x \in\{0,1\}^{2 n}$ such that $x_{1}+\cdots+x_{2 n}=n$. It appears that $\mu_{n} \rightarrow \gamma^{1}$, which is the simplest case of asymptotic normality in Bayesian (and non-Bayesian) statistics. In fact, μ_{n} has the density const $_{n} \cdot\left(1-\frac{x^{2}}{2 n}\right)^{n}$ for $|x|<\sqrt{2 n}$.
1a7 Example. Consider $2^{2 n}$ trigonometric polynomials of the form

$$
f(x)=\frac{1}{\sqrt{n}}(\pm \cos (2 \pi \omega) \pm \sin (2 \pi \omega) \pm \cdots \pm \cos (2 \pi n \omega) \pm \sin (2 \pi n \omega))
$$

each f has its distribution μ_{f},

$$
\mu_{f}(A)=\operatorname{mes} f^{-1}(A)=\int_{0}^{1} \mathbf{1}_{A}(f(\omega)) \mathrm{d} \omega .
$$

(By 'mes' I denote Lebesgue measure.) For most (but not all) of these f, μ_{f} is close to γ^{1} (provided that n is large).

The so-called central limit problem for convex bodies, not even formulated here, is deeper. ${ }^{1}$

Among all probability measures μ on \mathbb{R} such that $\int x \mu(\mathrm{~d} x)=0$ and $\int x^{2} \mu(\mathrm{~d} x)=1, \gamma^{1}$ minimizes the Poincare constant

$$
\frac{1}{2} \sup _{f} \frac{\iint|f(x)-f(y)|^{2} \mu(\mathrm{~d} x) \mu(\mathrm{d} y)}{\int\left|f^{\prime}(x)\right|^{2} \mu(\mathrm{~d} x)}
$$

(see [1], 1.10.2 and 1.6.4) and maximizes the entropy (see [1, 1.10.23).

[^1]
1b Gaussian measures on \mathbb{R}^{n}, or multinormal distributions

1b1 Definition. The standard n-dimensional Gaussian measure γ^{n}, known also as the standard multinormal distribution, is defined by

$$
\gamma^{n}(A)=(2 \pi)^{-n / 2} \int_{A} \mathrm{e}^{-|x|^{2} / 2} \mathrm{~d} x
$$

for all measurable $A \subset \mathbb{R}^{n}$.
Here $x=\left(x_{1}, \ldots, x_{n}\right),|x|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ and $\mathrm{d} x=\mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$. Note that $\gamma^{n}=\gamma^{1} \times \cdots \times \gamma^{1}$, that is,

$$
\begin{aligned}
& \int \cdots \int f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right) \gamma^{n}\left(\mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n}\right)= \\
& \qquad\left(\int f_{1}(x) \gamma^{1}(\mathrm{~d} x)\right) \cdots\left(\int f_{n}(x) \gamma^{1}(\mathrm{~d} x)\right)
\end{aligned}
$$

for measurable $f_{1}, \ldots, f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that the latter integrals converge. In other words, γ^{n} makes x_{1}, \ldots, x_{n} independent, each distributed $\mathrm{N}(0,1)$.

The image γ of γ^{n} under a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is, by definition, a centered (or zero-mean) multinormal distribution on \mathbb{R}^{n}. If $\operatorname{dim} L\left(\mathbb{R}^{n}\right)=0$ then γ is a single atom at 0 . If $1 \leq \operatorname{dim} L\left(\mathbb{R}^{n}\right) \leq n-1$ then γ is singular. If $\operatorname{dim} L\left(\mathbb{R}^{n}\right)=n$, that is, L is invertible, then γ has a density of the form $x \mapsto$ const $\cdot \exp (-Q(x))$, where $Q: \mathbb{R}^{n} \rightarrow[0, \infty)$ is a quadratic form. In the latter case we say that γ is nondegenerate.

An arbitrary (not just centered) multinormal distribution is, by definition, the image of a centered multinormal distribution under a shift $x \mapsto x+a$.

The two-dimensional case is of special interest.
First, the density of γ^{2} is easy to integrate in polar coordinates,

$$
\iint \frac{1}{2 \pi} \mathrm{e}^{-\left(x_{1}^{2}+x_{2}^{2}\right) / 2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\frac{1}{2 \pi} \iint \mathrm{e}^{-r^{2} / 2} r \mathrm{~d} r \mathrm{~d} \varphi=1,
$$

which verifies not only the constant $\frac{1}{2 \pi}$ for $n=2$ but also $\frac{1}{\sqrt{2 \pi}}$ for $n=1$, thus, $(2 \pi)^{-n / 2}$ for any n.

Second, γ^{2} is invariant under rotations $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1} \cos \alpha-x_{2} \sin \alpha, x_{1} \sin \alpha+\right.$ $x_{2} \cos \alpha$). Therefore the distribution of $x_{1} \cos \alpha-x_{2} \sin \alpha$ does not depend on α, it is $\mathrm{N}(0,1)$ for any α; we get

$$
\begin{gathered}
a x_{1}+b x_{2} \sim \mathrm{~N}\left(0, a^{2}+b^{2}\right) \\
\mathrm{N}\left(0, a^{2}\right) * \mathrm{~N}\left(0, b^{2}\right)=\mathrm{N}\left(0, a^{2}+b^{2}\right)
\end{gathered}
$$

Also, $x_{1} \cos \alpha-x_{2} \sin \alpha$ and $x_{1} \sin \alpha+x_{2} \cos \alpha$ are independent. More generally, for $a, b \in \mathbb{R}^{2}$,

$$
\langle x, a\rangle \text { and }\langle x, b\rangle \text { are independent whenever }\langle a, b\rangle=0 .
$$

That is, $\langle a, b\rangle=0$ implies

$$
\begin{aligned}
& \iint f(\langle x, a\rangle) g(\langle x, b\rangle) \gamma^{2}(\mathrm{~d} x)= \\
& \qquad \begin{aligned}
\left(\iint f(\langle x, a\rangle) \gamma^{2}(\mathrm{~d} x)\right) & \left(\iint g(\langle x, b\rangle) \gamma^{2}(\mathrm{~d} x)\right)= \\
& \left(\int f(|a| x) \gamma^{1}(\mathrm{~d} x)\right)\left(\int g(|b| x) \gamma^{1}(\mathrm{~d} x)\right)
\end{aligned}
\end{aligned}
$$

for measurable $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that the latter integrals converge. No other distribution has such properties (see [1], Sect. 1.9).

The same holds in \mathbb{R}^{n}. Namely, γ^{n} makes $\langle x, a\rangle \sim \mathrm{N}\left(0,|a|^{2}\right)$ and $\left\langle x, a_{1}\right\rangle, \ldots$, $\left\langle x, a_{m}\right\rangle$ independent whenever a_{1}, \ldots, a_{m} are orthogonal.

Here are n-dimensional counterparts of Examples 1a2 1a7.
1b2 Example. Generalizing 1a2 let λ_{N} be the uniform distribution on the sphere $S^{N-1}(\sqrt{N})$ and μ_{N} the corresponding distribution of the first three coordinates. Then $\mu_{N} \rightarrow \gamma^{3}$ (Mehler, Maxwell-Boltzmann). The same holds for all n (not just 3), and is often (unjustly) called Poincaré's lemma (or Poincaré's limit).

1b3 Example. Generalizing [1a4, let λ_{N} denote the uniform distribution on the finite set $\left\{-e_{1}, e_{1},-e_{2}, e_{2},-e_{3}, e_{3}\right\}^{N}$, where $\left(e_{1}, e_{2}, e_{3}\right)$ is the standard basis of \mathbb{R}^{3}. Denote by μ_{N} the corresponding distribution of $\sqrt{3 / N}\left(x_{1}+\cdots+\right.$ x_{N}). Then $\mu_{N} \rightarrow \gamma^{3}$. The same holds for all n (not just 3), see [2], Chap. 2, Example 9.1.

1b4 Example. In order to generalize 195 we need a median of a 3 -dimensional sample $\left(x_{1}, \ldots, x_{N}\right)$. We may define it as the minimizer of the (strictly convex) function $x \mapsto\left|x-x_{1}\right|+\cdots+\left|x-x_{N}\right|$. The asymptotic normality holds for all n (not just 3).

1b5 Example. Generalizing 1a6 we replace the unfair coin with an experiment having 3 outcomes whose probabilities p_{1}, p_{2}, p_{3} are parameters chosen at random uniformly on the simplex $p_{1}+p_{2}+p_{3}=1, p_{1} \geq 0, p_{2} \geq 0, p_{3} \geq 0$. The conditional distribution of $\left(\sqrt{N}\left(p_{1}-\frac{1}{3}\right), \sqrt{N}\left(p_{2}-\frac{1}{3}\right), \sqrt{N}\left(p_{3}-\frac{1}{3}\right)\right)$ converges to a degenerate multinormal distribution. The same holds for all n (not just 3).

1b6 Example. Similarly to 1a7 most of the $2^{6 N}$ triples $\left(f_{1}, f_{2}, f_{3}\right)$ of trigonometric polynomials lead to distributions close to γ^{3}. The same holds for all n (not just 3).

Among all probability measures μ on \mathbb{R}^{n} such that $\int x \mu(\mathrm{~d} x)=0$ and $\int x_{k}^{2} \mu(\mathrm{~d} x)=1$ for $k=1, \ldots, n, \gamma^{n}$ minimizes the Poincare constant (see [1], 1.10.2 and 1.6.4) and maximizes the entropy.

1c Gaussian measures on finite-dimensional linear spaces

1c1 Lemma. Let E be an m-dimensional linear space and $V_{1}: \mathbb{R}^{n} \rightarrow E$ a linear operator onto (that is, $V_{1}\left(\mathbb{R}^{n}\right)=E$). Then there exists an invertible linear operator $V_{2}: \mathbb{R}^{m} \rightarrow E$ such that $V_{1}\left(\gamma^{n}\right)=V_{2}\left(\gamma^{m}\right)$ (written also as $\left.\gamma^{n} \circ V_{1}^{-1}=\gamma^{m} \circ V_{2}^{-1}\right)$, that is,

$$
\gamma^{n}\left(V_{1}^{-1}(A)\right)=\gamma^{m}\left(V_{2}^{-1}(A)\right) \quad \text { for all measurable } A \subset E .
$$

Proof (sketch). We choose an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of \mathbb{R}^{n} such that e_{m+1}, \ldots, e_{n} span the kernel $\left\{x \in \mathbb{R}^{n}: V_{1}(x)=0\right\}$, then $V_{1}\left(e_{1}\right), \ldots, V_{1}\left(e_{m}\right)$ are a basis of E. By rotation invariance of γ^{n} we may assume that $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbb{R}^{n}. We have

$$
\begin{aligned}
& \gamma^{n}\left(V_{1}^{-1}(A)\right)=\gamma^{n}\left\{\left(x_{1}, \ldots, x_{n}\right): V_{1}\left(x_{1} e_{1}+\cdots+x_{m} e_{m}\right) \in A\right\}= \\
& \gamma^{m}\left\{\left(x_{1}, \ldots, x_{m}\right): V_{1}\left(x_{1} e_{1}+\cdots+x_{m} e_{m}\right) \in A\right\}=\gamma^{m}\left(V_{2}^{-1}(A)\right)
\end{aligned}
$$

where $V_{2}\left(x_{1}, \ldots, x_{m}\right)=x_{1} V_{1}\left(e_{1}\right)+\cdots+x_{m} V_{1}\left(e_{m}\right)$.
1c2 Definition. A probability measure γ on a finite-dimensional linear space E is a centered Gaussian measure, if for some $n \in\{0,1,2, \ldots\}$ there exists a one-to-one linear operator $V: \mathbb{R}^{n} \rightarrow E$ such that $V\left(\gamma^{n}\right)=\gamma$.

Usually we deal only with centered Gaussian measures, and omit the word 'centered'. When needed, we can say 'not just centered' or 'shifted'.

1c3 Exercise. If $V: \mathbb{R}^{n} \rightarrow E$ is a linear operator (not just one-to-one) then $V\left(\gamma^{n}\right)$ is a Gaussian measure. (Centered, of course...)

Prove it.
1c4 Exercise. If E_{1}, E_{2} are finite-dimensional linear spaces, $V: E_{1} \rightarrow E_{2}$ a linear operator and γ a Gaussian measure on E_{1}, then $V(\gamma)$ is a Gaussian measure on E_{2}.

Prove it.

1c5 Exercise. The number n in Def. 1c2 is uniquely determined by γ.
Prove it.
This number is, by definition, the dimension of γ. If $\operatorname{dim} \gamma=\operatorname{dim} E$, we say that γ is nondegenerate.

1c6 Exercise. Define the support of γ (it should be a linear subspace whose dimension is equal to the dimension of γ).

We define the ellipsoid of concentration of γ as the set of all $x \in E$ such that (see [1], p. 5], [4, p. 98])

$$
\begin{equation*}
|f(x)|^{2} \leq \int f^{2} \mathrm{~d} \gamma \quad \text { for all linear } f: E \rightarrow \mathbb{R} \tag{1c7}
\end{equation*}
$$

1c8 Exercise. The ellipsoid of concentration of γ^{n} is the unit ball of \mathbb{R}^{n}.
Prove it.
(See also [4], Exercise 2 to Sect. 9.)
1c9 Exercise. $\int f^{2} \mathrm{~d} \gamma=\sup f(x)$, where x runs over the ellipsoid of concentration of γ.

Prove it.
$\mathbf{1 c} 10$ Exercise. If E_{1}, E_{2} are finite-dimensional linear spaces, $V: E_{1} \rightarrow E_{2}$ a linear operator and γ a Gaussian measure on E_{1}, then V maps the ellipsoid of concentration of γ onto the ellipsoid of concentration of $V(\gamma)$.

Prove it.
The ellipsoid of concentration of a nondegenerate Gaussian measure γ on E is the unit ball of a norm $|\cdot|_{\gamma}$ on E,

$$
|x|_{\gamma}=\sup \left\{|f(x)|: \int f^{2} \mathrm{~d} \gamma \leq 1\right\} .
$$

The pair $\left(E,|\cdot|_{\gamma}\right)$ is a Euclidean space, and γ has the density const $\cdot \mathrm{e}^{-|x|_{\gamma}^{2} / 2}$. For a degenerate γ the same holds on its support.

1c11 Exercise. Let $E=E_{1} \oplus E_{2}$ (that is, $E_{1}, E_{2} \subset E$ are linear subspaces, $E_{1} \cap E_{2}=\{0\}$ and $\left.E_{1}+E_{2}=E\right)$, and E_{1}, E_{2} are orthogonal in $\left(E,|\cdot|_{\gamma}\right)$ (that is, $|x+y|_{\gamma}^{2}=|x|_{\gamma}^{2}+|y|_{\gamma}^{2}$ for $x \in E_{1}, y \in E_{2}$). Then there exist Gaussian measures γ_{1} on E_{1} and γ_{2} on E_{2} such that

$$
\int f \mathrm{~d} \gamma=\iint f(x+y) \gamma_{1}(\mathrm{~d} x) \gamma_{2}(\mathrm{~d} y)
$$

for every bounded measurable $f: E \rightarrow \mathbb{R}$.
Prove it.
Hint: recall the proof of 1 cl .

We may write $\gamma=\gamma_{1} \times \gamma_{2}$ or $\gamma=\gamma_{1} * \gamma_{2}$. Note that γ_{1}, γ_{2} are uniquely determined by γ (just take $f(x+y)=g(x)$ or $h(y))$. These γ_{1}, γ_{2} are projections (marginals) of γ. Ellipsoids of concentration of γ_{1}, γ_{2} are both sections and projections of the ellipsoid of concentration of γ.

Let γ be a nondegenerate Gaussian measure on E and $V: E \rightarrow E_{1}$ a linear operator onto. Then $E=\tilde{E}_{1} \oplus E_{2}$ where $E_{2}=\{x: V(x)=0\}$ is the kernel and $\tilde{E}_{1}=E \ominus E_{2}$ its orthogonal (w.r.t. $|\cdot|_{\gamma}$) complement. The restriction $\left.V\right|_{\tilde{E}_{1}}$ is an isometry $\tilde{E}_{1} \rightarrow E_{1}$, provided that E_{1} is equipped with $|\cdot|_{V(\gamma)}$. Denoting the inverse isometry by $\tilde{V}: E_{1} \rightarrow \tilde{E}_{1}$ we have

$$
\begin{aligned}
& \int f \mathrm{~d} \gamma=\iint_{\tilde{E}_{1} \times E_{2}} f(x+y) \gamma_{1}(\mathrm{~d} x) \gamma_{2}(\mathrm{~d} y)= \\
& \iint_{E_{1} \times E_{2}} f(\tilde{V}(x)+y) V(\gamma)(\mathrm{d} x) \gamma_{2}(\mathrm{~d} y)= \\
& \quad \int_{E_{1}}\left(\int_{E} f(\tilde{V}(x)+y) \gamma_{2}(\mathrm{~d} y)\right) V(\gamma)(\mathrm{d} x)
\end{aligned}
$$

which means that the conditional distribution γ_{x} of $z \in E$ given $V(z)=x \in$ E_{1} is γ_{2} shifted by $\tilde{V}(x)$. We see that all conditional measures are shifts of a single Gaussian measure, and the shift vector depends linearly on the condition. This is known as the normal correlation theorem; see also [3], Sect. 9.3 and [1], 1.2.8 and 3.10.

1c12 Exercise. Consider a random trigonometric polynomial

$$
X(t)=\zeta_{1} \cos t+\eta_{1} \sin t+\frac{1}{2} \zeta_{2} \cos 2 t+\frac{1}{2} \eta_{2} \sin 2 t
$$

where $\zeta_{1}, \eta_{1}, \zeta_{2}, \eta_{2}$ are independent $\mathrm{N}(0,1)$ random variables. Describe the conditional distribution of X given $X(0)$.

References

[1] V.I. Bogachev, Gaussian measures, AMS 1998.
[2] R. Durrett, Probability: theory and examples (second edition), 1996.
[3] S. Janson, Gaussian Hilbert spaces, Cambridge 1997.
[4] M.A. Lifshits, Gaussian random functions, Kluwer 1995.

Index

Gaussian measure, 6
dimension, 7
ellipsoid of concentration, 7 nondegenerate, $\mathbf{7}$
standard n-dimensional, 4]
standard one-dimensional, 1
support, 7
normal correlation theorem, 8

[^0]: ${ }^{1}$ Daniel W. Stroock, "Probability theory, an analytic view", Cambridge 1993.

[^1]: ${ }^{1}$ M. Antilla, K. Ball, I. Perissinaki, "The central limit problem for convex bodies", Trans. Amer. Math. Soc. 355 (2003), 4723-4735.

