1 Basic notions: finite dimension

1a	Gaussian measures on \mathbb{R} , or normal distributions	1
1b	Gaussian measures on \mathbb{R}^n , or multinormal distributions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	4
1c	Gaussian measures on finite-dimensional linear spaces	6

1a Gaussian measures on \mathbb{R} , or normal distributions

1a1 Definition. The standard one-dimensional Gaussian measure γ^1 , known also as the standard normal distribution N(0, 1), is defined by

$$\gamma^1(A) = \frac{1}{\sqrt{2\pi}} \int_A e^{-x^2/2} dx$$

for all measurable $A \subset \mathbb{R}$.

The image of N(0,1) under a linear map $x \mapsto a + \sigma x$ (where $a \in \mathbb{R}$ and $\sigma \in [0,\infty)$ are parameters) is called the normal distribution N(a, σ^2). In other words,

$$N(a,\sigma^2)(A) = \gamma^1 (\{x : a + \sigma x \in A\});$$

thus, N(a, 0) is a single atom at a, and

$$N(a, \sigma^2)(A) = \frac{1}{\sqrt{2\pi\sigma}} \int_A \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right) dx$$

if $\sigma > 0$.

Like the famous number π , the normal distribution appears here and there, again and again. Some simple examples follow, just for your information (they will not be used).

1a2 Example. Let λ_n denote the uniform distribution (in other words, the normalized surface measure) on the sphere $S^{n-1}(\sqrt{n}) = \{x \in \mathbb{R}^n : |x| = \sqrt{n}\}$

and denote by μ_n the corresponding distribution of the first coordinate; that is, $\mu_n(A) = \lambda_n(A \times \mathbb{R}^{n-1})$. Then $\mu_n \to \gamma^1$ as $n \to \infty$ in the sense that

(1a3)
$$\int f \,\mathrm{d}\mu_n \to \int f \,\mathrm{d}\gamma^1 \quad \text{as } n \to \infty$$

for every bounded continuous $f : \mathbb{R} \to \mathbb{R}$. Moreover, μ_n has a density,

$$\mu_n(A) = \operatorname{const}_n \cdot \int_{A \cap (-\sqrt{n},\sqrt{n})} \left(1 - \frac{x^2}{n}\right)^{\frac{n-3}{2}} \mathrm{d}x \,,$$

and the density converges to the normal density. For details see Exercise 2.1.40 in a book by D. Stroock,¹ who cites F. Mehler (1866) and notes that "in terms of statistical mechanics, this result can be interpreted as a derivation of the Maxwell distribution of velocities for a gas of free particles (...)". See also [2], Exercise 2.12 in Sect. 2.3.

1a4 Example. Let λ_n denote the uniform distribution (that is, the normalized counting measure) on the finite set $\{-1, +1\}^n$, and denote by μ_n the corresponding distribution of the (linear) function $(x_1 + \cdots + x_n)/\sqrt{n}$;

$$\mu_n\left(\{k/\sqrt{n}\}\right) = 2^{-n} \frac{n!}{\left(\frac{n-k}{2}\right)! \left(\frac{n+k}{2}\right)!} \quad \text{for } k = -n, -n+2, \dots, n.$$

Then $\mu_n \to \gamma^1$ (in the sense of (1a3)), which is the De Moivre (1733) - Laplace (1770s) theorem, the simplest special case of Central Limit Theorem.

1a5 Example. Let λ_n denote the uniform distribution (that is, the normalized Lebesgue measure) on the cube $[-1, +1]^{2n+1}$, and μ_n the corresponding distribution of the (nonlinear) function $(x_1, \ldots, x_{2n+1}) \mapsto \sqrt{2n} x_{(n+1)}$; here $(x_{(1)}, \ldots, x_{(2n+1)})$ is the increasing rearrangement of (x_1, \ldots, x_{2n+1}) . It appears (see [2], Example 2.2.6) that $\mu_n \to \gamma^1$. In fact, μ_n has the density $\operatorname{const}_n \cdot \left(1 - \frac{x^2}{2n}\right)^n$ for $|x| < \sqrt{2n}$.

¹Daniel W. Stroock, "Probability theory, an analytic view", Cambridge 1993.

1a6 Example. Let $\lambda_{n,p}$ denote the product measure

$$\lambda_{n,p}(\{(x_1,\ldots,x_n)\}) = p^{x_1+\cdots+x_n}(1-p)^{n-x_1-\cdots-x_n} = p^k(1-p)^{n-k}$$

on $\{0,1\}^n$; define λ_n on $[0,1] \times \{0,1\}^n$ by

$$\lambda_n \big(A \times \{x\} \big) = \int_A \lambda_{n,p} \big(\{ (x_1, \dots, x_n) \} \big) \, \mathrm{d}p = \int_A p^k (1-p)^k \, \mathrm{d}p \, .$$

(It means tossing n times an unfair coin with parameter p chosen at random, uniformly on [0, 1].) The conditional distribution of p given $x \in \{0, 1\}^n$ is

$$A \mapsto \frac{\lambda_n (A \times \{x\})}{\lambda_n ([0,1] \times \{x\})} = \operatorname{const}_n \cdot \int_A p^k (1-p)^{n-k} \, \mathrm{d}p \, .$$

Denote by μ_{2n} the conditional distribution of $2\sqrt{2n}(p-0.5)$ given $x \in \{0,1\}^{2n}$ such that $x_1 + \cdots + x_{2n} = n$. It appears that $\mu_n \to \gamma^1$, which is the simplest case of asymptotic normality in Bayesian (and non-Bayesian) statistics. In fact, μ_n has the density $\operatorname{const}_n \cdot \left(1 - \frac{x^2}{2n}\right)^n$ for $|x| < \sqrt{2n}$.

1a7 Example. Consider 2^{2n} trigonometric polynomials of the form

$$f(x) = \frac{1}{\sqrt{n}} \left(\pm \cos(2\pi\omega) \pm \sin(2\pi\omega) \pm \cdots \pm \cos(2\pi n\omega) \pm \sin(2\pi n\omega) \right);$$

each f has its distribution μ_f ,

$$\mu_f(A) = \operatorname{mes} f^{-1}(A) = \int_0^1 \mathbf{1}_A(f(\omega)) \,\mathrm{d}\omega$$

(By 'mes' I denote Lebesgue measure.) For most (but not all) of these f, μ_f is close to γ^1 (provided that n is large).

The so-called central limit problem for convex bodies, not even formulated here, is deeper.¹

Among all probability measures μ on \mathbb{R} such that $\int x \mu(dx) = 0$ and $\int x^2 \mu(dx) = 1$, γ^1 minimizes the Poincare constant

$$\frac{1}{2} \sup_{f} \frac{\iint |f(x) - f(y)|^2 \,\mu(\mathrm{d}x)\mu(\mathrm{d}y)}{\int |f'(x)|^2 \,\mu(\mathrm{d}x)}$$

(see [1], 1.10.2 and 1.6.4) and maximizes the entropy (see [1], 1.10.23).

¹M. Antilla, K. Ball, I. Perissinaki, "The central limit problem for convex bodies", Trans. Amer. Math. Soc. **355** (2003), 4723–4735.

1b Gaussian measures on \mathbb{R}^n , or multinormal distributions

1b1 Definition. The standard n-dimensional Gaussian measure γ^n , known also as the standard multinormal distribution, is defined by

$$\gamma^n(A) = (2\pi)^{-n/2} \int_A e^{-|x|^2/2} dx$$

for all measurable $A \subset \mathbb{R}^n$.

Here $x = (x_1, \ldots, x_n)$, $|x| = \sqrt{x_1^2 + \cdots + x_n^2}$ and $dx = dx_1 \ldots dx_n$. Note that $\gamma^n = \gamma^1 \times \cdots \times \gamma^1$, that is,

$$\int \cdots \int f_1(x_1) \dots f_n(x_n) \gamma^n(\mathrm{d} x_1 \dots \mathrm{d} x_n) = \left(\int f_1(x) \gamma^1(\mathrm{d} x) \right) \dots \left(\int f_n(x) \gamma^1(\mathrm{d} x) \right)$$

for measurable $f_1, \ldots, f_n : \mathbb{R} \to \mathbb{R}$ such that the latter integrals converge. In other words, γ^n makes x_1, \ldots, x_n independent, each distributed N(0, 1).

The image γ of γ^n under a linear map $L : \mathbb{R}^n \to \mathbb{R}^n$ is, by definition, a centered (or zero-mean) multinormal distribution on \mathbb{R}^n . If dim $L(\mathbb{R}^n) = 0$ then γ is a single atom at 0. If $1 \leq \dim L(\mathbb{R}^n) \leq n-1$ then γ is singular. If dim $L(\mathbb{R}^n) = n$, that is, L is invertible, then γ has a density of the form $x \mapsto \operatorname{const} \cdot \exp(-Q(x))$, where $Q : \mathbb{R}^n \to [0, \infty)$ is a quadratic form. In the latter case we say that γ is nondegenerate.

An arbitrary (not just centered) multinormal distribution is, by definition, the image of a centered multinormal distribution under a shift $x \mapsto x + a$.

The two-dimensional case is of special interest.

First, the density of γ^2 is easy to integrate in polar coordinates,

$$\iint \frac{1}{2\pi} e^{-(x_1^2 + x_2^2)/2} \, \mathrm{d}x_1 \mathrm{d}x_2 = \frac{1}{2\pi} \iint e^{-r^2/2} r \, \mathrm{d}r \mathrm{d}\varphi = 1 \,,$$

which verifies not only the constant $\frac{1}{2\pi}$ for n = 2 but also $\frac{1}{\sqrt{2\pi}}$ for n = 1, thus, $(2\pi)^{-n/2}$ for any n.

Second, γ^2 is invariant under rotations $(x_1, x_2) \mapsto (x_1 \cos \alpha - x_2 \sin \alpha, x_1 \sin \alpha + x_2 \cos \alpha)$. Therefore the distribution of $x_1 \cos \alpha - x_2 \sin \alpha$ does not depend on α , it is N(0, 1) for any α ; we get

$$ax_1 + bx_2 \sim N(0, a^2 + b^2);$$

 $N(0, a^2) * N(0, b^2) = N(0, a^2 + b^2).$

Also, $x_1 \cos \alpha - x_2 \sin \alpha$ and $x_1 \sin \alpha + x_2 \cos \alpha$ are independent. More generally, for $a, b \in \mathbb{R}^2$,

 $\langle x, a \rangle$ and $\langle x, b \rangle$ are independent whenever $\langle a, b \rangle = 0$.

That is, $\langle a, b \rangle = 0$ implies

$$\iint f(\langle x, a \rangle) g(\langle x, b \rangle) \gamma^{2}(\mathrm{d}x) = \left(\iint f(\langle x, a \rangle) \gamma^{2}(\mathrm{d}x) \right) \left(\iint g(\langle x, b \rangle) \gamma^{2}(\mathrm{d}x) \right) = \left(\int f(|a|x) \gamma^{1}(\mathrm{d}x) \right) \left(\int g(|b|x) \gamma^{1}(\mathrm{d}x) \right)$$

for measurable $f, g : \mathbb{R} \to \mathbb{R}$ such that the latter integrals converge. No other distribution has such properties (see [1], Sect. 1.9).

The same holds in \mathbb{R}^n . Namely, γ^n makes $\langle x, a \rangle \sim \mathcal{N}(0, |a|^2)$ and $\langle x, a_1 \rangle, \ldots, \langle x, a_m \rangle$ independent whenever a_1, \ldots, a_m are orthogonal.

Here are n-dimensional counterparts of Examples 1a2–1a7.

1b2 Example. Generalizing 1a2, let λ_N be the uniform distribution on the sphere $S^{N-1}(\sqrt{N})$ and μ_N the corresponding distribution of the first three coordinates. Then $\mu_N \to \gamma^3$ (Mehler, Maxwell-Boltzmann). The same holds for all n (not just 3), and is often (unjustly) called Poincaré's lemma (or Poincaré's limit).

1b3 Example. Generalizing 1a4, let λ_N denote the uniform distribution on the finite set $\{-e_1, e_1, -e_2, e_2, -e_3, e_3\}^N$, where (e_1, e_2, e_3) is the standard basis of \mathbb{R}^3 . Denote by μ_N the corresponding distribution of $\sqrt{3/N}(x_1 + \cdots + x_N)$. Then $\mu_N \to \gamma^3$. The same holds for all n (not just 3), see [2], Chap. 2, Example 9.1.

1b4 Example. In order to generalize 1a5 we need a median of a 3-dimensional sample (x_1, \ldots, x_N) . We may define it as the minimizer of the (strictly convex) function $x \mapsto |x - x_1| + \cdots + |x - x_N|$. The asymptotic normality holds for all n (not just 3).

1b5 Example. Generalizing 1a6 we replace the unfair coin with an experiment having 3 outcomes whose probabilities p_1, p_2, p_3 are parameters chosen at random uniformly on the simplex $p_1 + p_2 + p_3 = 1$, $p_1 \ge 0$, $p_2 \ge 0$, $p_3 \ge 0$. The conditional distribution of $(\sqrt{N}(p_1 - \frac{1}{3}), \sqrt{N}(p_2 - \frac{1}{3}), \sqrt{N}(p_3 - \frac{1}{3}))$ converges to a degenerate multinormal distribution. The same holds for all n (not just 3).

1b6 Example. Similarly to 1a7, most of the 2^{6N} triples (f_1, f_2, f_3) of trigonometric polynomials lead to distributions close to γ^3 . The same holds for all n (not just 3).

Among all probability measures μ on \mathbb{R}^n such that $\int x \,\mu(\mathrm{d}x) = 0$ and $\int x_k^2 \,\mu(\mathrm{d}x) = 1$ for $k = 1, \ldots, n, \gamma^n$ minimizes the Poincare constant (see [1], 1.10.2 and 1.6.4) and maximizes the entropy.

1c Gaussian measures on finite-dimensional linear spaces

1c1 Lemma. Let E be an m-dimensional linear space and $V_1 : \mathbb{R}^n \to E$ a linear operator onto (that is, $V_1(\mathbb{R}^n) = E$). Then there exists an *invertible* linear operator $V_2 : \mathbb{R}^m \to E$ such that $V_1(\gamma^n) = V_2(\gamma^m)$ (written also as $\gamma^n \circ V_1^{-1} = \gamma^m \circ V_2^{-1}$), that is,

 $\gamma^n(V_1^{-1}(A)) = \gamma^m(V_2^{-1}(A)) \quad \text{for all measurable } A \subset E \,.$

Proof (sketch). We choose an orthonormal basis (e_1, \ldots, e_n) of \mathbb{R}^n such that e_{m+1}, \ldots, e_n span the kernel $\{x \in \mathbb{R}^n : V_1(x) = 0\}$, then $V_1(e_1), \ldots, V_1(e_m)$ are a basis of E. By rotation invariance of γ^n we may assume that (e_1, \ldots, e_n) is the standard basis of \mathbb{R}^n . We have

$$\gamma^{n}(V_{1}^{-1}(A)) = \gamma^{n}\{(x_{1}, \dots, x_{n}) : V_{1}(x_{1}e_{1} + \dots + x_{m}e_{m}) \in A\} = \gamma^{m}\{(x_{1}, \dots, x_{m}) : V_{1}(x_{1}e_{1} + \dots + x_{m}e_{m}) \in A\} = \gamma^{m}(V_{2}^{-1}(A))$$

where $V_2(x_1, \ldots, x_m) = x_1 V_1(e_1) + \cdots + x_m V_1(e_m)$.

1c2 Definition. A probability measure γ on a finite-dimensional linear space E is a *centered Gaussian measure*, if for some $n \in \{0, 1, 2, ...\}$ there exists a one-to-one linear operator $V : \mathbb{R}^n \to E$ such that $V(\gamma^n) = \gamma$.

Usually we deal only with *centered* Gaussian measures, and omit the word 'centered'. When needed, we can say 'not just centered' or 'shifted'.

1c3 Exercise. If $V : \mathbb{R}^n \to E$ is a linear operator (not just one-to-one) then $V(\gamma^n)$ is a Gaussian measure. (Centered, of course...) Prove it.

1c4 Exercise. If E_1, E_2 are finite-dimensional linear spaces, $V : E_1 \to E_2$ a linear operator and γ a Gaussian measure on E_1 , then $V(\gamma)$ is a Gaussian measure on E_2 .

Prove it.

1c5 Exercise. The number n in Def. 1c2 is uniquely determined by γ . Prove it.

This number is, by definition, the dimension of γ . If dim $\gamma = \dim E$, we say that γ is nondegenerate.

1c6 Exercise. Define the support of γ (it should be a linear subspace whose dimension is equal to the dimension of γ).

We define the *ellipsoid of concentration* of γ as the set of all $x \in E$ such that (see [1, p. 5], [4, p. 98])

(1c7)
$$|f(x)|^2 \le \int f^2 \, \mathrm{d}\gamma$$
 for all linear $f: E \to \mathbb{R}$.

1c8 Exercise. The ellipsoid of concentration of γ^n is the unit ball of \mathbb{R}^n . Prove it.

(See also [4], Exercise 2 to Sect. 9.)

1c9 Exercise. $\int f^2 d\gamma = \sup f(x)$, where x runs over the ellipsoid of concentration of γ .

Prove it.

1c10 Exercise. If E_1, E_2 are finite-dimensional linear spaces, $V : E_1 \to E_2$ a linear operator and γ a Gaussian measure on E_1 , then V maps the ellipsoid of concentration of γ onto the ellipsoid of concentration of $V(\gamma)$.

Prove it.

The ellipsoid of concentration of a nondegenerate Gaussian measure γ on E is the unit ball of a norm $|\cdot|_{\gamma}$ on E,

$$|x|_{\gamma} = \sup\left\{|f(x)|: \int f^2 \,\mathrm{d}\gamma \le 1\right\}.$$

The pair $(E, |\cdot|_{\gamma})$ is a Euclidean space, and γ has the density const $\cdot e^{-|x|_{\gamma}^2/2}$. For a degenerate γ the same holds on its support.

1c11 Exercise. Let $E = E_1 \oplus E_2$ (that is, $E_1, E_2 \subset E$ are linear subspaces, $E_1 \cap E_2 = \{0\}$ and $E_1 + E_2 = E$), and E_1, E_2 are orthogonal in $(E, |\cdot|_{\gamma})$ (that is, $|x + y|_{\gamma}^2 = |x|_{\gamma}^2 + |y|_{\gamma}^2$ for $x \in E_1, y \in E_2$). Then there exist Gaussian measures γ_1 on E_1 and γ_2 on E_2 such that

$$\int f \, \mathrm{d}\gamma = \iint f(x+y) \, \gamma_1(\mathrm{d}x) \gamma_2(\mathrm{d}y)$$

for every bounded measurable $f: E \to \mathbb{R}$.

Prove it.

Hint: recall the proof of 1c1.

We may write $\gamma = \gamma_1 \times \gamma_2$ or $\gamma = \gamma_1 * \gamma_2$. Note that γ_1, γ_2 are uniquely determined by γ (just take f(x+y) = g(x) or h(y)). These γ_1, γ_2 are projections (marginals) of γ . Ellipsoids of concentration of γ_1, γ_2 are both sections and projections of the ellipsoid of concentration of γ .

Let γ be a nondegenerate Gaussian measure on E and $V : E \to E_1$ a linear operator onto. Then $E = \tilde{E}_1 \oplus E_2$ where $E_2 = \{x : V(x) = 0\}$ is the kernel and $\tilde{E}_1 = E \oplus E_2$ its orthogonal (w.r.t. $|\cdot|_{\gamma}$) complement. The restriction $V|_{\tilde{E}_1}$ is an isometry $\tilde{E}_1 \to E_1$, provided that E_1 is equipped with $|\cdot|_{V(\gamma)}$. Denoting the inverse isometry by $\tilde{V} : E_1 \to \tilde{E}_1$ we have

$$\int f \, \mathrm{d}\gamma = \iint_{\tilde{E}_1 \times E_2} f(x+y) \,\gamma_1(\mathrm{d}x)\gamma_2(\mathrm{d}y) = \\ \iint_{E_1 \times E_2} f(\tilde{V}(x)+y) \,V(\gamma)(\mathrm{d}x)\gamma_2(\mathrm{d}y) = \\ \int_{E_1} \left(\int_E f(\tilde{V}(x)+y) \,\gamma_2(\mathrm{d}y) \right) V(\gamma)(\mathrm{d}x) \,,$$

which means that the conditional distribution γ_x of $z \in E$ given $V(z) = x \in E_1$ is γ_2 shifted by $\tilde{V}(x)$. We see that all conditional measures are shifts of a single Gaussian measure, and the shift vector depends linearly on the condition. This is known as the *normal correlation theorem*; see also [3], Sect. 9.3 and [1], 1.2.8 and 3.10.

1c12 Exercise. Consider a random trigonometric polynomial

$$X(t) = \zeta_1 \cos t + \eta_1 \sin t + \frac{1}{2}\zeta_2 \cos 2t + \frac{1}{2}\eta_2 \sin 2t \,,$$

where $\zeta_1, \eta_1, \zeta_2, \eta_2$ are independent N(0, 1) random variables. Describe the conditional distribution of X given X(0).

References

- [1] V.I. Bogachev, Gaussian measures, AMS 1998.
- [2] R. Durrett, *Probability: theory and examples* (second edition), 1996.
- [3] S. Janson, *Gaussian Hilbert spaces*, Cambridge 1997.
- [4] M.A. Lifshits, *Gaussian random functions*, Kluwer 1995.

Index

Gaussian measure, 6 dimension, 7 ellipsoid of concentration, 7 nondegenerate, 7 standard *n*-dimensional, 4 standard one-dimensional, 1 support, 7

normal correlation theorem, 8