3 Level crossings

... the famous Rice formula, undoubtedly one of the most important results in the application of smooth stochastic processes.

R.J. Adler and J.E. Taylor¹

3a	An instructive toy model: two paradoxes \ldots .	27
3b	Measures on the graph of a function	29
3 c	The same for a random function	31
3d	Gaussian case: Rice's formula	33
3 e	Some integral geometry	36

3a An instructive toy model: two paradoxes

We start with a very simple random trigonometric polynomial (even simpler than 1c12):

(3a1)
$$X(t) = \zeta \cos t + \eta \sin t$$

where ζ, η are independent N(0, 1) random variables. Its distribution is the image of γ^2 under the map $(x, y) \mapsto (t \mapsto x \cos t + y \sin t)$. Time shifts of the trigonometric polynomial correspond to rotations of \mathbb{R}^2 ,

(3a2)
$$X(t-\alpha) = \zeta(\cos t \cos \alpha + \sin t \sin \alpha) + \eta(\sin t \cos \alpha - \cos t \sin \alpha) =$$
$$= (\zeta \cos \alpha - \eta \sin \alpha) \cos t + (\zeta \sin \alpha + \eta \cos \alpha) \sin t;$$

the process (3a1) is *stationary*, that is, invariant under time shifts;

(3a3)
$$\mathbb{E} X(t) = 0, \quad \mathbb{E} X(s)X(t) = \cos(s-t)$$

The random variable

(3a4)
$$M = \max_{t \in \mathbb{R}} |X(t)| = \sqrt{\zeta^2 + \eta^2}$$

has the *density*

(3a5)
$$f_M(u) = u e^{-u^2/2} \text{ for } u > 0;$$

 $\underbrace{1}{2\pi} e^{-u^2/2} du \cdot 2\pi u$

¹See Preface (page vi) to the book "Random fields and geometry" (to appear).

it means that $\mathbb{P}(a < M < b) = \int_a^b f_M(u) \, du$. Consider also random variables

(3a6)
$$M_n = \max_{k \in \mathbb{Z}} X\left(\frac{2\pi k}{n}\right);$$

clearly, $M_n \to M$ a.s. The density of M_n is

(3a7)
$$f_{M_n}(u) = \frac{1}{2\pi} e^{-u^2/2} \cdot n \int_{-u \tan \pi/n}^{u \tan \pi/n} e^{-x^2/2} dx \quad \text{for } u > 0.$$

We see that $f_{M_n}(u) \to f_M(u) = u e^{-u^2/2}$ as $n \to \infty$. On the other hand,

(3a8)
$$f_{M_n}(u) \sim n \cdot \frac{1}{\sqrt{2\pi}} e^{-u^2/2} \quad \text{as } u \to \infty.$$

A paradox! Think, what does it mean.

Another paradox appears if we condition X to have the maximum at a given t. By stationarity we restrict ourselves to t = 0. The condition becomes $\eta = 0$ and $\zeta > 0$; thus, $X(t) = \zeta \cos t$, and the conditional distribution of ζ is the same as the unconditional distribution of $|\zeta|$ (since ζ and η are independent). The conditional density of M is $u \mapsto \frac{2}{\sqrt{2\pi}} e^{-u^2/2}$ for u > 0. This holds for t = 0, but also for every t; we conclude that the unconditional density of M is also $u \mapsto \frac{2}{\sqrt{2\pi}} e^{-u^2/2}$, in contradiction to (3a5)!

Here is another form of the same paradox. For each t the two random variables X(t) and X'(t) are independent (think, why), distributed N(0,1) each. Thus, given X(t) = 0, the distribution of X'(t) is still N(0,1), and the density of |X'(t)| is $u \mapsto \frac{2}{\sqrt{2\pi}} e^{-u^2/2}$ (for u > 0). On the other hand, $X(\cdot)$ vanishes at two points, and $|X'(t)| = \sqrt{\zeta^2 + \eta^2} = M$ at these points (think, why). This argument leads to another density, $u \mapsto u e^{-u^2/2}$ (for u > 0).

Here is an explanation. The phrase 'given that X(0) = 0' has (at least) two interpretations, known as 'vertical window' and 'horizontal window'.

Vertical window: we condition on $|X(0)| < \varepsilon$ and take $\varepsilon \to 0$.

We get $X(t) = \eta \sin t$ with η distributed N(0, 1) (conditionally).

Horizontal window: we require X to vanish somewhere on $(-\varepsilon, \varepsilon)$ and take $\varepsilon \to 0$.

We get $X(t) = \eta \sin t$, but now the conditional density of η is $u \mapsto \text{const} \cdot |u|e^{-u^2/2}$ (and const = 1/2).

Think about the two interpretations of the phrase 'given that X has a maximum at 0'.

Here is still another manifestation of the paradox. Let us compare $X = \zeta \cos t + \eta \sin t$ with $Y = \zeta \cos 10t + \eta \sin 10t$. For each t the two random variables X(t), Y(t) have the same density at 0 (just because both are N(0, 1)). Nevertheless, $Y(\cdot)$ has 10 times more zeros than $X(\cdot)$. Think, what does it mean in terms of the horizontal and vertical window.

3b Measures on the graph of a function

Before treating random functions we examine a single (non-random) function $f \in C^1[a, b]$; that is, $f : [a, b] \to \mathbb{R}$ is continuous, and there exists a continuous $f' : [a, b] \to \mathbb{R}$ such that $f(x) = f(a) + \int_a^x f'(t) dt$ for $x \in [a, b]$. The number $\#f^{-1}(y)$ of points $x \in [a, b]$ such that f(x) = y is a function $\mathbb{R} \to \{0, 1, 2, \ldots\} \cup \{\infty\}$.

3b1 Lemma.

$$\int_{\mathbb{R}} \#f^{-1}(y) \, \mathrm{d}y = \int_{a}^{b} |f'(x)| \, \mathrm{d}x \, .$$

3b2 Exercise. Prove 3b1 assuming that f is (a) monotone, (b) piecewise monotone.

This is enough for (say) trigonometric polynomials. In general, $f \in C^1[a, b]$ need not be piecewise monotone,¹ but 3b1 holds anyway.

Proof of Lemma 3b1 (sketch). We consider the set $C = \{x : f'(x) = 0\}$ of critical points and the set f(C) of critical values; both are compact sets, and mes f(C) = 0 by Sard's theorem (even if mes $C \neq 0$). If $y \notin f(C)$ then the set

¹Try $x^3 \sin(1/x)$.

 $f^{-1}(y)$ is finite (since its accumulation point would be critical), and $f^{-1}(y+\varepsilon)$ is close to $f^{-1}(y)$ for all ε small enough; in particular, $\#f^{-1}(y+\varepsilon) = \#f^{-1}(y)$.

The sets $B_n = \{y \in \mathbb{R} \setminus f(C) : \#f^{-1}(y) = n\}$ and $A_n = f^{-1}(B_n)$ are open, $B_1 \cup B_2 \cup \cdots = \mathbb{R} \setminus f(C)$, and $A_1 \cup A_2 \cup \cdots = f^{-1}(\mathbb{R} \setminus f(C))$ is a full measure subset of $\mathbb{R} \setminus C$. It is sufficient to prove that

$$\int_{B_n} \#f^{-1}(y) \, \mathrm{d}y = \int_{A_n} |f'(x)| \, \mathrm{d}x$$

for each n. We consider a connected component of B_n and observe that f is monotone on each of the n corresponding intervals.

Here is an equality between two measures on \mathbb{R}^2 concentrated on the graph of f (below $\delta_{x,y}$ stands for the unit mass at (x, y)).

3b3 Exercise. For every $f \in C^1[a, b]$,

(3b4)
$$\int_{\mathbb{R}} \mathrm{d}y \, \sum_{x \in f^{-1}(y)} \delta_{x,y} = \int_a^b \mathrm{d}x \, |f'(x)| \delta_{x,f(x)}$$

that is,

(3b5)
$$\int_{\mathbb{R}} dy \sum_{x \in f^{-1}(y)} \mathbf{1}_A(x, y) = \int_a^b dx \, |f'(x)| \mathbf{1}_A(x, f(x))$$

for all Borel sets $A \subset \mathbb{R}^2$.

Prove it.

Hint: first, consider rectangles $A = (x_1, x_2) \times (y_1, y_2)$; second, recall the hint to 2c5.

3b6 Exercise. For every $f \in C^1[a, b]$ and every bounded Borel function $g: [a, b] \to \mathbb{R}$,

$$\int_{\mathbb{R}} \mathrm{d}y \, \sum_{x \in f^{-1}(y)} g(x) = \int_a^b \mathrm{d}x \, |f'(x)| g(x) \, .$$

Prove it.

Hint: first, indicators $g = \mathbf{1}_A$; second, their linear combinations.

Replacing g(x) with $g(x) \operatorname{sgn} f'(x)$ we get an equivalent formula¹

(3b7)
$$\int_{\mathbb{R}} dy \sum_{x \in f^{-1}(y)} g(x) \operatorname{sgn} f'(x) = \int_{a}^{b} dx f'(x)g(x) .$$

$$1 \operatorname{sgn} a = \begin{cases} 1 & \text{for } a > 0, \\ 0 & \text{for } a = 0, \\ -1 & \text{for } a < 0. \end{cases}$$

We have also (seemingly) more general equalities between (signed) measures,

(3b8)
$$\int_{\mathbb{R}} dy \sum_{x \in f^{-1}(y)} g(x) \delta_{x,y} = \int_{a}^{b} dx |f'(x)| g(x) \delta_{x,f(x)};$$

(3b9)
$$\int_{\mathbb{R}} \mathrm{d}y \sum_{x \in f^{-1}(y)} g(x) \operatorname{sgn} f'(x) \delta_{x,y} = \int_a^b \mathrm{d}x f'(x) g(x) \delta_{x,f(x)}.$$

Taking $g(\cdot) \ge 0$ such that both sides of (3b8) are equal to 1 we get a probability measure on the graph of f. Treating it as the distribution of a pair of random variables X, Y we see that the conditional distribution of Y given X = x is $\delta_{f(x)}$, and the conditional distribution of X given Y = y is

const
$$\cdot \sum_{x \in f^{-1}(y)} g(x) \delta_x$$
,

which does not mean that g is the unconditional density of X. Rather, the density is equal to |f'|g. This is another manifestation of the distinction between 'horizontal window' and 'vertical window'.

3c The same for a random function

Let μ be a probability measure on $C^1[a, b]$. Two assumption on μ are introduced below.

Given $x \in [a, b]$, we consider the joint distribution of f(x) and f'(x), where f is distributed μ ; in other words, the image of μ under the map $f \mapsto (f(x), f'(x))$ from $C^1[a, b]$ to \mathbb{R}^2 . The first assumption: for each $x \in [a, b]$, this joint distribution is absolutely continuous, that is, has a density p_x ;

(3c1)
$$\int \varphi(y, y') p_x(y, y') \, \mathrm{d}y \mathrm{d}y' = \int \varphi(f(x), f'(x)) \, \mu(\mathrm{d}f)$$

for every bounded Borel function $\varphi : \mathbb{R}^2 \to \mathbb{R}$ (recall the hint to 3b6).¹ The function $(x, y, y') \mapsto p_x(y, y')$ on $[a, b] \times \mathbb{R}^2$ is (or rather, may be chosen to be) measurable, since its convolution with any continuous function of y, y' is continuous in x.

For example, μ can be an arbitrary absolutely continuous measure on the (finite-dimensional linear) space of trigonometric (or algebraic) polynomials of degree n (except for n = 0).

¹The meaning of df in $\mu(df)$ and df(x)/dx is completely different...

The second assumption:¹

(3c2)
$$\iint_{[a,b]\times C^1[a,b]} |f'(x)| \,\mathrm{d}x\mu(\mathrm{d}f) < \infty \,.$$

(A simple sufficient condition: $\int ||f|| \mu(df) < \infty$; here $||f|| = \max |f| + \max |f'|$ or something equivalent.)

For example, μ can be an arbitrary nondegenerate Gaussian measure on the (finite-dimensional linear) space of trigonometric (or algebraic) polynomials of degree n (except for n = 0).

3c3 Exercise. The function $f \mapsto #f^{-1}(0)$ is a Borel function on $C^1[a, b]$. Prove it.

Hint: first, $\{f : f^{-1}(0) = \emptyset\}$ is open; second, $\#f^{-1}(0) = \lim_{n \to \infty} \#\{k : f^{-1}(0) \cap [(k-1)2^{-n}, k \cdot 2^{-n}) \neq \emptyset\}.$

3c4 Exercise. The function $(y, f) \mapsto #f^{-1}(y)$ is a Borel function on $\mathbb{R} \times C^1[a, b]$.

Prove it.

Hint: do not work hard, consider $(y, f) \mapsto f(\cdot) - y$.

For a given y we consider the expected (averaged) $#f^{-1}(y)$,

(3c5)
$$\mathbb{E}\left(\#f^{-1}(y)\right) = \int_{C^{1}[a,b]} \#f^{-1}(y)\,\mu(\mathrm{d}f) \in [0,\infty]\,.$$

3c6 Exercise.

$$\int_{\mathbb{R}} \mathrm{d}y \,\mathbb{E}\left(\#f^{-1}(y)\right) = \int_{a}^{b} \mathrm{d}x \iint_{\mathbb{R}^{2}} \mathrm{d}y \mathrm{d}y' \, p_{x}(y,y') |y'| \,.$$

Prove it.

Hint: 3b1 and Fubini.

Similarly, (3b5) gives

(3c7)
$$\int_{\mathbb{R}} \mathrm{d}y \mathbb{E} \sum_{x \in f^{-1}(y)} \mathbf{1}_A(x, y) = \int_a^b \mathrm{d}x \iint_{\mathbb{R}^2} \mathrm{d}y \mathrm{d}y' p_x(y, y') |y'| \mathbf{1}_A(x, y)$$

for all Borel sets $A \subset \mathbb{R}^2$. More generally,²

(3c8)
$$\int_{\mathbb{R}} \mathrm{d}y \mathbb{E} \sum_{x \in f^{-1}(y)} g(x, y) = \int_{a}^{b} \mathrm{d}x \iint_{\mathbb{R}^{2}} \mathrm{d}y \mathrm{d}y' p_{x}(y, y') |y'| g(x, y)$$

¹The function $(x, f) \mapsto f'(x)$ on $[a, b] \times C^{1}[a, b]$ is continuous, therefore, Borel.

²In 3b6 we use g(x), but g(x, y) can be used equally well (which does not increase generality).

33

for every bounded Borel function $g: \mathbb{R}^2 \to \mathbb{R}$. Substituting g(x)h(y) for g(x,y) we get

(3c9)
$$\int_{\mathbb{R}} \mathrm{d}y \, h(y) \mathbb{E} \sum_{x \in f^{-1}(y)} g(x) = \int_{\mathbb{R}} \mathrm{d}y \, h(y) \int_{a}^{b} \mathrm{d}x \, g(x) \int_{\mathbb{R}} \mathrm{d}y' \, p_{x}(y, y') |y'|$$

for all bounded Borel functions $g:[a,b] \to \mathbb{R}, h: \mathbb{R} \to \mathbb{R}$. Therefore

(3c10)
$$\mathbb{E}\sum_{x\in f^{-1}(y)}g(x) = \int_a^b \mathrm{d}x \,g(x) \int_{\mathbb{R}} \mathrm{d}y' \,p_x(y,y')|y'|$$

for almost all $y \in \mathbb{R}$. Especially,

(3c11)
$$\mathbb{E}\left(\#f^{-1}(y)\right) = \int_a^b \mathrm{d}x \int_{\mathbb{R}} \mathrm{d}y' \, p_x(y,y') |y'|$$

for almost all $y \in \mathbb{R}$. Some additional assumptions could ensure (continuity in y and therefore) the equality for every y.

3d Gaussian case: Rice's formula

Let γ be a (centered) Gaussian measure on $C^1[a, b]$ such that for every $x \in [a, b]$

(3d1)
$$\int_{C^{1}[a,b]} |f(x)|^{2} \gamma(\mathrm{d}f) = 1,$$

(3d2)
$$\int_{C^{1}[a,b]} |f'(x)|^{2} \gamma(\mathrm{d}f) = \sigma^{2}(x) > 0$$

for some $\sigma : [a, b] \to (0, \infty)$.¹

Each $x \in [a, b]$ leads to two measurable (in fact, continuous) linear functionals

$$f \mapsto f(x)$$
 and $f \mapsto f'(x)$

on $(C^1[a, b], \gamma)$. The former is distributed N(0, 1) by (3d1); the latter is distributed N(0, $\sigma^2(x)$) by (3d2).

3d3 Exercise. The function $\sigma(\cdot)$ is continuous on [a, b].

Prove it.

Hint: $f'(x+\varepsilon) - f'(x) \to 0$ (as $\varepsilon \to 0$) almost sure, therefore in probability, therefore (using normality!) in $L_2(\gamma)$.

 $^{^{1}}$ See also 3d14.

The joint distribution of f(x) and f'(x) is a Gaussian measure on \mathbb{R}^2 . It appears to be the product measure, $N(0, 1) \times N(0, \sigma^2(x))$; in other words, the two random variables f(x) and f'(x) are independent. It is sufficient to prove that they are orthogonal,

(3d4)
$$\int_{C^{1}[a,b]} f(x)f'(x)\gamma(df) = 0.$$

Proof: by (3d1),

$$0 = \int \frac{|f(x+\varepsilon)|^2 - |f(x)|^2}{2\varepsilon} \gamma(\mathrm{d}f) =$$

=
$$\int \frac{f(x+\varepsilon) - f(x)}{\varepsilon} \cdot \frac{f(x+\varepsilon) + f(x)}{2} \gamma(\mathrm{d}f) \xrightarrow[\varepsilon \to 0]{} \int f(x)f'(x) \gamma(\mathrm{d}f) .$$

(Once again, convergence almost sure implies convergence in $L_2(\gamma)$...)

We see that γ satisfies (3c1) with

(3d5)
$$p_x(y,y') = \frac{1}{2\pi\sigma(x)} \exp\left(-\frac{y^2}{2} - \frac{y'^2}{2\sigma^2(x)}\right)$$

Condition (3c2) boils down to $\sigma(\cdot) \in L_1[a, b]$, which is ensured by (3d3). Thus, we may use the theory of 3c.

3d6 Exercise. (Rice's formula)¹ For almost all² $y \in \mathbb{R}$,

$$\mathbb{E}\left(\#f^{-1}(y)\right) = \frac{1}{\pi} \mathrm{e}^{-y^2/2} \int_a^b \sigma(x) \,\mathrm{d}x \,.$$

Prove it.

Hint: (3c11) and (3d5).

Let us try it on the toy model (3a1). Here $[a, b] = [0, 2\pi], \sigma(\cdot) = 1$, and we get $\mathbb{E}(\#f^{-1}(y)) = 2e^{-y^2/2}$. In fact, $\#f^{-1}(0) = 2$ a.s., and $\#f^{-1}(y) = 2$ if M > |y|, otherwise 0; therefore $\mathbb{E}(\#f^{-1}(y)) = 2\mathbb{P}(M > y) = 2\int_{y}^{\infty} f_{M}(u) du = 2e^{-y^2/2}$ by (3a5).

3d7 Exercise. Calculate $\mathbb{E}(\#f^{-1}(y))$ for the random trigonometric polynomial of 1c12,

$$X(t) = \zeta_1 \cos t + \eta_1 \sin t + \frac{1}{2}\zeta_2 \cos 2t + \frac{1}{2}\eta_2 \sin 2t.$$

¹Kac 1943, Rice 1945, Bunimovich 1951, Grenander and Rosenblatt 1957, Ivanov 1960, Bulinskaya 1961, Itô 1964, Ylvisaker 1965 et al. See [1, Sect. 10.3].

²In fact, for all y, see 3d12.

Integrating Rice's formula in y we get

(3d8)
$$\int_{\mathbb{R}} \mathrm{d}y \,\mathbb{E}\left(\#f^{-1}(y)\right) = \sqrt{\frac{2}{\pi}} \int_{a}^{b} \sigma(x) \,\mathrm{d}x\,,$$

which can be obtained simpler, by averaging (in f) the equality 3b1 (and using Fubini's theorem). Basically, Rice's formula states that $\mathbb{E}(\#f^{-1}(y)) = \text{const} \cdot e^{-y^2/2}$, where the coefficient does not depend on y; its value follows easily from 3b1. We may rewrite Rice's formula as

(3d9)
$$\mathbb{E}\left(\#f^{-1}(y)\right) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \mathbb{E} \int_a^b |f'(x)| \, \mathrm{d}x$$

for almost all $y \in \mathbb{R}$; note that $\mathbb{E} \int_a^b |f'(x)| dx$ is the expected total variation of f. For example, on the toy model (3a1), $\#f^{-1}(0) = 2$ a.s., the total variation is equal to 4M, and $\mathbb{E} M = \int_0^\infty u f_M(u) du = \sqrt{\pi/2}$.

The right-hand side of Rice's formula is continuous (in y); in order to get it for all (rather than almost all) y we will prove that the left-hand side is also continuous (in y). First, we do it for a one-dimensional non-centered Gaussian measure.

3d10 Exercise. Let $g, h \in C^1[a, b]$ and $h(x) \neq 0$ for all $x \in [a, b]$. Then the function

$$y \mapsto \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathrm{d}u \,\mathrm{e}^{-u^2/2} \,\# f_u^{-1}(y) \,,$$

where $f_u(\cdot) = g(\cdot) + uh(\cdot)$, is continuous on \mathbb{R} .

Prove it.

Hint: the integral is equal to the total variation of the function $x \mapsto \Phi\left(\frac{y-g(x)}{h(x)}\right)$ where $\Phi(u) = \gamma^1\left((-\infty, u]\right)$.

3d11 Lemma. The function $y \mapsto \mathbb{E}(\#f^{-1}(y))$ is continuous on \mathbb{R} .

Proof (sketch). It is sufficient to prove it on small subintervals of [a, b], due to additivity. Assume that γ is infinite-dimensional (finite dimension is similar but simpler). We have $\gamma = V(\gamma^{\infty})$ for some $V : S_1 \to E, S_1 \subset \mathbb{R}^{\infty}$ being a linear subspace of full measure. Thus, f = g + uh, where $u \sim N(0, 1)$, $h = V((1, 0, 0, \ldots))$ and $g = V((0, \cdot, \cdot, \ldots))$. Conditionally, given g, we may apply 3d10 provided that h does not vanish. Otherwise we do it on a neighborhood of any given point, picking up an appropriate coordinate of \mathbb{R}^{∞} .

3d12 Corollary. Formulas 3d6, (3d8), (3d9) hold for all $y \in \mathbb{R}$ (not just almost all).

Especially,

(3d13)
$$\mathbb{E}\left(\#f^{-1}(0)\right) = \frac{1}{\sqrt{2\pi}} \mathbb{E}\int_a^b |f'(x)| \,\mathrm{d}x\,.$$

3d14 Exercise. Formulas 3d6, (3d8), (3d9), (3d13) still hold if $\sigma(\cdot)$ may vanish.

Prove it.

Hint: pass to the new variable $x_{\text{new}} = \int_0^x \sigma(x_1) \, \mathrm{d}x_1$.

3e Some integral geometry

We consider a curve on $S^{n-1} = \{z \in \mathbb{R}^n : |z| = 1\}$ parameterized by some [a, b];

$$Z \in C^1([a,b], \mathbb{R}^n), \quad Z([a,b]) \subset S^{n-1}.$$

It leads to a Gaussian random vector in $C^{1}[a, b]$,

$$f(x) = \left\langle Z(x), \xi \right\rangle,$$

where ξ is distributed γ^n . (Thus, $f(x) = \zeta_1 Z_1(x) + \cdots + \zeta_n Z_n(x)$ where ζ_1, \ldots, ζ_n are independent random variables distributed N(0, 1) each, and $Z_1, \ldots, Z_n \in C^1[a, b]$.)

The function $f(\cdot)$ vanishes when the curve $Z(\cdot)$ intersects the hyperplane $\{z \in \mathbb{R}^n : \langle z, \xi \rangle = 0\}$. The latter is just a random hyperplane distributed uniformly, since $\xi/|\xi|$ is distributed uniformly of S^{n-1} . Thus, $\mathbb{E}(\#f^{-1}(0))$ is the mean number of intersections.

On the other hand,

$$\sigma^{2}(x) = \mathbb{E} |f'(x)|^{2} = \mathbb{E} |\langle Z'(x), \xi \rangle|^{2} = |Z'(x)|^{2},$$

thus, $\int_a^b \sigma(x) dx$ is nothing but the length of the given curve. By Rice's formula (for y = 0),

(3e1)
$$\frac{\text{the mean number of intersections}}{\text{the length of the curve}} = \frac{1}{\pi}$$

For example, the toy model (3a1) corresponds to $Z : [0, 2\pi] \to S^1, Z(t) = (\cos t, \sin t)$. The curve is the unit circle, of length 2π . The number of intersections is equal to 2 always.

References

 H. Cramér, M.R. Leadbetter, Stationary and related stochastic processes, Wiley 1967.

Index

expected total variation, 35

horizontal window, 29

Rice formula, 34

vertical window, 28

 $C^{1}[a, b]$, space of smooth functions, 29 $\mathbb{E}\left(\#f^{-1}(y)\right)$, expected number of level crossings, 32 $\#f^{-1}(y)$, number of level crossings, 29 $p_{x}(y, y')$, 2-dim density, 31

 $\sigma(x)$, mean square derivative, 33