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3 Level crossings

. . . the famous Rice formula, undoubtedly one of

the most important results in the application of

smooth stochastic processes.
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3a An instructive toy model: two paradoxes

We start with a very simple random trigonometric polynomial (even simpler
than 1c12):

(3a1) X(t) = ζ cos t + η sin t

where ζ, η are independent N(0, 1) random variables. Its distribution is the
image of γ2 under the map (x, y) 7→ (t 7→ x cos t + y sin t). Time shifts of the
trigonometric polynomial correspond to rotations of R

2,

(3a2) X(t − α) = ζ(cos t cos α + sin t sin α) + η(sin t cos α − cos t sin α) =

= (ζ cos α − η sin α) cos t + (ζ sin α + η cos α) sin t ;

the process (3a1) is stationary, that is, invariant under time shifts;

(3a3) E X(t) = 0 , E X(s)X(t) = cos(s − t) .

The random variable

(3a4) M = max
t∈R

|X(t)| =
√

ζ2 + η2

has the density

fM(u) = ue−u2/2 for u > 0 ;(3a5)

b

1

2π
e−u2/2 du · 2πu

1See Preface (page vi) to the book “Random fields and geometry” (to appear).
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it means that P
(

a < M < b
)

=
∫ b

a
fM(u) du. Consider also random variables

(3a6) Mn = max
k∈Z

X
(2πk

n

)

;

clearly, Mn → M a.s. The density of Mn is

fMn
(u) =

1

2π
e−u2/2 · n

∫ u tan π/n

−u tan π/n

e−x2/2 dx for u > 0 .(3a7)

b

(n=3)
u tan π

n

We see that fMn
(u) → fM(u) = ue−u2/2 as n → ∞. On the other hand,

(3a8) fMn
(u) ∼ n · 1√

2π
e−u2/2 as u → ∞ .

A paradox! Think, what does it mean.
Another paradox appears if we condition X to have the maximum at a

given t. By stationarity we restrict ourselves to t = 0. The condition becomes
η = 0 and ζ > 0; thus, X(t) = ζ cos t, and the conditional distribution of
ζ is the same as the unconditional distribution of |ζ | (since ζ and η are
independent). The conditional density of M is u 7→ 2√

2π
e−u2/2 for u > 0.

This holds for t = 0, but also for every t; we conclude that the unconditional
density of M is also u 7→ 2√

2π
e−u2/2, in contradiction to (3a5)!

Here is another form of the same paradox. For each t the two random
variables X(t) and X ′(t) are independent (think, why), distributed N(0, 1)
each. Thus, given X(t) = 0, the distribution of X ′(t) is still N(0, 1), and the
density of |X ′(t)| is u 7→ 2√

2π
e−u2/2 (for u > 0). On the other hand, X(·)

vanishes at two points, and |X ′(t)| =
√

ζ2 + η2 = M at these points (think,

why). This argument leads to another density, u 7→ ue−u2/2 (for u > 0).
Here is an explanation. The phrase ‘given that X(0) = 0’ has (at least)

two interpretations, known as ‘vertical window’ and ‘horizontal window’.
Vertical window: we condition on |X(0)| < ε and take ε → 0.

ζ

η
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We get X(t) = η sin t with η distributed N(0, 1) (conditionally).
Horizontal window: we require X to vanish somewhere on (−ε, ε) and

take ε → 0.

ζ

η

We get X(t) = η sin t, but now the conditional density of η is u 7→ const ·
|u|e−u2/2 (and const = 1/2).

Think about the two interpretations of the phrase ‘given that X has a
maximum at 0’.

Here is still another manifestation of the paradox. Let us compare X =
ζ cos t+η sin t with Y = ζ cos 10t+η sin 10t. For each t the two random vari-
ables X(t), Y (t) have the same density at 0 (just because both are N(0, 1)).
Nevertheless, Y (·) has 10 times more zeros than X(·). Think, what does it
mean in terms of the horizontal and vertical window.

3b Measures on the graph of a function

Before treating random functions we examine a single (non-random) function
f ∈ C1[a, b]; that is, f : [a, b] → R is continuous, and there exists a continuous
f ′ : [a, b] → R such that f(x) = f(a) +

∫ x

a
f ′(t) dt for x ∈ [a, b]. The

number #f−1(y) of points x ∈ [a, b] such that f(x) = y is a function R →
{0, 1, 2, . . .} ∪ {∞}.

3b1 Lemma.
∫

R

#f−1(y) dy =

∫ b

a

|f ′(x)| dx .

3b2 Exercise. Prove 3b1 assuming that f is (a) monotone, (b) piecewise
monotone.

This is enough for (say) trigonometric polynomials. In general, f ∈
C1[a, b] need not be piecewise monotone,1 but 3b1 holds anyway.

Proof of Lemma 3b1 (sketch). We consider the set C = {x : f ′(x) = 0} of
critical points and the set f(C) of critical values; both are compact sets, and
mes f(C) = 0 by Sard’s theorem (even if mesC 6= 0). If y /∈ f(C) then the set

1Try x3 sin(1/x).
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f−1(y) is finite (since its accumulation point would be critical), and f−1(y+ε)
is close to f−1(y) for all ε small enough; in particular, #f−1(y+ε) = #f−1(y).

The sets Bn = {y ∈ R \ f(C) : #f−1(y) = n} and An = f−1(Bn) are
open, B1 ∪ B2 ∪ · · · = R \ f(C), and A1 ∪ A2 ∪ · · · = f−1(R \ f(C)) is a full
measure subset of R \ C. It is sufficient to prove that

∫

Bn

#f−1(y) dy =

∫

An

|f ′(x)| dx

for each n. We consider a connected component of Bn and observe that f is
monotone on each of the n corresponding intervals.

Here is an equality between two measures on R
2 concentrated on the

graph of f (below δx,y stands for the unit mass at (x, y)).

3b3 Exercise. For every f ∈ C1[a, b],

(3b4)

∫

R

dy
∑

x∈f−1(y)

δx,y =

∫ b

a

dx |f ′(x)|δx,f(x) ,

that is,

(3b5)

∫

R

dy
∑

x∈f−1(y)

1A(x, y) =

∫ b

a

dx |f ′(x)|1A(x, f(x))

for all Borel sets A ⊂ R
2.

Prove it.
Hint: first, consider rectangles A = (x1, x2) × (y1, y2); second, recall the

hint to 2c5.

3b6 Exercise. For every f ∈ C1[a, b] and every bounded Borel function
g : [a, b] → R,

∫

R

dy
∑

x∈f−1(y)

g(x) =

∫ b

a

dx |f ′(x)|g(x) .

Prove it.
Hint: first, indicators g = 1A; second, their linear combinations.

Replacing g(x) with g(x) sgn f ′(x) we get an equivalent formula1

(3b7)

∫

R

dy
∑

x∈f−1(y)

g(x) sgn f ′(x) =

∫ b

a

dx f ′(x)g(x) .

1sgna =











1 for a > 0,

0 for a = 0,

−1 for a < 0.
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We have also (seemingly) more general equalities between (signed) measures,

∫

R

dy
∑

x∈f−1(y)

g(x)δx,y =

∫ b

a

dx |f ′(x)|g(x)δx,f(x) ;(3b8)

∫

R

dy
∑

x∈f−1(y)

g(x) sgn f ′(x)δx,y =

∫ b

a

dx f ′(x)g(x)δx,f(x) .(3b9)

Taking g(·) ≥ 0 such that both sides of (3b8) are equal to 1 we get a prob-
ability measure on the graph of f . Treating it as the distribution of a pair
of random variables X, Y we see that the conditional distribution of Y given
X = x is δf(x), and the conditional distribution of X given Y = y is

const ·
∑

x∈f−1(y)

g(x)δx ,

which does not mean that g is the unconditional density of X. Rather, the
density is equal to |f ′|g. This is another manifestation of the distinction
between ‘horizontal window’ and ‘vertical window’.

3c The same for a random function

Let µ be a probability measure on C1[a, b]. Two assumption on µ are intro-
duced below.

Given x ∈ [a, b], we consider the joint distribution of f(x) and f ′(x),
where f is distributed µ; in other words, the image of µ under the map f 7→
(

f(x), f ′(x)
)

from C1[a, b] to R
2. The first assumption: for each x ∈ [a, b],

this joint distribution is absolutely continuous, that is, has a density px;

(3c1)

∫

ϕ(y, y′)px(y, y′) dydy′ =

∫

ϕ
(

f(x), f ′(x)
)

µ(df)

for every bounded Borel function ϕ : R
2 → R (recall the hint to 3b6).1 The

function (x, y, y′) 7→ px(y, y′) on [a, b] × R
2 is (or rather, may be chosen to

be) measurable, since its convolution with any continuous function of y, y′ is
continuous in x.

For example, µ can be an arbitrary absolutely continuous measure on the
(finite-dimensional linear) space of trigonometric (or algebraic) polynomials
of degree n (except for n = 0).

1The meaning of df in µ(df) and df(x)/dx is completely different. . .
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The second assumption:1

(3c2)

∫∫

[a,b]×C1[a,b]

|f ′(x)| dxµ(df) < ∞ .

(A simple sufficient condition:
∫

‖f‖µ(df) < ∞; here ‖f‖ = max |f | +
max |f ′| or something equivalent.)

For example, µ can be an arbitrary nondegenerate Gaussian measure on
the (finite-dimensional linear) space of trigonometric (or algebraic) polyno-
mials of degree n (except for n = 0).

3c3 Exercise. The function f 7→ #f−1(0) is a Borel function on C1[a, b].
Prove it.
Hint: first, {f : f−1(0) = ∅} is open; second, #f−1(0) = limn→∞ #{k :

f−1(0) ∩ [(k − 1)2−n, k · 2−n) 6= ∅}.
3c4 Exercise. The function (y, f) 7→ #f−1(y) is a Borel function on R ×
C1[a, b].

Prove it.
Hint: do not work hard, consider (y, f) 7→ f(·) − y.

For a given y we consider the expected (averaged) #f−1(y),

(3c5) E
(

#f−1(y)
)

=

∫

C1[a,b]

#f−1(y) µ(df) ∈ [0,∞] .

3c6 Exercise.
∫

R

dy E
(

#f−1(y)
)

=

∫ b

a

dx

∫∫

R2

dydy′ px(y, y′)|y′| .

Prove it.
Hint: 3b1 and Fubini.

Similarly, (3b5) gives

(3c7)

∫

R

dy E

∑

x∈f−1(y)

1A(x, y) =

∫ b

a

dx

∫∫

R2

dydy′ px(y, y′)|y′|1A(x, y)

for all Borel sets A ⊂ R
2. More generally,2

(3c8)

∫

R

dy E

∑

x∈f−1(y)

g(x, y) =

∫ b

a

dx

∫∫

R2

dydy′ px(y, y′)|y′|g(x, y)

1The function (x, f) 7→ f ′(x) on [a, b] × C1[a, b] is continuous, therefore, Borel.
2In 3b6 we use g(x), but g(x, y) can be used equally well (which does not increase

generality).
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for every bounded Borel function g : R
2 → R. Substituting g(x)h(y) for

g(x, y) we get

(3c9)

∫

R

dy h(y) E

∑

x∈f−1(y)

g(x) =

∫

R

dy h(y)

∫ b

a

dx g(x)

∫

R

dy′ px(y, y′)|y′|

for all bounded Borel functions g : [a, b] → R, h : R → R. Therefore

(3c10) E

∑

x∈f−1(y)

g(x) =

∫ b

a

dx g(x)

∫

R

dy′ px(y, y′)|y′|

for almost all y ∈ R. Especially,

(3c11) E
(

#f−1(y)
)

=

∫ b

a

dx

∫

R

dy′ px(y, y′)|y′|

for almost all y ∈ R. Some additional assumptions could ensure (continuity
in y and therefore) the equality for every y.

3d Gaussian case: Rice’s formula

Let γ be a (centered) Gaussian measure on C1[a, b] such that for every x ∈
[a, b]

∫

C1[a,b]

|f(x)|2 γ(df) = 1 ,(3d1)

∫

C1[a,b]

|f ′(x)|2 γ(df) = σ2(x) > 0(3d2)

for some σ : [a, b] → (0,∞).1

Each x ∈ [a, b] leads to two measurable (in fact, continuous) linear func-
tionals

f 7→ f(x) and f 7→ f ′(x)

on (C1[a, b], γ). The former is distributed N(0, 1) by (3d1); the latter is
distributed N(0, σ2(x)) by (3d2).

3d3 Exercise. The function σ(·) is continuous on [a, b].
Prove it.
Hint: f ′(x+ε)−f ′(x) → 0 (as ε → 0) almost sure, therefore in probability,

therefore (using normality!) in L2(γ).

1See also 3d14.
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The joint distribution of f(x) and f ′(x) is a Gaussian measure on R
2. It

appears to be the product measure, N(0, 1) × N(0, σ2(x)); in other words,
the two random variables f(x) and f ′(x) are independent. It is sufficient to
prove that they are orthogonal,

(3d4)

∫

C1[a,b]

f(x)f ′(x) γ(df) = 0 .

Proof: by (3d1),

0 =

∫ |f(x + ε)|2 − |f(x)|2
2ε

γ(df) =

=

∫

f(x + ε) − f(x)

ε
· f(x + ε) + f(x)

2
γ(df) −−→

ε→0

∫

f(x)f ′(x) γ(df) .

(Once again, convergence almost sure implies convergence in L2(γ). . . )
We see that γ satisfies (3c1) with

(3d5) px(y, y′) =
1

2πσ(x)
exp

(

− y2

2
− y′2

2σ2(x)

)

.

Condition (3c2) boils down to σ(·) ∈ L1[a, b], which is ensured by (3d3).
Thus, we may use the theory of 3c.

3d6 Exercise. (Rice’s formula)1 For almost all2 y ∈ R,

E
(

#f−1(y)
)

=
1

π
e−y2/2

∫ b

a

σ(x) dx .

Prove it.
Hint: (3c11) and (3d5).

Let us try it on the toy model (3a1). Here [a, b] = [0, 2π], σ(·) =
1, and we get E

(

#f−1(y)
)

= 2e−y2/2. In fact, #f−1(0) = 2 a.s., and
#f−1(y) = 2 if M > |y|, otherwise 0; therefore E

(

#f−1(y)
)

= 2P
(

M >

y
)

= 2
∫ ∞

y
fM(u) du = 2e−y2/2 by (3a5).

3d7 Exercise. Calculate E
(

#f−1(y)
)

for the random trigonometric poly-
nomial of 1c12,

X(t) = ζ1 cos t + η1 sin t +
1

2
ζ2 cos 2t +

1

2
η2 sin 2t .

1Kac 1943, Rice 1945, Bunimovich 1951, Grenander and Rosenblatt 1957, Ivanov 1960,
Bulinskaya 1961, Itô 1964, Ylvisaker 1965 et al. See [1, Sect. 10.3].

2In fact, for all y, see 3d12.
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Integrating Rice’s formula in y we get

(3d8)

∫

R

dy E
(

#f−1(y)
)

=

√

2

π

∫ b

a

σ(x) dx ,

which can be obtained simpler, by averaging (in f) the equality 3b1 (and
using Fubini’s theorem). Basically, Rice’s formula states that E

(

#f−1(y)
)

=

const · e−y2/2, where the coefficient does not depend on y; its value follows
easily from 3b1. We may rewrite Rice’s formula as

(3d9) E
(

#f−1(y)
)

=
1√
2π

e−y2/2
E

∫ b

a

|f ′(x)| dx

for almost all y ∈ R; note that E
∫ b

a
|f ′(x)| dx is the expected total variation

of f . For example, on the toy model (3a1), #f−1(0) = 2 a.s., the total
variation is equal to 4M , and E M =

∫ ∞
0

ufM(u) du =
√

π/2.
The right-hand side of Rice’s formula is continuous (in y); in order to get

it for all (rather than almost all) y we will prove that the left-hand side is
also continuous (in y). First, we do it for a one-dimensional non-centered
Gaussian measure.

3d10 Exercise. Let g, h ∈ C1[a, b] and h(x) 6= 0 for all x ∈ [a, b]. Then the
function

y 7→ 1√
2π

∫

R

du e−u2/2 #f−1
u (y) ,

where fu(·) = g(·) + uh(·), is continuous on R.
Prove it.
Hint: the integral is equal to the total variation of the function x 7→

Φ
(y−g(x)

h(x)

)

where Φ(u) = γ1
(

(−∞, u]
)

.

3d11 Lemma. The function y 7→ E
(

#f−1(y)
)

is continuous on R.

Proof (sketch). It is sufficient to prove it on small subintervals of [a, b], due to
additivity. Assume that γ is infinite-dimensional (finite dimension is similar
but simpler). We have γ = V (γ∞) for some V : S1 → E, S1 ⊂ R

∞ being
a linear subspace of full measure. Thus, f = g + uh, where u ∼ N(0, 1),
h = V ((1, 0, 0, . . . )) and g = V ((0, ·, ·, . . . )). Conditionally, given g, we
may apply 3d10 provided that h does not vanish. Otherwise we do it on a
neighborhood of any given point, picking up an appropriate coordinate of
R

∞.

3d12 Corollary. Formulas 3d6, (3d8), (3d9) hold for all y ∈ R (not just
almost all).
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Especially,

(3d13) E
(

#f−1(0)
)

=
1√
2π

E

∫ b

a

|f ′(x)| dx .

3d14 Exercise. Formulas 3d6, (3d8), (3d9), (3d13) still hold if σ(·) may
vanish.

Prove it.
Hint: pass to the new variable xnew =

∫ x

0
σ(x1) dx1.

3e Some integral geometry

We consider a curve on Sn−1 = {z ∈ R
n : |z| = 1} parameterized by some

[a, b];
Z ∈ C1

(

[a, b], Rn
)

, Z
(

[a, b]
)

⊂ Sn−1 .

It leads to a Gaussian random vector in C1[a, b],

f(x) = 〈Z(x), ξ〉 ,

where ξ is distributed γn. (Thus, f(x) = ζ1Z1(x) + · · · + ζnZn(x) where
ζ1, . . . , ζn are independent random variables distributed N(0, 1) each, and
Z1, . . . , Zn ∈ C1[a, b].)

The function f(·) vanishes when the curve Z(·) intersects the hyperplane
{z ∈ R

n : 〈z, ξ〉 = 0}. The latter is just a random hyperplane distributed
uniformly, since ξ/|ξ| is distributed uniformly of Sn−1. Thus, E

(

#f−1(0)
)

is
the mean number of intersections.

On the other hand,

σ2(x) = E |f ′(x)|2 = E |〈Z ′(x), ξ〉|2 = |Z ′(x)|2 ,

thus,
∫ b

a
σ(x) dx is nothing but the length of the given curve. By Rice’s

formula (for y = 0),

(3e1)
the mean number of intersections

the length of the curve
=

1

π
.

For example, the toy model (3a1) corresponds to Z : [0, 2π] → S1, Z(t) =
(cos t, sin t). The curve is the unit circle, of length 2π. The number of
intersections is equal to 2 always.
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