## 3 Level crossings

... the famous Rice formula, undoubtedly one of the most important results in the application of smooth stochastic processes.
R.J. Adler and J.E. Taylor ${ }^{1}$
3a An instructive toy model: two paradoxes ..... 27
3b Measures on the graph of a function ..... 29
3c The same for a random function ..... 31
3d Gaussian case: Rice's formula ..... 33
3e Some integral geometry ..... 36

## 3a An instructive toy model: two paradoxes

We start with a very simple random trigonometric polynomial (even simpler than 1c12):

$$
\begin{equation*}
X(t)=\zeta \cos t+\eta \sin t \tag{3a1}
\end{equation*}
$$

where $\zeta, \eta$ are independent $\mathrm{N}(0,1)$ random variables. Its distribution is the image of $\gamma^{2}$ under the map $(x, y) \mapsto(t \mapsto x \cos t+y \sin t)$. Time shifts of the trigonometric polynomial correspond to rotations of $\mathbb{R}^{2}$,
(3a2) $X(t-\alpha)=\zeta(\cos t \cos \alpha+\sin t \sin \alpha)+\eta(\sin t \cos \alpha-\cos t \sin \alpha)=$

$$
=(\zeta \cos \alpha-\eta \sin \alpha) \cos t+(\zeta \sin \alpha+\eta \cos \alpha) \sin t
$$

the process (3a1) is stationary, that is, invariant under time shifts;

$$
\begin{equation*}
\mathbb{E} X(t)=0, \quad \mathbb{E} X(s) X(t)=\cos (s-t) \tag{3a3}
\end{equation*}
$$

The random variable

$$
\begin{equation*}
M=\max _{t \in \mathbb{R}}|X(t)|=\sqrt{\zeta^{2}+\eta^{2}} \tag{3a4}
\end{equation*}
$$

has the density

$$
\begin{align*}
& f_{M}(u)=u \mathrm{e}^{-u^{2} / 2} \quad \text { for } u>0  \tag{3a5}\\
& \int \frac{1}{2 \pi} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u \cdot 2 \pi u
\end{align*}
$$

[^0]it means that $\mathbb{P}(a<M<b)=\int_{a}^{b} f_{M}(u) \mathrm{d} u$. Consider also random variables
\[

$$
\begin{equation*}
M_{n}=\max _{k \in \mathbb{Z}} X\left(\frac{2 \pi k}{n}\right) \tag{3a6}
\end{equation*}
$$

\]

clearly, $M_{n} \rightarrow M$ a.s. The density of $M_{n}$ is

$$
\begin{equation*}
f_{M_{n}}(u)=\frac{1}{2 \pi} \mathrm{e}^{-u^{2} / 2} \cdot n \int_{-u \tan \pi / n}^{u \tan \pi / n} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x \quad \text { for } u>0 \tag{3a7}
\end{equation*}
$$

We see that $f_{M_{n}}(u) \rightarrow f_{M}(u)=u \mathrm{e}^{-u^{2} / 2}$ as $n \rightarrow \infty$. On the other hand,

$$
\begin{equation*}
f_{M_{n}}(u) \sim n \cdot \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-u^{2} / 2} \quad \text { as } u \rightarrow \infty \tag{3a8}
\end{equation*}
$$

A paradox! Think, what does it mean.
Another paradox appears if we condition $X$ to have the maximum at a given $t$. By stationarity we restrict ourselves to $t=0$. The condition becomes $\eta=0$ and $\zeta>0$; thus, $X(t)=\zeta \cos t$, and the conditional distribution of $\zeta$ is the same as the unconditional distribution of $|\zeta|$ (since $\zeta$ and $\eta$ are independent). The conditional density of $M$ is $u \mapsto \frac{2}{\sqrt{2 \pi}} \mathrm{e}^{-u^{2} / 2}$ for $u>0$. This holds for $t=0$, but also for every $t$; we conclude that the unconditional density of $M$ is also $u \mapsto \frac{2}{\sqrt{2 \pi}} \mathrm{e}^{-u^{2} / 2}$, in contradiction to (3a5)!

Here is another form of the same paradox. For each $t$ the two random variables $X(t)$ and $X^{\prime}(t)$ are independent (think, why), distributed $\mathrm{N}(0,1)$ each. Thus, given $X(t)=0$, the distribution of $X^{\prime}(t)$ is still $\mathrm{N}(0,1)$, and the density of $\left|X^{\prime}(t)\right|$ is $u \mapsto \frac{2}{\sqrt{2 \pi}} \mathrm{e}^{-u^{2} / 2}$ (for $u>0$ ). On the other hand, $X(\cdot)$ vanishes at two points, and $\left|X^{\prime}(t)\right|=\sqrt{\zeta^{2}+\eta^{2}}=M$ at these points (think, why). This argument leads to another density, $u \mapsto u \mathrm{e}^{-u^{2} / 2}$ (for $u>0$ ).

Here is an explanation. The phrase 'given that $X(0)=0$ ' has (at least) two interpretations, known as 'vertical window' and 'horizontal window'.

Vertical window: we condition on $|X(0)|<\varepsilon$ and take $\varepsilon \rightarrow 0$.


We get $X(t)=\eta \sin t$ with $\eta$ distributed $\mathrm{N}(0,1)$ (conditionally).
Horizontal window: we require $X$ to vanish somewhere on $(-\varepsilon, \varepsilon)$ and take $\varepsilon \rightarrow 0$.


We get $X(t)=\eta \sin t$, but now the conditional density of $\eta$ is $u \mapsto$ const . $|u| \mathrm{e}^{-u^{2} / 2}$ (and const $=1 / 2$ ).

Think about the two interpretations of the phrase 'given that $X$ has a maximum at 0 '.

Here is still another manifestation of the paradox. Let us compare $X=$ $\zeta \cos t+\eta \sin t$ with $Y=\zeta \cos 10 t+\eta \sin 10 t$. For each $t$ the two random variables $X(t), Y(t)$ have the same density at 0 (just because both are $\mathrm{N}(0,1)$ ). Nevertheless, $Y(\cdot)$ has 10 times more zeros than $X(\cdot)$. Think, what does it mean in terms of the horizontal and vertical window.

## 3b Measures on the graph of a function

Before treating random functions we examine a single (non-random) function $f \in C^{1}[a, b]$; that is, $f:[a, b] \rightarrow \mathbb{R}$ is continuous, and there exists a continuous $f^{\prime}:[a, b] \rightarrow \mathbb{R}$ such that $f(x)=f(a)+\int_{a}^{x} f^{\prime}(t) \mathrm{d} t$ for $x \in[a, b]$. The number $\# f^{-1}(y)$ of points $x \in[a, b]$ such that $f(x)=y$ is a function $\mathbb{R} \rightarrow$ $\{0,1,2, \ldots\} \cup\{\infty\}$.

## 3b1 Lemma.

$$
\int_{\mathbb{R}} \# f^{-1}(y) \mathrm{d} y=\int_{a}^{b}\left|f^{\prime}(x)\right| \mathrm{d} x
$$

3b2 Exercise. Prove 3b1 assuming that $f$ is (a) monotone, (b) piecewise monotone.

This is enough for (say) trigonometric polynomials. In general, $f \in$ $C^{1}[a, b]$ need not be piecewise monotone, ${ }^{1}$ but 3 b 1 holds anyway.

Proof of Lemma 3b1 (sketch). We consider the set $C=\left\{x: f^{\prime}(x)=0\right\}$ of critical points and the set $f(C)$ of critical values; both are compact sets, and mes $f(C)=0$ by Sard's theorem (even if mes $C \neq 0$ ). If $y \notin f(C)$ then the set

[^1]$f^{-1}(y)$ is finite (since its accumulation point would be critical), and $f^{-1}(y+\varepsilon)$ is close to $f^{-1}(y)$ for all $\varepsilon$ small enough; in particular, $\# f^{-1}(y+\varepsilon)=\# f^{-1}(y)$.

The sets $B_{n}=\left\{y \in \mathbb{R} \backslash f(C): \# f^{-1}(y)=n\right\}$ and $A_{n}=f^{-1}\left(B_{n}\right)$ are open, $B_{1} \cup B_{2} \cup \cdots=\mathbb{R} \backslash f(C)$, and $A_{1} \cup A_{2} \cup \cdots=f^{-1}(\mathbb{R} \backslash f(C))$ is a full measure subset of $\mathbb{R} \backslash C$. It is sufficient to prove that

$$
\int_{B_{n}} \# f^{-1}(y) \mathrm{d} y=\int_{A_{n}}\left|f^{\prime}(x)\right| \mathrm{d} x
$$

for each $n$. We consider a connected component of $B_{n}$ and observe that $f$ is monotone on each of the $n$ corresponding intervals.

Here is an equality between two measures on $\mathbb{R}^{2}$ concentrated on the graph of $f$ (below $\delta_{x, y}$ stands for the unit mass at $(x, y)$ ).
3b3 Exercise. For every $f \in C^{1}[a, b]$,

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{d} y \sum_{x \in f^{-1}(y)} \delta_{x, y}=\int_{a}^{b} \mathrm{~d} x\left|f^{\prime}(x)\right| \delta_{x, f(x)}, \tag{3b4}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{d} y \sum_{x \in f^{-1}(y)} \mathbf{1}_{A}(x, y)=\int_{a}^{b} \mathrm{~d} x\left|f^{\prime}(x)\right| \mathbf{1}_{A}(x, f(x)) \tag{3b5}
\end{equation*}
$$

for all Borel sets $A \subset \mathbb{R}^{2}$.
Prove it.
Hint: first, consider rectangles $A=\left(x_{1}, x_{2}\right) \times\left(y_{1}, y_{2}\right)$; second, recall the hint to 2c5.

3b6 Exercise. For every $f \in C^{1}[a, b]$ and every bounded Borel function $g:[a, b] \rightarrow \mathbb{R}$,

$$
\int_{\mathbb{R}} \mathrm{d} y \sum_{x \in f^{-1}(y)} g(x)=\int_{a}^{b} \mathrm{~d} x\left|f^{\prime}(x)\right| g(x)
$$

Prove it.
Hint: first, indicators $g=\mathbf{1}_{A}$; second, their linear combinations.
Replacing $g(x)$ with $g(x) \operatorname{sgn} f^{\prime}(x)$ we get an equivalent formula ${ }^{1}$

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{d} y \sum_{x \in f^{-1}(y)} g(x) \operatorname{sgn} f^{\prime}(x)=\int_{a}^{b} \mathrm{~d} x f^{\prime}(x) g(x) \tag{3b7}
\end{equation*}
$$

$$
{ }^{1} \operatorname{sgn} a= \begin{cases}1 & \text { for } a>0 \\ 0 & \text { for } a=0 \\ -1 & \text { for } a<0\end{cases}
$$

We have also (seemingly) more general equalities between (signed) measures,

$$
\begin{align*}
& \int_{\mathbb{R}} \mathrm{d} y \sum_{x \in f^{-1}(y)} g(x) \delta_{x, y}=\int_{a}^{b} \mathrm{~d} x\left|f^{\prime}(x)\right| g(x) \delta_{x, f(x)} ;  \tag{3b8}\\
& \int_{\mathbb{R}} \mathrm{d} y \sum_{x \in f^{-1}(y)} g(x) \operatorname{sgn} f^{\prime}(x) \delta_{x, y}=\int_{a}^{b} \mathrm{~d} x f^{\prime}(x) g(x) \delta_{x, f(x)} . \tag{3b9}
\end{align*}
$$

Taking $g(\cdot) \geq 0$ such that both sides of (3b8) are equal to 1 we get a probability measure on the graph of $f$. Treating it as the distribution of a pair of random variables $X, Y$ we see that the conditional distribution of $Y$ given $X=x$ is $\delta_{f(x)}$, and the conditional distribution of $X$ given $Y=y$ is

$$
\text { const } \cdot \sum_{x \in f^{-1}(y)} g(x) \delta_{x}
$$

which does not mean that $g$ is the unconditional density of $X$. Rather, the density is equal to $\left|f^{\prime}\right| g$. This is another manifestation of the distinction between 'horizontal window' and 'vertical window'.

## 3c The same for a random function

Let $\mu$ be a probability measure on $C^{1}[a, b]$. Two assumption on $\mu$ are introduced below.

Given $x \in[a, b]$, we consider the joint distribution of $f(x)$ and $f^{\prime}(x)$, where $f$ is distributed $\mu$; in other words, the image of $\mu$ under the map $f \mapsto$ $\left(f(x), f^{\prime}(x)\right)$ from $C^{1}[a, b]$ to $\mathbb{R}^{2}$. The first assumption: for each $x \in[a, b]$, this joint distribution is absolutely continuous, that is, has a density $p_{x}$;

$$
\begin{equation*}
\int \varphi\left(y, y^{\prime}\right) p_{x}\left(y, y^{\prime}\right) \mathrm{d} y \mathrm{~d} y^{\prime}=\int \varphi\left(f(x), f^{\prime}(x)\right) \mu(\mathrm{d} f) \tag{3c1}
\end{equation*}
$$

for every bounded Borel function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (recall the hint to (3b6). ${ }^{1}$ The function $\left(x, y, y^{\prime}\right) \mapsto p_{x}\left(y, y^{\prime}\right)$ on $[a, b] \times \mathbb{R}^{2}$ is (or rather, may be chosen to be) measurable, since its convolution with any continuous function of $y, y^{\prime}$ is continuous in $x$.

For example, $\mu$ can be an arbitrary absolutely continuous measure on the (finite-dimensional linear) space of trigonometric (or algebraic) polynomials of degree $n$ (except for $n=0$ ).

[^2]The second assumption: ${ }^{1}$

$$
\begin{equation*}
\iint_{[a, b] \times C^{1}[a, b]}\left|f^{\prime}(x)\right| \mathrm{d} x \mu(\mathrm{~d} f)<\infty . \tag{3c2}
\end{equation*}
$$

(A simple sufficient condition: $\int\|f\| \mu(\mathrm{d} f)<\infty$; here $\|f\|=\max |f|+$ $\max \left|f^{\prime}\right|$ or something equivalent.)

For example, $\mu$ can be an arbitrary nondegenerate Gaussian measure on the (finite-dimensional linear) space of trigonometric (or algebraic) polynomials of degree $n$ (except for $n=0$ ).

3c3 Exercise. The function $f \mapsto \# f^{-1}(0)$ is a Borel function on $C^{1}[a, b]$.
Prove it.
Hint: first, $\left\{f: f^{-1}(0)=\emptyset\right\}$ is open; second, $\# f^{-1}(0)=\lim _{n \rightarrow \infty} \#\{k$ : $\left.f^{-1}(0) \cap\left[(k-1) 2^{-n}, k \cdot 2^{-n}\right) \neq \emptyset\right\}$.
3c4 Exercise. The function $(y, f) \mapsto \# f^{-1}(y)$ is a Borel function on $\mathbb{R} \times$ $C^{1}[a, b]$.

Prove it.
Hint: do not work hard, consider $(y, f) \mapsto f(\cdot)-y$.
For a given $y$ we consider the expected (averaged) $\# f^{-1}(y)$,

$$
\begin{equation*}
\mathbb{E}\left(\# f^{-1}(y)\right)=\int_{C^{1}[a, b]} \# f^{-1}(y) \mu(\mathrm{d} f) \in[0, \infty] \tag{3c5}
\end{equation*}
$$

3c6 Exercise.

$$
\int_{\mathbb{R}} \mathrm{d} y \mathbb{E}\left(\# f^{-1}(y)\right)=\int_{a}^{b} \mathrm{~d} x \iint_{\mathbb{R}^{2}} \mathrm{~d} y \mathrm{~d} y^{\prime} p_{x}\left(y, y^{\prime}\right)\left|y^{\prime}\right|
$$

Prove it.
Hint: 3b1 and Fubini.
Similarly, (3b5) gives

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{d} y \mathbb{E} \sum_{x \in f^{-1}(y)} \mathbf{1}_{A}(x, y)=\int_{a}^{b} \mathrm{~d} x \iint_{\mathbb{R}^{2}} \mathrm{~d} y \mathrm{~d} y^{\prime} p_{x}\left(y, y^{\prime}\right)\left|y^{\prime}\right| \mathbf{1}_{A}(x, y) \tag{3c7}
\end{equation*}
$$

for all Borel sets $A \subset \mathbb{R}^{2}$. More generally, ${ }^{2}$

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{d} y \mathbb{E} \sum_{x \in f^{-1}(y)} g(x, y)=\int_{a}^{b} \mathrm{~d} x \iint_{\mathbb{R}^{2}} \mathrm{~d} y \mathrm{~d} y^{\prime} p_{x}\left(y, y^{\prime}\right)\left|y^{\prime}\right| g(x, y) \tag{3c8}
\end{equation*}
$$

[^3]for every bounded Borel function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Substituting $g(x) h(y)$ for $g(x, y)$ we get
\[

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{d} y h(y) \mathbb{E} \sum_{x \in f^{-1}(y)} g(x)=\int_{\mathbb{R}} \mathrm{d} y h(y) \int_{a}^{b} \mathrm{~d} x g(x) \int_{\mathbb{R}} \mathrm{d} y^{\prime} p_{x}\left(y, y^{\prime}\right)\left|y^{\prime}\right| \tag{3c9}
\end{equation*}
$$

\]

for all bounded Borel functions $g:[a, b] \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$. Therefore

$$
\begin{equation*}
\mathbb{E} \sum_{x \in f^{-1}(y)} g(x)=\int_{a}^{b} \mathrm{~d} x g(x) \int_{\mathbb{R}} \mathrm{d} y^{\prime} p_{x}\left(y, y^{\prime}\right)\left|y^{\prime}\right| \tag{3c10}
\end{equation*}
$$

for almost all $y \in \mathbb{R}$. Especially,

$$
\begin{equation*}
\mathbb{E}\left(\# f^{-1}(y)\right)=\int_{a}^{b} \mathrm{~d} x \int_{\mathbb{R}} \mathrm{d} y^{\prime} p_{x}\left(y, y^{\prime}\right)\left|y^{\prime}\right| \tag{3c11}
\end{equation*}
$$

for almost all $y \in \mathbb{R}$. Some additional assumptions could ensure (continuity in $y$ and therefore) the equality for every $y$.

## 3d Gaussian case: Rice's formula

Let $\gamma$ be a (centered) Gaussian measure on $C^{1}[a, b]$ such that for every $x \in$ $[a, b]$

$$
\begin{gather*}
\int_{C^{1}[a, b]}|f(x)|^{2} \gamma(\mathrm{~d} f)=1,  \tag{3d1}\\
\int_{C^{1}[a, b]}\left|f^{\prime}(x)\right|^{2} \gamma(\mathrm{~d} f)=\sigma^{2}(x)>0 \tag{3d2}
\end{gather*}
$$

for some $\sigma:[a, b] \rightarrow(0, \infty) .{ }^{1}$
Each $x \in[a, b]$ leads to two measurable (in fact, continuous) linear functionals

$$
f \mapsto f(x) \quad \text { and } \quad f \mapsto f^{\prime}(x)
$$

on $\left(C^{1}[a, b], \gamma\right)$. The former is distributed $\mathrm{N}(0,1)$ by (3d1); the latter is distributed $\mathrm{N}\left(0, \sigma^{2}(x)\right)$ by (3d2).

3d3 Exercise. The function $\sigma(\cdot)$ is continuous on $[a, b]$.
Prove it.
Hint: $f^{\prime}(x+\varepsilon)-f^{\prime}(x) \rightarrow 0($ as $\varepsilon \rightarrow 0)$ almost sure, therefore in probability, therefore (using normality!) in $L_{2}(\gamma)$.

[^4]The joint distribution of $f(x)$ and $f^{\prime}(x)$ is a Gaussian measure on $\mathbb{R}^{2}$. It appears to be the product measure, $\mathrm{N}(0,1) \times \mathrm{N}\left(0, \sigma^{2}(x)\right)$; in other words, the two random variables $f(x)$ and $f^{\prime}(x)$ are independent. It is sufficient to prove that they are orthogonal,

$$
\begin{equation*}
\int_{C^{1}[a, b]} f(x) f^{\prime}(x) \gamma(\mathrm{d} f)=0 . \tag{3d4}
\end{equation*}
$$

Proof: by (3d1),

$$
\begin{aligned}
0 & =\int \frac{|f(x+\varepsilon)|^{2}-|f(x)|^{2}}{2 \varepsilon} \gamma(\mathrm{~d} f)= \\
& =\int \frac{f(x+\varepsilon)-f(x)}{\varepsilon} \cdot \frac{f(x+\varepsilon)+f(x)}{2} \gamma(\mathrm{~d} f) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \int f(x) f^{\prime}(x) \gamma(\mathrm{d} f)
\end{aligned}
$$

(Once again, convergence almost sure implies convergence in $L_{2}(\gamma) \ldots$ )
We see that $\gamma$ satisfies (3c1) with

$$
\begin{equation*}
p_{x}\left(y, y^{\prime}\right)=\frac{1}{2 \pi \sigma(x)} \exp \left(-\frac{y^{2}}{2}-\frac{y^{\prime 2}}{2 \sigma^{2}(x)}\right) . \tag{3d5}
\end{equation*}
$$

Condition (3c21) boils down to $\sigma(\cdot) \in L_{1}[a, b]$, which is ensured by (3d3). Thus, we may use the theory of 3 c

3d6 Exercise. (Rice's formula) ${ }^{1}$ For almost all ${ }^{2} y \in \mathbb{R}$,

$$
\mathbb{E}\left(\# f^{-1}(y)\right)=\frac{1}{\pi} \mathrm{e}^{-y^{2} / 2} \int_{a}^{b} \sigma(x) \mathrm{d} x .
$$

Prove it.
Hint: (3c11) and (3d5).
Let us try it on the toy model (3a1). Here $[a, b]=[0,2 \pi], \sigma(\cdot)=$ 1 , and we get $\mathbb{E}\left(\# f^{-1}(y)\right)=2 \mathrm{e}^{-y^{2} / 2}$. In fact, $\# f^{-1}(0)=2$ a.s., and $\# f^{-1}(y)=2$ if $M>|y|$, otherwise 0 ; therefore $\mathbb{E}\left(\# f^{-1}(y)\right)=2 \mathbb{P}(M>$ $y)=2 \int_{y}^{\infty} f_{M}(u) \mathrm{d} u=2 \mathrm{e}^{-y^{2} / 2}$ by (3a5).

3d7 Exercise. Calculate $\mathbb{E}\left(\# f^{-1}(y)\right)$ for the random trigonometric polynomial of 1c12,

$$
X(t)=\zeta_{1} \cos t+\eta_{1} \sin t+\frac{1}{2} \zeta_{2} \cos 2 t+\frac{1}{2} \eta_{2} \sin 2 t
$$

[^5]Integrating Rice's formula in $y$ we get

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{d} y \mathbb{E}\left(\# f^{-1}(y)\right)=\sqrt{\frac{2}{\pi}} \int_{a}^{b} \sigma(x) \mathrm{d} x \tag{3d8}
\end{equation*}
$$

which can be obtained simpler, by averaging (in $f$ ) the equality 3b1 (and using Fubini's theorem). Basically, Rice's formula states that $\mathbb{E}\left(\# f^{-1}(y)\right)=$ const $\cdot \mathrm{e}^{-y^{2} / 2}$, where the coefficient does not depend on $y$; its value follows easily from 3b1. We may rewrite Rice's formula as

$$
\begin{equation*}
\mathbb{E}\left(\# f^{-1}(y)\right)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-y^{2} / 2} \mathbb{E} \int_{a}^{b}\left|f^{\prime}(x)\right| \mathrm{d} x \tag{3d9}
\end{equation*}
$$

for almost all $y \in \mathbb{R}$; note that $\mathbb{E} \int_{a}^{b}\left|f^{\prime}(x)\right| \mathrm{d} x$ is the expected total variation of $f$. For example, on the toy model (3a1), $\# f^{-1}(0)=2$ a.s., the total variation is equal to $4 M$, and $\mathbb{E} M=\int_{0}^{\infty} u f_{M}(u) \mathrm{d} u=\sqrt{\pi / 2}$.

The right-hand side of Rice's formula is continuous (in $y$ ); in order to get it for all (rather than almost all) $y$ we will prove that the left-hand side is also continuous (in $y$ ). First, we do it for a one-dimensional non-centered Gaussian measure.

3d10 Exercise. Let $g, h \in C^{1}[a, b]$ and $h(x) \neq 0$ for all $x \in[a, b]$. Then the function

$$
y \mapsto \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{d} u \mathrm{e}^{-u^{2} / 2} \# f_{u}^{-1}(y),
$$

where $f_{u}(\cdot)=g(\cdot)+u h(\cdot)$, is continuous on $\mathbb{R}$.
Prove it.
Hint: the integral is equal to the total variation of the function $x \mapsto$ $\Phi\left(\frac{y-g(x)}{h(x)}\right)$ where $\Phi(u)=\gamma^{1}((-\infty, u])$.

3d11 Lemma. The function $y \mapsto \mathbb{E}\left(\# f^{-1}(y)\right)$ is continuous on $\mathbb{R}$.
Proof (sketch). It is sufficient to prove it on small subintervals of $[a, b]$, due to additivity. Assume that $\gamma$ is infinite-dimensional (finite dimension is similar but simpler). We have $\gamma=V\left(\gamma^{\infty}\right)$ for some $V: S_{1} \rightarrow E, S_{1} \subset \mathbb{R}^{\infty}$ being a linear subspace of full measure. Thus, $f=g+u h$, where $u \sim \mathrm{~N}(0,1)$, $h=V((1,0,0, \ldots))$ and $g=V((0, \cdot, \cdot, \ldots))$. Conditionally, given $g$, we may apply $3 d 10$ provided that $h$ does not vanish. Otherwise we do it on a neighborhood of any given point, picking up an appropriate coordinate of $\mathbb{R}^{\infty}$.

3d12 Corollary. Formulas 3d6, (3d8), (3d9) hold for all $y \in \mathbb{R}$ (not just almost all).

Especially,

$$
\begin{equation*}
\mathbb{E}\left(\# f^{-1}(0)\right)=\frac{1}{\sqrt{2 \pi}} \mathbb{E} \int_{a}^{b}\left|f^{\prime}(x)\right| \mathrm{d} x \tag{3d13}
\end{equation*}
$$

3d14 Exercise. Formulas 3d6, (3d8), (3d9), (3d13) still hold if $\sigma(\cdot)$ may vanish.

Prove it.
Hint: pass to the new variable $x_{\text {new }}=\int_{0}^{x} \sigma\left(x_{1}\right) \mathrm{d} x_{1}$.

## 3e Some integral geometry

We consider a curve on $S^{n-1}=\left\{z \in \mathbb{R}^{n}:|z|=1\right\}$ parameterized by some $[a, b]$;

$$
Z \in C^{1}\left([a, b], \mathbb{R}^{n}\right), \quad Z([a, b]) \subset S^{n-1}
$$

It leads to a Gaussian random vector in $C^{1}[a, b]$,

$$
f(x)=\langle Z(x), \xi\rangle
$$

where $\xi$ is distributed $\gamma^{n}$. (Thus, $f(x)=\zeta_{1} Z_{1}(x)+\cdots+\zeta_{n} Z_{n}(x)$ where $\zeta_{1}, \ldots, \zeta_{n}$ are independent random variables distributed $\mathrm{N}(0,1)$ each, and $\left.Z_{1}, \ldots, Z_{n} \in C^{1}[a, b].\right)$

The function $f(\cdot)$ vanishes when the curve $Z(\cdot)$ intersects the hyperplane $\left\{z \in \mathbb{R}^{n}:\langle z, \xi\rangle=0\right\}$. The latter is just a random hyperplane distributed uniformly, since $\xi /|\xi|$ is distributed uniformly of $S^{n-1}$. Thus, $\mathbb{E}\left(\# f^{-1}(0)\right)$ is the mean number of intersections.

On the other hand,

$$
\sigma^{2}(x)=\mathbb{E}\left|f^{\prime}(x)\right|^{2}=\mathbb{E}\left|\left\langle Z^{\prime}(x), \xi\right\rangle\right|^{2}=\left|Z^{\prime}(x)\right|^{2},
$$

thus, $\int_{a}^{b} \sigma(x) \mathrm{d} x$ is nothing but the length of the given curve. By Rice's formula (for $y=0$ ),

$$
\begin{equation*}
\frac{\text { the mean number of intersections }}{\text { the length of the curve }}=\frac{1}{\pi} \text {. } \tag{3e1}
\end{equation*}
$$

For example, the toy model (3a1) corresponds to $Z:[0,2 \pi] \rightarrow \mathcal{S}^{1}, Z(t)=$ $(\cos t, \sin t)$. The curve is the unit circle, of length $2 \pi$. The number of intersections is equal to 2 always.

## References

[1] H. Cramér, M.R. Leadbetter, Stationary and related stochastic processes, Wiley 1967.

## Index

expected total variation, 35
horizontal window, 29
Rice formula, 34
vertical window, 28
$C^{1}[a, b]$, space of smooth functions, 29 $\mathbb{E}\left(\# f^{-1}(y)\right)$, expected number of level crossings, 32
$\# f^{-1}(y)$, number of level crossings, 29
$p_{x}\left(y, y^{\prime}\right), 2$-dim density, 31
$\sigma(x)$, mean square derivative, 33


[^0]:    ${ }^{1}$ See Preface (page vi) to the book "Random fields and geometry" (to appear).

[^1]:    ${ }^{1} \operatorname{Tr} y x^{3} \sin (1 / x)$.

[^2]:    ${ }^{1}$ The meaning of $\mathrm{d} f$ in $\mu(\mathrm{d} f)$ and $\mathrm{d} f(x) / \mathrm{d} x$ is completely different...

[^3]:    ${ }^{1}$ The function $(x, f) \mapsto f^{\prime}(x)$ on $[a, b] \times C^{1}[a, b]$ is continuous, therefore, Borel.
    ${ }^{2}$ In 3b6 we use $g(x)$, but $g(x, y)$ can be used equally well (which does not increase generality).

[^4]:    ${ }^{1}$ See also 3 d14

[^5]:    ${ }^{1}$ Kac 1943, Rice 1945, Bunimovich 1951, Grenander and Rosenblatt 1957, Ivanov 1960, Bulinskaya 1961, Itô 1964, Ylvisaker 1965 et al. See [1. Sect. 10.3].
    ${ }^{2}$ In fact, for all $y$, see 3 d 12

