5 Random functions of two variables

5a Introductory remarks 45
5b Excursions: some topology 47
5c Nonrandom function 49
5d Random function 50
5e Gaussian case 51
$5 f$ Curvature appears 53
5 g Curvature disappears 56
5h A generalization 59
5i Final remarks 60

5a Introductory remarks

The sphere $S^{2}=\left\{x \in \mathbb{R}^{3}:|x|=1\right\}$ is an example of a 2-dimensional manifold. We will consider the space $C^{2}\left(S^{2}\right)$ of twice continuously differentiable functions $S^{2} \rightarrow \mathbb{R}$ and Gaussian measures on this space.

For example, linear functions $x \mapsto\langle x, \xi\rangle$ on \mathbb{R}^{3}, restricted to S^{2}, are a 3-dimensional subspace $H_{\text {lin }}$ of $C^{2}\left(S^{2}\right)$, parameterized by $\xi \in \mathbb{R}^{3}$. If ξ is random, distributed γ^{3}, we get a rotation-invariant 3-dimensional Gaussian measure on $C^{2}\left(S^{2}\right)$, denote it $\gamma_{\text {lin }}$.

5a1 Exercise. (a) Calculate $\mathbb{E} f(x) f(y)$, that is,

$$
\int_{C^{2}\left(S^{2}\right)} f(x) f(y) \gamma_{\operatorname{lin}}(\mathrm{d} f),
$$

for $x, y \in S^{2}$.
(b) Prove that the norm $|\cdot|_{\gamma_{\text {lin }}}$ (recall page 7) is the restriction to $H_{\text {lin }}$ of the norm of $L_{2}\left(S^{2}, 3 \mu\right)$, where μ is the uniform distribution (in other words, normalized area measure) on S^{2}.

Quadratic forms on \mathbb{R}^{3}, restricted to S^{2}, are a 6 -dimensional subspace of $C^{2}\left(S^{2}\right)$, containing $1=x^{2}+y^{2}+z^{2}$. Forms orthogonal to 1 in $L_{2}\left(S^{2}, \mu\right)$ are a 5 -dimensional subspace $H_{\text {quad }}$. The norm of $C^{2}\left(S^{2}\right)$ does not turn it into a Euclidean space, but the norm of $L_{2}\left(S^{2}, 5 \mu\right)$ does. This norm is $|\cdot|_{\gamma}$ for some (unique) rotation-invariant 5-dimensional Gaussian measure on $C^{2}\left(S^{2}\right)$, denote it $\gamma_{\text {quad }}$.

5a2 Exercise. (a) Prove that the restriction of f to any great circle of S^{2} is distributed like the random trigonometric polynomial

$$
\frac{1}{2} \zeta_{0}+\frac{\sqrt{3}}{2}\left(\zeta_{2} \cos 2 t+\eta_{2} \sin 2 t\right)
$$

where $\zeta_{0}, \zeta_{2}, \eta_{2}$ are independent $\mathrm{N}(0,1)$ random variables.
(b) Calculate $\mathbb{E} f(x) f(y)$ w.r.t. $\gamma_{\text {quad }}$ for $x, y \in S^{2}$.

Hint. First, $\int_{S^{2}} f(x) \mu(\mathrm{d} x \mathrm{~d} y \mathrm{~d} z)=\frac{1}{2} \int_{-1}^{1} f(x) \mathrm{d} x$ for any f. Second, $\int_{S^{2}} x^{2} y^{2} \mu(\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z)=\frac{1}{15}$, since $\left(x^{2}+y^{2}+z^{2}\right)^{2}=1$ on S^{2}. Third, here is a convenient orthonormal basis of $H_{\text {quad }} \subset L_{2}\left(S^{2}, 5 \mu\right):^{1}$

$$
\frac{3 z^{2}-1}{2} ; \quad \sqrt{3} z x, \sqrt{3} z y ; \quad \sqrt{3} x y, \sqrt{3} \frac{x^{2}-y^{2}}{2}
$$

We may consider, say, $f=g+\frac{1}{2} h$ where $g \sim \gamma_{\text {lin }}$ and $h \sim \gamma_{\text {quad }}$ are independent; such f is still a rotation-invariant Gaussian random field on S^{2}. And, of course, we may use higher (cubic, ...) forms. ${ }^{2}$

The similar one-dimensional construction (over S^{1}) leads to random trigonometric polynomials, in the spirit of 1 c 12 .

The torus $\mathbb{T}^{2}=S^{1} \times S^{1}$ is another example of a 2 -dimensional manifold. The space $C^{2}\left(\mathbb{T}^{2}\right)$ may be identified with the space of double-periodic smooth functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$.

For example, trigonometric polynomials, spanned by $\cos k x \cos l y$, $\cos k x \sin l y, \sin k x \cos l y, \sin k x \sin l y$ with $k+l \leq n($ for a given $n)$ are a finite-dimensional subspace of $C^{2}\left(\mathbb{T}^{2}\right)$. The norm of $L^{2}\left(S^{2}\right)$ turns it into a Euclidean space and leads to a stationary (that is, shift-invariant) Gaussian measure on $C^{2}\left(\mathbb{T}^{2}\right)$.

We may also treat \mathbb{T}^{2} as $\left\{(x, y, u, v): x^{2}+y^{2}=1, u^{2}+v^{2}=1\right\} \subset \mathbb{R}^{4}$. Algebraic polynomials on \mathbb{R}^{4} turn into trigonometric polynomials on \mathbb{T}^{2}.

Other 2-dimensional manifolds could be used, but we restrict ourselves to S^{2} and \mathbb{T}^{2}.

See [1, p. 9] for a figure showing the cosmic microwave background radiation treated as a Gaussian random field on S^{2} (the sky). See also [1, p. 10] for tomographic brain images.

[^0]
5b Excursions: some topology

We return for a short while to dimension one. Let $f \in C^{2}\left(S^{1}\right)$, and $y \in \mathbb{R}$ be such that $f^{-1}(y)$ is a finite nonempty set not containing critical points of f. The set $\left\{x \in S^{1}: f(x) \geq y\right\}$ is the union of a finite set of disjoint intervals. These intervals may be called excursions of f (above y). How to calculate the expected number of excursions for a random f ?

Clearly, the number of excursions is equal to $\frac{1}{2} \# f^{-1}(y)$, and we may use Rice's formula. Unfortunately, this approach does not work in dimension two, since $f^{-1}(y)$ fails to be a discrete set.

Each excursion contains a critical point, namely, a maximum of f. It may contain k maxima, but only in combination with $k-1$ minima. Thus,

$$
\left(\begin{array}{c}
\text { number of } \\
\text { excursions } \\
\text { above } y
\end{array}\right)=\left(\begin{array}{c}
\text { number of } \\
\text { maxima } \\
\text { above } y
\end{array}\right)-\left(\begin{array}{c}
\text { number of } \\
\text { minima } \\
\text { above } y
\end{array}\right) .
$$

This approach could work in dimension two, since critical points are still a discrete set. However, the combination (\#maxima) - (\#minima) fails to be 1 (or another constant) within a single two-dimensional excursion.
 maximum \cdots, \cdots saddle point

A local perturbation of f (near a non-critical point) can create a new maximum in combination with a new saddle point. Similarly it can create a new minimum in combination with a new saddle point. Here is the only expression that has a chance to be insensitive to perturbations:

$$
\binom{\text { number of }}{\text { maxima }}-\binom{\text { number of }}{\text { saddle points }}+\binom{\text { number of }}{\text { minima }} .
$$

Theorem $5 \mathrm{b1}$ below states that it really is.
Let $f \in C^{2}\left(S^{2}\right)$ (however, \mathbb{T}^{2} may be used equally well);

* a point $x \in S^{2}$ is called a critical point (of f), if the first derivatives of f at x vanish; equivalently, if $\frac{f\left(x_{1}\right)-f(x)}{\operatorname{dist}\left(x_{1}, x\right)} \rightarrow 0$ as $x_{1} \rightarrow x$;
* a number $y \in \mathbb{R}$ is called a critical value (of f), if $y=f(x)$ for some critical point x;
* a critical point x is nondegenerate if the matrix of the second derivatives of f at x is nondegenerate, that is, its determinant does not vanish; ${ }^{1}$
* the index $i_{f}(x)$ of a nondegenerate critical point x of f is, by definition, the sign (± 1) of the determinant mentioned above;
* a nondegenerate critical point of index +1 is an extremum (maximum or minimum); a nondegenerate critical point of index -1 is a saddle point;
* f is called a Morse function if all its critical points are nondegenerate. See [5, Sect. 1.2-1.4]. ${ }^{2}$ Below, ' $\nabla f(x)=0$ ' means that x is a critical point of f.
5b1 Theorem. Let $f, g \in C^{2}\left(S^{2}\right)$ be Morse functions such that

$$
\forall x \in S^{2} \quad \operatorname{sgn} f(x)=\operatorname{sgn} g(x)
$$

and 0 is not a critical value of f, nor of g. Then

$$
\begin{aligned}
\sum_{x: f(x)<0, \nabla f(x)=0} i_{f}(x) & =\sum_{x: g(x)<0, \nabla g(x)=0} i_{g}(x) \\
\sum_{x: f(x)>0, \nabla f(x)=0} i_{f}(x) & =\sum_{x: g(x)>0, \nabla g(x)=0} i_{g}(x)
\end{aligned}
$$

The same holds for \mathbb{T}^{2}.
I give no proof. Theorem 5b1 is a simple consequence of Morse theory, see Poincaré-Hopf theorem in [6, Sect. 6]. A rather elementary proof of the two-dimensional case is given in [4, Sect. 3.4 and 11.2] for the planar case, that is, when the domains $\{x: f(x)<0\},\{x: f(x)>0\}$ can be embedded into \mathbb{R}^{2}. This is enough for S^{2} but not \mathbb{T}^{2}; see also [4, Sect. 4.7]. Beyond the planar case we cannot define the rotation of the vector field ∇f on the curve $f^{-1}(0)$, but still, we can define the difference between two such rotations (of ∇f and ∇g).

The topological invariant disclosed by Theorem 5b1 is called the Euler (-Poincare) characteristic and denoted by $\chi ;{ }^{3}$

$$
\begin{equation*}
\sum_{x: f(x)>0, \nabla f(x)=0} i_{f}(x)=\chi(\{x: f(x) \geq 0\}) . \tag{5b2}
\end{equation*}
$$

[^1]Clearly, if $\{x: f(x) \geq 0\}$ is not connected then its Euler characteristic decomposes into the sum (over connected components). A connected region $D \subset S^{2}$ is S^{2} with k holes (for some $k \in\{0,1,2, \ldots\}$), and $\chi(D)=2-k$ 3. Th. 9.3.7 for $p=0$]; especially, $\chi\left(S^{2}\right)=2, \chi($ disk $)=1, \chi$ (annulus) $=0$ (and note that negative values are also possible). The torus \mathbb{T}^{2} with k holes is a non-planary connected region D; in this case $\chi(D)=-k$ 3. Th. 9.3.7 for $p=1$]. Especially, $\chi\left(\mathbb{T}^{2}\right)=0$.

A trivial generalization of (5b2),

$$
\begin{equation*}
\sum_{x: f(x)>y, \nabla f(x)=0} i_{f}(x)=\chi(\{x: f(x) \geq y\}) \tag{5b3}
\end{equation*}
$$

(assuming that f is a Morse function, and y is not a critical value of f), will be applied to a random function f. Calculating the expectation of the sum we will get the expected Euler characteristic, $\mathbb{E} \chi(\{x: f(x) \geq y\})$. True, this is not the expected number of excursions above y (that is, connected components of the excursion set $\{x: f(x) \geq y\}$). However, for a high level y we have usually no excursion at all, and sometimes a single, small excursion (roughly, ellipse) with no holes inside; its Euler characteristic equals 1. Other cases are relatively rare. This is why the expected Euler characteristic can give a valuable information about (the tail of) the distribution of the maximum of a smooth random field.

Dealing with a small excursion D with $1-\chi(D)$ holes inside we may call these holes 'antiexcursions'. In this sense,

$$
\chi(\{x: f(x) \geq y\})=\binom{\text { number of }}{\text { excursions }}-\binom{\text { number of }}{\text { antiexcursions }} .
$$

5c Nonrandom function

Taking into account that a small piece of S^{2} or \mathbb{T}^{2} is a planar domain, for now we consider functions on a bounded open set $D \subset \mathbb{R}^{2}$ or its closure \bar{D}.

Recall that every map $f \in C^{1}\left(\bar{D}, \mathbb{R}^{2}\right)$ has the Jacobian $J_{f} \in C(\bar{D}, \mathbb{R}) ;$

$$
J_{f}(x)=\left|\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} \tag{5c1}\\
\frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right|,
$$

where $\left(y_{1}, y_{2}\right)=y=f(x)=f\left(x_{1}, x_{2}\right)$. If f is one-to-one on D then

$$
\begin{equation*}
\operatorname{mes}_{2} f(D)=\int_{D}\left|J_{f}(x)\right| \mathrm{d} x \tag{5c2}
\end{equation*}
$$

(' mes_{2} ' is the two-dimensional Lebesgue measure) and moreover,

$$
\begin{equation*}
\int_{f(D)} \varphi(y) \mathrm{d} y=\int_{D} \varphi(f(x))\left|J_{f}(x)\right| \mathrm{d} x \tag{5c3}
\end{equation*}
$$

for every bounded Borel function $\varphi: f(D) \rightarrow \mathbb{R}$.
5c4 Exercise. For every bounded Borel function $\varphi: D \times \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
\int_{\mathbb{R}^{2}} \mathrm{~d} y \sum_{x \in f^{-1}(y)} \varphi(x, y)=\int_{D} \varphi(x, f(x))\left|J_{f}(x)\right| \mathrm{d} x
$$

Prove it.
Hint: partition the graph of f into a (finite or infinite) sequence of small parts and apply (5c3) on each part; consider positive and negative values of φ separately; and use (two-dimensional) Sard's theorem, similarly to the proof of 3 b 1 .

A function $f \in C^{2}(\bar{D})$ has the gradient $\nabla f \in C^{1}\left(\bar{D}, \mathbb{R}^{2}\right)$,

$$
\nabla f(x)=\left(\frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial x_{2}}\right)
$$

where $y=f(x)=f\left(x_{1}, x_{2}\right)$. A critical point of f is x such that $\nabla f(x)=$ 0 . The critical point x is nondegenerate if $J_{\nabla f}(x) \neq 0$. The index of a nondegenerate critical point x is

$$
i_{f}(x)=\operatorname{sgn} J_{\nabla f}(x)
$$

5c5 Exercise. For all bounded Borel functions $\varphi: \mathbb{R} \rightarrow \mathbb{R}, \psi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and all $f \in C^{2}(\bar{D})$,

$$
\int_{\mathbb{R}^{2}} \mathrm{~d} y^{\prime} \psi\left(y^{\prime}\right) \sum_{x \in D: \nabla f(x)=y^{\prime}} \varphi(f(x)) \operatorname{sgn} J_{\nabla f}(x)=\int_{D} \mathrm{~d} x \psi(\nabla f(x)) \varphi(f(x)) J_{\nabla f}(x) .
$$

Prove it.
Hint: similar to 4 a 3 .

5d Random function

Similarly to 4 a we consider a probability measure μ on $C^{2}(\bar{D})$ such that for each $x \in D$ some density $\left(y, y^{\prime}\right) \mapsto p_{x}\left(y, y^{\prime}\right)$ and some regression function $\left(y, y^{\prime}\right) \mapsto \mathbb{E}\left(J_{\nabla f}(x) \mid f(x)=y, \nabla f(x)=y^{\prime}\right)$ satisfy the equalities

$$
\begin{equation*}
\mathbb{E} \varphi(f(x)) \psi(\nabla f(x))=\int_{\mathbb{R}} \mathrm{d} y \int_{\mathbb{R}^{2}} \mathrm{~d} y^{\prime} p_{x}\left(y, y^{\prime}\right) \varphi(y) \psi\left(y^{\prime}\right) \tag{5d1}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathbb{E} \varphi(f(x)) \psi(\nabla f(x)) J_{\nabla f}(x)= \tag{5d2}\\
& =\int_{\mathbb{R}} \mathrm{d} y \int_{\mathbb{R}^{2}} \mathrm{~d} y^{\prime} p_{x}\left(y, y^{\prime}\right) \varphi(y) \psi\left(y^{\prime}\right) \mathbb{E}\left(J_{\nabla f}(x) \mid f(x)=y, \nabla f(x)=y^{\prime}\right)
\end{align*}
$$

for all bounded Borel functions $\varphi: \mathbb{R} \rightarrow \mathbb{R}, \psi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (similarly to 4a7). We also assume that

$$
\begin{equation*}
\mathbb{E} \int_{D}\left|J_{\nabla f}(x)\right| \mathrm{d} x<\infty \tag{5d3}
\end{equation*}
$$

Similarly to (4a6) we get

$$
\begin{align*}
& \mathbb{E} \sum_{x \in D: \nabla f(x)=y^{\prime}} \varphi(f(x)) \operatorname{sgn} J_{\nabla f}(x)= \tag{5~d4}\\
& =\int_{D} \mathrm{~d} x p_{x}\left(y^{\prime}\right) \int_{\mathbb{R}} \mathrm{d} y p_{x}\left(y \mid y^{\prime}\right) \varphi(y) \mathbb{E}\left(J_{\nabla f}(x) \mid f(x)=y, \nabla f(x)=y^{\prime}\right)
\end{align*}
$$

for almost all $y^{\prime} \in \mathbb{R}^{2}$; as before,

$$
p_{x}\left(y, y^{\prime}\right)=p_{x}\left(y^{\prime}\right) p_{x}\left(y \mid y^{\prime}\right) .
$$

5e Gaussian case

Similarly to 4 b we consider a (centered) Gaussian measure γ on $C^{2}(\bar{D})$ such that for every $x \in D$ (assuming that f is distributed γ),
(5e1) the joint distribution of $f(x)$ and $\nabla f(x)$ is a nondegenerate Gaussian measure on \mathbb{R}^{3}.
In other words,

* the variance of $f(x)$ does not vanish,
* conditionally, given $f(x)$, the variance of the directional derivative of f at x does not vanish
(at each point, in each direction). Compare it with (4b1), (4b2). For now the variance of $f(x)$ need not be equal to 1 (yet).

The conditions of 5d are thus ensured, and therefore (5d4) holds for almost all y^{\prime}. In fact it holds for all y^{\prime}, as is shown below (similarly to 4 b). Especially, for $y^{\prime}=0$, taking into account that $\operatorname{sgn} J_{\nabla f}(x)=i_{f}(x)$ (and letting $i_{f}(x)=0$ if x is degenerate) we get
$(5 \mathrm{e} 2) \quad \mathbb{E} \sum_{x \in D: \nabla f(x)=0} \varphi(f(x)) i_{f}(x)=$

$$
=\int_{D} \mathrm{~d} x p_{x}(0) \int_{\mathbb{R}} \mathrm{d} y p_{x}\left(y \mid y^{\prime}=0\right) \varphi(y) \mathbb{E}\left(J_{\nabla f}(x) \mid f(x)=y, \nabla f(x)=0\right)
$$

The right-hand side of (5d4) is continuous in y^{\prime} (check it); we have to prove that the left-hand side

$$
\mathbb{E} \sum_{x \in D: \nabla f(x)=y^{\prime}} \varphi(f(x)) \operatorname{sgn} J_{\nabla f}(x)
$$

is also continuous in y^{\prime}. Similarly to 3 d and 4 b , it is sufficient to check continuity of the function ${ }^{1}$

$$
y^{\prime} \mapsto \int_{\mathbb{R}^{2}} \gamma^{2}(\mathrm{~d} u) \sum_{x \in D: \nabla f_{u}(x)=y^{\prime}} \varphi\left(f_{u}(x)\right) \operatorname{sgn} J_{\nabla f_{u}}(x),
$$

where $f_{u}(\cdot)=f_{u_{1}, u_{2}}(\cdot)=g(\cdot)+u_{1} h_{1}(\cdot)+u_{2} h_{2}(\cdot) ; g, h_{1}, h_{2} \in C^{2}(\underline{\bar{D}})$ and the two vectors $\nabla h_{1}(x), \nabla h_{2}(x)$ are linearly independent for all $x \in \bar{D}$. To this end we transform the integral in u into an integral in x (compare it with (4b6)):

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} \gamma^{2}(\mathrm{~d} u) \sum_{x \in D: \nabla f_{u}(x)=y^{\prime}} \varphi\left(f_{u}(x)\right) \operatorname{sgn} J_{\nabla f_{u}}(x)= \pm \int_{D} \varphi\left(f_{U(x)}(x)\right) \gamma^{2}(\mathrm{~d} U(x)) ; \tag{5e3}
\end{equation*}
$$

here the sign is ' + ' if $J_{h}(\cdot)=\operatorname{det}\left(\nabla h_{1}, \nabla h_{2}\right)>0$ on \bar{D}, or ' - ' if $J_{h}(\cdot)<0$ on \bar{D}; and $U(x)=\left(U_{1}(x), U_{2}(x)\right)$ is the (unique) solution of the linear equation

$$
\begin{equation*}
\nabla g(x)+U_{1}(x) \nabla h_{1}(x)+U_{2}(x) \nabla h_{2}(x)=y_{1} . \tag{5e4}
\end{equation*}
$$

(Note that $U \in C^{1}\left(\bar{D}, \mathbb{R}^{2}\right)$.) Clearly, the right-hand side of (5e3)) is continuous in y^{\prime} (assuming continuity of φ without loss of generality, recall (4b8)).

In order to get (5e3) we start with a two-dimensional counterpart of (3b7):

$$
\int_{\mathbb{R}^{2}} \mathrm{~d} y \sum_{x \in f^{-1}(y)} g(x) \operatorname{sgn} J_{f}(x)=\int_{D} g(x) J_{f}(x) \mathrm{d} x
$$

for $f \in C^{1}\left(\bar{D}, \mathbb{R}^{2}\right)$ (which follows from (5c4). Replacing f with U and $g(x)$ with $\varphi\left(f_{U(x)}(x)\right) \frac{1}{2 \pi} \exp \left(-\frac{1}{2} U_{1}^{2}(x)-\frac{1}{2} U_{2}^{2}(x)\right)$ we get

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} \gamma^{2}(\mathrm{~d} u) \sum_{x: U(x)=u} & \varphi\left(f_{u}(x)\right) \operatorname{sgn} J_{U}(x)= \\
& =\int_{D} \varphi\left(f_{U(x)}(x)\right) \frac{1}{2 \pi} \exp \left(-\frac{1}{2} U_{1}^{2}(x)-\frac{1}{2} U_{2}^{2}(x)\right) J_{U}(x) \mathrm{d} x
\end{aligned}
$$

[^2]However, $U(x)=u \quad \Longleftrightarrow \quad \nabla f_{u}(x)=y^{\prime}$, and $J_{\nabla f}(\cdot)=J_{U}(\cdot) J_{h}(\cdot)$. In order to get the latter equality we differentiate (5e4) in x getting $f_{, k l}=$ $-h_{1, k} U_{1, l}-h_{2, k} U_{2, l}$ where

$$
f_{, k l}=\left.\left(\frac{\partial^{2}}{\partial x_{k} \partial x_{l}} f_{u}\left(x_{1}, x_{2}\right)\right)\right|_{u=U\left(x_{1}, x_{2}\right)}
$$

Finally,

$$
J_{\nabla f}=f_{, 11} f_{, 22}-f_{, 12} f_{, 21}=\left(h_{1,1} h_{2,2}-h_{1,2} h_{2,1}\right)\left(U_{1,1} U_{2,2}-U_{1,2} U_{2,1}\right)=J_{h} J_{U}
$$

which completes the proof of (5e2).
5e5 Exercise. With probability $1, f$ is a Morse function.
Prove it. Do you need the whole (5e1), or something weaker?
Hint: $f_{u}=g+u_{1} h_{1}+u_{2} h_{2}$ and $U(\cdot)$ as before; if x is a degenerate critical point of f_{u}, then u is a critical value of U, since $u=U(x)$ and

$$
\nabla g(x+\Delta x)+U_{1}(x) \nabla h_{1}(x+\Delta x)+U_{2}(x) \nabla h_{2}(x+\Delta x)=o(|\Delta x|)
$$

therefore
$\left(U_{1}(x+\Delta x)-U_{1}(x)\right) \nabla h_{1}(x+\Delta x)+\left(U_{2}(x+\Delta x)-U_{2}(x)\right) \nabla h_{2}(x+\Delta x)=o(|\Delta x|)$.

$5 f$ Curvature appears

No kind of curvature can be detected by a bug on a curve. But if the bug moves to a surface, it can detect Gaussian curvature.
F. Morgan [7, Sect. 3.6 (p. 24)].

Upgrading 3 e and 4 d we consider a surface (rather than curve) on $S^{n-1}=$ $\left\{z \in \mathbb{R}^{n}:|z|=1\right\}$ parameterized by S^{2};

$$
Z \in C^{2}\left(S^{2}, \mathbb{R}^{n}\right), \quad Z\left(S^{2}\right) \subset S^{n-1}
$$

We assume that Z is an immersion, that is [3, Sect. 1.3],

$$
\begin{equation*}
\nabla_{v} Z(x) \neq 0 \tag{5f1}
\end{equation*}
$$

for every $x \in S^{2}$ and every vector $v \neq 0$ tangent to S^{2} at x (that is, $\langle v, x\rangle=$ 0); of course,

$$
\begin{equation*}
\nabla_{v} Z(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(Z\left(\frac{x+\varepsilon v}{|x+\varepsilon v|}\right)-Z(x)\right) \tag{5f2}
\end{equation*}
$$

It leads to a Gaussian random vector in $C^{2}\left(S^{2}\right)$,

$$
f(x)=\langle Z(x), \xi\rangle
$$

where ξ is distributed γ^{n}.

5f3 Exercise. (a) Some choice of n and Z makes f distributed $\gamma_{\text {lin }}$ (recall 5al.
(b) The same holds for $\gamma_{\text {quad }}$.
(c) The same holds for the convolution of $\gamma_{\text {quad }}$ and $\gamma_{\text {lin }}$, that is, the distribution of $f=g+h$ for independent $g \sim \gamma_{\text {quad }}$ and $h \sim \gamma_{\text {lin }}$.

Prove it. What about $a g+b h$?
Hint: (b) use 5a2 (c) take the orthogonal sum of the spaces used in (a) and (b).

A crucial distinction between curves and surfaces is that all curves are mutually isometric but surfaces are not. I mean, on every curve there exists a coordinate u such that

$$
\operatorname{dist}(A, B)=|u(A)-u(B)| \cdot(1+o(1))
$$

as $\operatorname{dist}(A, B) \rightarrow 0$. In contrast, a surface generally does not admit coordinates u_{1}, u_{2} such that

$$
\operatorname{dist}(A, B)=\sqrt{\left|u_{1}(A)-u_{1}(B)\right|^{2}+\left|u_{2}(A)-u_{2}(B)\right|^{2}} \cdot(1+o(1))
$$

as $\operatorname{dist}(A, B) \rightarrow 0$.
The natural parameter helped us a lot in 4 c , but cannot help now. And do not blame the domain, S^{2}. Blame the range, $Z\left(S^{2}\right) \subset S^{n-1}$. The same difficulty appears for Gaussian random fields on planar domains.

Critical points of the function $x \mapsto f(x)=\langle Z(x), \xi\rangle$ on S^{2} correspond to critical points of the function $z \mapsto\langle z, \xi\rangle$ on the two-dimensional surface $Z\left(S^{2}\right) \subset S^{n-1}$. True, Z need not be one-to-one (it is an immersion, not necessarily embedding [3, Sect. 1.3]), but this is not an obstacle. We may count critical points on small pieces of S^{2}; on such piece Z is one-to-one, and its inverse Z^{-1} is also smooth $\left(C^{2}\right)$ on the corresponding piece of $Z\left(S^{2}\right)$. Thus, we may forget for a while about S^{2} and Z and consider the random function $z \mapsto\langle z, \xi\rangle$ on a small piece $T \subset S^{n-1}$ of a two-dimensional surface. (Afterwards we will translate the result into the language of Z and S^{2}.)

Given a point of T, we want to choose coordinates that are as convenient as possible around this point. To this end we rotate the coordinate system of \mathbb{R}^{n} so that the given point becomes $e_{3}=(0,0,1,0, \ldots, 0)$ and the tangent plane to T at e_{3} becomes $\mathbb{R} e_{1}+\mathbb{R} e_{2}+e_{3}$. We get

$$
T=\left\{z_{1} e_{1}+z_{2} e_{2}+e_{3}+h\left(z_{1}, z_{2}\right):\left(z_{1}, z_{2}\right) \in D\right\}
$$

where $D \subset \mathbb{R}^{2}$ is an open neighborhood of the origin (of \mathbb{R}^{2}), and $h \in$
$C^{2}\left(\bar{D}, \mathbb{R}^{n}\right)$ satisfies

$$
\begin{gathered}
\frac{h\left(z_{1}, z_{2}\right)}{\sqrt{z_{1}^{2}+z_{2}^{2}}} \rightarrow 0 \quad \text { as } z_{1} \rightarrow 0, z_{2} \rightarrow 0 \\
\left\langle h\left(z_{1}, z_{2}\right), e_{1}\right\rangle=\left\langle h\left(z_{1}, z_{2}\right), e_{2}\right\rangle=0 \quad \text { for all }\left(z_{1}, z_{2}\right) \in D .
\end{gathered}
$$

Introducing

$$
a_{i, j}=\left.\frac{\partial^{2}}{\partial z_{i} \partial z_{j}}\right|_{z_{1}=z_{2}=0} h\left(z_{1}, z_{2}\right) \in \mathbb{R}^{n} \quad \text { for } i, j \in\{1,2\}
$$

we get $\left\langle a_{i, j}, e_{1}\right\rangle=\left\langle a_{i, j}, e_{2}\right\rangle=0$ and

$$
h\left(z_{1}, z_{2}\right)=\frac{1}{2} a_{1,1} z_{1}^{2}+a_{1,2} z_{1} z_{2}+\frac{1}{2} a_{2,2} z_{2}^{2}+o\left(z_{1}^{2}+z_{2}^{2}\right) .
$$

The Gauss curvature of the surface T at e_{3} is, by definition,

$$
\begin{equation*}
K=\left\langle a_{1,1}, a_{2,2}\right\rangle-\left|a_{1,2}\right|^{2} ; \tag{5f4}
\end{equation*}
$$

see [7, p. 30] (there it is denoted by G instead of the traditional K). ${ }^{1}$
Instead of the random function $z \mapsto\langle z, \xi\rangle$ on T we consider the corresponding random function $f \in C^{2}(\bar{D})$,

$$
f\left(z_{1}, z_{2}\right)=\left\langle z_{1} e_{1}+z_{2} e_{2}+e_{3}+h\left(z_{1}, z_{2}\right), \xi\right\rangle
$$

as before, ξ is distributed γ^{n}.
5f5 Exercise. $\mathbb{E} J_{\nabla f}(0)=K$.
Prove it.
Hint: first, $\left.\frac{\partial^{2}}{\partial z_{i} \partial z_{j}}\right|_{z_{1}=z_{2}=0} f\left(z_{1}, z_{2}\right)=\left\langle a_{i, j}, \xi\right\rangle ;$ second, $\mathbb{E}(\langle a, \xi\rangle\langle b, \xi\rangle)=$ $\langle a, b\rangle$ for all $a, b \in \mathbb{R}^{n}$.

5f6 Exercise. $\left\langle a_{1,1}, e_{3}\right\rangle=\left\langle a_{2,2}, e_{3}\right\rangle=-1$ and $\left\langle a_{1,2}, e_{3}\right\rangle=0$.
Prove it.
Hint: $\left|z_{1} e_{1}+z_{2} e_{2}+e_{3}+h\left(z_{1}, z_{2}\right)\right|^{2}=1$, therefore $\left\langle h\left(z_{1}, z_{2}\right), e_{3}\right\rangle=-\frac{1}{2}\left(z_{1}^{2}+\right.$ $\left.z_{2}^{2}+o\left(z_{1}^{2}+z_{2}^{2}\right)\right)$.

5f7 Exercise. The following two three-dimensional random vectors are independent:

$$
\begin{gathered}
\left(f(0), f_{, 1}(0), f_{, 2}(0)\right) \\
\left(f_{, 11}(0)+f(0), f_{, 22}(0)+f(0), f_{, 12}(0)\right)
\end{gathered}
$$

[^3]here $f_{, i}(0)=\left.\frac{\partial}{\partial z_{i}}\right|_{z_{1}=z_{2}=0} f\left(z_{1}, z_{2}\right)$ and $f_{, i j}(0)=\left.\frac{\partial^{2}}{\partial z_{i} \partial z_{j}}\right|_{z_{1}=z_{2}=0} f\left(z_{1}, z_{2}\right)$.
Prove it.
Hint: each one of the three vectors $a_{1,1}+e_{3}, a_{2,2}+e_{3}, a_{1,2}$ is orthogonal to e_{1}, e_{2}, e_{3}.

5f8 Exercise. The regression function $\mathbb{E}\left(J_{\nabla f}(0) \mid f(0)=y, \nabla f(0)=y^{\prime}\right)=$ $y^{2}-1+K$ and the density $p_{0}\left(y, y^{\prime}\right)=(2 \pi)^{-3 / 2} \exp \left(-\frac{1}{2} y^{2}-\frac{1}{2}\left|y^{\prime}\right|^{2}\right)$ for $y \in \mathbb{R}$, $y^{\prime} \in \mathbb{R}^{2}$ satisfy (5d1) and (5d2) (for $x=0$).

Prove it.
Hint: first, a formal calculation: $\mathbb{E}\left(f_{, 11}(0) f_{, 22}(0) \mid \ldots\right)=\mathbb{E}\left(\left(\left(f_{, 11}(0)+\right.\right.\right.$ $\left.f(0)-f(0))\left(f_{, 22}(0)+f(0)-f(0)\right) \mid \ldots\right)=\mathbb{E}\left(f_{, 11}(0)+f(0)\right)\left(f_{, 22}(0)+f(0)\right)-\ldots$ etc; second, prove (5d1) and (5d2).

Now we are in position to evaluate the integrand of (the external integral of) (5e2) at the point 0 of D; it is equal to

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\mathbb{R}}\left(y^{2}-1+K\right) \varphi(y) \gamma^{1}(\mathrm{~d} y) \tag{5f9}
\end{equation*}
$$

Still, we cannot evaluate the integral, since every point needs its own coordinate system!

5 g Curvature disappears

Recall the notion 'surface area'; it may be calculated as

$$
\begin{gather*}
\sigma(T)=\int_{D} \sqrt{\left|a_{1}\left(z_{1}, z_{2}\right)\right|^{2}\left|a_{2}\left(z_{1}, z_{2}\right)\right|^{2}-\left(\left\langle a_{1}\left(z_{1}, z_{2}\right), a_{2}\left(z_{1}, z_{2}\right)\right\rangle\right)^{2}} \mathrm{~d} z_{1} \mathrm{~d} z_{2} \tag{5g1}\\
\text { where } a_{i}\left(z_{1}, z_{2}\right)=e_{i}+\frac{\partial}{\partial z_{i}} h\left(z_{1}, z_{2}\right) \quad \text { for } i=1,2
\end{gather*}
$$

but it is 'geometric' in the sense that it does not depend on the choice of a coordinate system. Moreover, σ is a measure on T (still, 'geometric').

Another 'geometric' measure μ on T is defined by

$$
\begin{equation*}
\mu(A)=\mathbb{E} \sum_{z \in A: \nabla f(z)=0} \varphi(f(z)) i_{f}(z) \quad \text { for } A \subset T \tag{5g2}
\end{equation*}
$$

the formula (5e2) (in combination with (5g1)) shows that μ has a density $\mathrm{d} \mu / \mathrm{d} \sigma$, and in fact, the density is continuous. Clearly, $\mathrm{d} \mu / \mathrm{d} \sigma$ is also 'geometric'. It means that, when calculating $\mathrm{d} \mu / \mathrm{d} \sigma$, we may choose a convenient coordinate system for each point separately.

Taking into account that the integrand of (5g1) at 0 is equal to 1 , we conclude from (5f9) that

$$
\begin{equation*}
\frac{\mathrm{d} \mu}{\mathrm{~d} \sigma}(z)=\frac{1}{2 \pi} \int_{\mathbb{R}}\left(y^{2}-1+K(z)\right) \varphi(y) \gamma^{1}(\mathrm{~d} y) \tag{5g3}
\end{equation*}
$$

for $z \in T$; here $K(z)$ is the Gauss curvature of T at z. Thus,

$$
\begin{aligned}
\mathbb{E} \sum_{z \in T: \nabla f(z)=0} \varphi(f(z)) i_{f}(z)= & \frac{1}{2 \pi} \sigma(T) \int_{\mathbb{R}}\left(y^{2}-1\right) \varphi(y) \gamma^{1}(\mathrm{~d} y)+ \\
& +\frac{1}{2 \pi}\left(\int_{T} K(z) \sigma(\mathrm{d} z)\right)\left(\int_{\mathbb{R}} \varphi(y) \gamma^{1}(\mathrm{~d} y)\right) .
\end{aligned}
$$

Summing up small pieces T of the surface $Z\left(S^{2}\right)$ and returning to the random function $x \mapsto f(x)=\langle Z(x), \xi\rangle$ on S^{2} we get

$$
\begin{aligned}
\mathbb{E} \sum_{x \in S^{2}: \nabla f(x)=0} \varphi(f(x)) i_{f}(x)=\frac{1}{2 \pi} & \sigma\left(Z\left(S^{2}\right)\right) \int_{\mathbb{R}}\left(y^{2}-1\right) \varphi(y) \gamma^{1}(\mathrm{~d} y)+ \\
& +\frac{1}{2 \pi}\left(\int_{Z\left(S^{2}\right)} K(z) \sigma(\mathrm{d} z)\right)\left(\int_{\mathbb{R}} \varphi \mathrm{d} \gamma^{1}\right)
\end{aligned}
$$

This is correct if Z is an embedding, but for an immersion we should write $\operatorname{Area}_{Z}\left(S^{2}\right)$ rather than $\sigma\left(Z\left(S^{2}\right)\right)$, and $\int_{S^{2}} K_{Z}(x)$ Area $_{Z}(\mathrm{~d} x)$ rather than $\int_{Z\left(S^{2}\right)} K(z) \sigma(\mathrm{d} z)$. Here S^{2} is equipped with a new Riemannian metric RiM_{Z} induced by the immersion Z (see below); Area a_{Z} is the area measure corresponding to the new Riemannian metric; and $K_{Z}(x)$ is the Gauss curvature at x, corresponding to the new Riemannian metric.

For any smooth curve $\left(x_{t}\right)_{t \in[0,1]}$ on S^{2}, its length is $\int_{0}^{1}\left|v_{t}\right| \mathrm{d} t$ where $v_{t}=$ $\frac{\mathrm{d}}{\mathrm{d} t} x_{t}$. The length of the corresponding curve $\left(Z\left(x_{t}\right)\right)_{t \in[0,1]}$ on S^{n-1} is

$$
\int_{0}^{1}\left|\frac{\mathrm{~d}}{\mathrm{~d} t} Z\left(x_{t}\right)\right| \mathrm{d} t=\int_{0}^{1}\left|\nabla_{v_{t}} Z\left(x_{t}\right)\right| \mathrm{d} t=\int_{0}^{1} \sqrt{\operatorname{RiM}_{Z}\left(x_{t}\right)\left(v_{t}\right)} \mathrm{d} t
$$

(recall (5f2)), where $\operatorname{RiM}_{Z}(x)$ is the quadratic form ${ }^{1} v \mapsto \operatorname{RiM}_{Z}(x)(v)=$ $\left|\nabla_{v} Z(x)\right|^{2}$ on the tangent plane to S^{2} at x. The family $\left(\operatorname{RiM}_{Z}(x)\right)_{x \in S^{2}}$ of these quadratic forms is, by definition, the Riemannian metric RiM_{Z}. (In general, a Riemannian metric is a smooth family of strictly positive quadratic forms on tangent spaces.)

Both Area_{Z} and K_{Z} are uniquely determined by RiM_{Z} (which is the meaning of the term 'intrinsic').

[^4]5g4 Exercise. (a) For $\gamma_{\text {lin }}$ (recall 5f3(a)) the new Riemannian metric RiM_{Z} is equal to the old (usual) Riemannian metric RiM of S^{2}.
(b) For $\gamma_{\text {quad }}$ (recall 5f3(b)), $\mathrm{RiM}_{Z}=\sqrt{3} \mathrm{RiM}$.

Prove it.
Hint: (b) $|Z(x)-Z(y)|^{2}=2-2\langle Z(x), Z(y)\rangle=2(1-\mathbb{E} f(x) f(y))$; use 5 a 2

Here comes a surprise: we do not need to calculate the curvature for every given Z, since the integral of the curvature is a topological invariant, namely,

$$
\begin{equation*}
\int_{S^{2}} K_{Z}(x) \operatorname{Area}_{Z}(\mathrm{~d} x)=4 \pi \tag{5g5}
\end{equation*}
$$

this is a special case of the famous Gauss-Bonnet theorem [7, Sect. 8.2]. Thus,

$$
\begin{aligned}
& \mathbb{E} \sum_{x \in S^{2}: \nabla f(x)=0} \varphi(f(x)) i_{f}(x)=\frac{1}{2 \pi} \operatorname{Area}_{Z}\left(S^{2}\right) \int_{\mathbb{R}}\left(y^{2}-1\right) \varphi(y) \gamma^{1}(\mathrm{~d} y)+ \\
&+2 \int_{\mathbb{R}} \varphi \mathrm{d} \gamma^{1}
\end{aligned}
$$

Finally, using (5b3), 5e5 and taking into account that $\left(y^{2}-1\right) \mathrm{e}^{-y^{2} / 2}=$ $-\left(y \mathrm{e}^{-y^{2} / 2}\right)^{\prime}$ we get
(5g6) $\mathbb{E} \chi\left(\left\{x \in S^{2}: f(x) \geq y\right\}\right)=(2 \pi)^{-3 / 2} y \mathrm{e}^{-y^{2} / 2} \operatorname{Area}_{Z}\left(S^{2}\right)+2 \gamma^{1}([y, \infty))$
for every $y \in \mathbb{R}$ and every random process of the type introduced in (the beginning of) $5 f$ In particular, for $y=0$,

$$
\mathbb{E} \chi\left(\left\{x \in S^{2}: f(x) \geq 0\right\}\right)=1
$$

irrespective of $\operatorname{Area}_{Z}\left(S^{2}\right)$, but this fact is rather a simple consequence of the symmetry of γ under $f \mapsto(-f) .{ }^{1}$ Note also the limiting cases $y \rightarrow-\infty$ and $y \rightarrow+\infty$. And one more limiting case: $\operatorname{Area}_{Z}\left(S^{2}\right) \rightarrow 0$, the constant process.

All said above holds also for a surface on S^{n-1} parameterized by the torus \mathbb{T}^{2} (rather than the sphere S^{2}), except for (5g5); this time, ${ }^{2}$

$$
\begin{equation*}
\int_{\mathbb{T}^{2}} K_{Z}(x) \operatorname{Area}_{Z}(\mathrm{~d} x)=0 \tag{5~g7}
\end{equation*}
$$

and the last term of (5g6) disappears:

$$
\begin{equation*}
\mathbb{E} \chi\left(\left\{x \in \mathbb{T}^{2}: f(x) \geq y\right\}\right)=(2 \pi)^{-3 / 2} y \mathrm{e}^{-y^{2} / 2} \operatorname{Area}_{Z}\left(\mathbb{T}^{2}\right) \tag{5g8}
\end{equation*}
$$

```
    \({ }^{1}\) Indeed, \(\chi\left(\left\{x \in S^{2}: f(x) \geq 0\right\}\right)+\chi\left(\left\{x \in S^{2}: f(x) \leq 0\right\}\right)=\chi\left(S^{2}\right)+\chi\left(\left\{x \in S^{2}:\right.\right.\)
\(f(x)=0\})=2+0=2\).
    \({ }^{2}\) Since \(\chi\left(\mathbb{T}^{2}\right)=0\). Generally, \(\int_{M} K_{Z}(x)\) Area \(_{Z}(\mathrm{~d} x)=2 \pi \chi(M)\).
```


5h A generalization

Let γ be a (centered) Gaussian measure on $C^{2}\left(S^{2}\right)$ such that for every $x \in S^{2}$ (assuming that f is distributed γ),

$$
\begin{equation*}
\text { the distribution of } f(x) \text { is } \mathrm{N}(0,1) \text {, } \tag{5h1}
\end{equation*}
$$

the distribution of $\nabla f(x)$ is a 2-dimensional Gaussian measure.
In other words, the variance of the directional derivative of f does not vanish (at each point, in each direction).

We consider the Hilbert space $H=L_{2}^{\operatorname{lin}}(\gamma)$ of γ-measurable linear functionals (or rather, their equivalence classes), its unit sphere $S(H)=\{z \in$ $H:\|z\|=1\}$ and the map

$$
\begin{gathered}
Z \in C^{2}\left(S^{2}, H\right), \quad Z\left(S^{2}\right) \subset S(H) \\
Z(x)(f)=f(x) \quad \text { for } x \in S^{2}, f \in C^{2}\left(S^{2}\right)
\end{gathered}
$$

5h2 Exercise. Prove that the map $Z: S^{2} \rightarrow H$ is indeed twice continuously differentiable.

Hint: recall (the hint to) 3d3.
Do not think that the necessary condition $Z \in C^{2}\left(S^{2}, H\right)$ is also sufficient. Some γ on $C^{1}\left(S^{2}\right)$ satisfy this condition but do not fit into $C^{2}\left(S^{2}\right) .{ }^{1}$

5h3 Exercise. $f(x)$ and $\nabla f(x)$ are independent (for each $x \in S^{2}$ separately).
Prove it.
Hint: similar to (3d4).
Thus, γ satisfies (5e1) (in any smooth coordinate system on a small piece of S^{2}), which ensures (5e2). Now, all arguments of $5 f$ and 5 g work, giving (5g6). The only point that needs some attention is this: the extrinsic definition (5f4) of the Gauss curvature is equivalent to its intrinsic definition, based on the Riemannian metric RiM_{Z}. The proof is quite similar to the finite-dimensional case. The Gauss-Bonnet theorem works as before, since it is applied to $\left(S^{2}, \operatorname{RiM}_{Z}\right)$ (rather than $Z\left(S^{2}\right) \subset S(H)$).

Similarly, (5g8) holds for every Gaussian random function on the torus, satisfying (5h1).

[^5]
$5 i \quad$ Final remarks

5i1 Exercise. Let $f \in C^{2}\left(S^{2}\right)$ be distributed $\gamma_{\text {lin }}$ (recall 5a), and $M=$ $\sup _{S^{2}} f$. Then

$$
\chi\left(\left\{x \in S^{2}: f(x) \geq y\right\}\right)= \begin{cases}2 & \text { for } y \in(-\infty,-M), \\ 1 & \text { for } y \in(-M, M), \\ 0 & \text { for } y \in(M, \infty)\end{cases}
$$

thus

$$
\mathbb{E} \chi\left(\left\{x \in S^{2}: f(x) \geq y\right\}\right)= \begin{cases}2-\mathbb{P}(M>-y) & \text { for } y<0 \\ \mathbb{P}(M>y) & \text { for } y \geq 0\end{cases}
$$

and (5g6) gives

$$
\mathbb{P}(M>y)=\frac{2}{\sqrt{2 \pi}} y \mathrm{e}^{-y^{2} / 2}+2 \gamma^{1}([y, \infty))=\frac{2}{\sqrt{2 \pi}} \int_{y}^{\infty} u^{2} \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u
$$

for $y \geq 0$.
Check it. Give an elementary explanation, why the density of M is $f_{M}(u)=\frac{2}{\sqrt{2 \pi}} u^{2} \mathrm{e}^{-u^{2} / 2}$ on $(0, \infty)$.
$5 i 2$ Exercise. Let $f \in C^{2}\left(S^{2}\right)$ be distributed $\gamma_{\text {quad }}$ (recall 5al), and $M_{1}>$ $M_{2}>M_{3}$ be the eigenvalues of the quadratic form f, in other words, the critical values of f on S^{2} (two symmetric maxima, two symmetric saddle points and two symmetric minima). Then

$$
\chi\left(\left\{x \in S^{2}: f(x) \geq y\right\}\right)= \begin{cases}2 & \text { for } y \in\left(-\infty, M_{3}\right), \\ 0 & \text { for } y \in\left(M_{3}, M_{2}\right), \\ 2 & \text { for } y \in\left(M_{2}, M_{1}\right), \\ 0 & \text { for } y \in\left(M_{1}, \infty\right),\end{cases}
$$

thus

$$
\mathbb{E} \chi\left(\left\{x \in S^{2}: f(x) \geq y\right\}\right)=2 \mathbb{P}\left(M_{1}>y\right)-2 \mathbb{P}\left(M_{2}>y\right)+2 \mathbb{P}\left(M_{3}>y\right),
$$

and (5g6) gives

$$
\begin{aligned}
\mathbb{P}\left(M_{1}>y\right)-\mathbb{P}\left(M_{2}>y\right)+\mathbb{P}\left(M_{3}>y\right)= & \frac{3}{\sqrt{2 \pi}} y \mathrm{e}^{-y^{2} / 2}+\gamma^{1}([y, \infty))= \\
& =\frac{1}{\sqrt{2 \pi}} \int_{y}^{\infty}\left(3 u^{2}-2\right) \mathrm{e}^{-u^{2} / 2} \mathrm{~d} u
\end{aligned}
$$

for $y \in \mathbb{R}$. In terms of densities,

$$
f_{M_{1}}(u)-f_{M_{2}}(u)+f_{M_{3}}(u)=\frac{1}{\sqrt{2 \pi}}\left(3 u^{2}-2\right) \mathrm{e}^{-u^{2} / 2} .
$$

Check it.
Here we have no exact formula for $\mathbb{P}(M>y)$, where $M=\sup _{S^{2}} f=M_{1}$. However, we have an inequality,

$$
\mathbb{P}(M>y) \geq \frac{3}{\sqrt{2 \pi}} y \mathrm{e}^{-y^{2} / 2}+\gamma^{1}([y, \infty))
$$

and in fact, the right-hand side is a very good approximation of $\mathbb{P}(M>y)$ for large y.

5i3 Exercise. Consider a linear combination $f=a \zeta+b g+c h$ of independent ζ, g, h distributed $\mathrm{N}(0,1)$, $\gamma_{\text {lin }}$ and $\gamma_{\text {quad }}$ respectively (ζ is treated as a random constant function), assuming that $a^{2}+b^{2}+c^{2}=1$.
(a) f satisfies (5h1).
(b) $\operatorname{RiM}_{f}=\sqrt{b^{2}+3 c^{2}}$ RiM.

Check it.
We see that different rotation-invariant Gaussian measures on $C^{2}\left(S^{2}\right)$ may lead to the same Riemannian metric. For example, g and $\sqrt{2 / 3} \zeta+\sqrt{1 / 3} h$. In fact, the same (rotation-invariant) Riemannian metric results also from many Gaussian measures that are not rotation-invariant.

From now on we assume that f and g are random functions of $C^{2}\left(S^{2}\right)$ whose distributions satisfy the conditions of 5 h ,

Given a smooth curve $C \subset S^{2}$, we denote by $\operatorname{Len}_{f}(C)$ its length according to the Riemannian metric RiM_{f}.
$5 i 4$ Exercise. For any smooth closed curve $C \subset S^{2}$,

$$
\mathbb{E} \#\left(C \cap f^{-1}(0)\right)=\operatorname{Len}_{f}(C)
$$

Prove it.
Hint: parameterize C by S^{1} and apply 3 d 6 .
5i5 Exercise. The degenerate case

$$
f(x)=0 \quad \text { and } \quad \nabla f(x)=0
$$

is excluded for almost all f.
Prove it.

Hint: in the spirit of 5 e, introduce $f_{u}(\cdot)=g(\cdot)+u_{1} h_{1}(\cdot)+u_{2} h_{2}(\cdot)+u_{3} h_{3}(\cdot)$ where

$$
\left|\begin{array}{ccc}
h_{1}(\cdot) & h_{2}(\cdot) & h_{3}(\cdot) \\
h_{1,1}(\cdot) & h_{2,1}(\cdot) & h_{3,1}(\cdot) \\
h_{1,2}(\cdot) & h_{2,2}(\cdot) & h_{3,2}(\cdot)
\end{array}\right| \neq 0,
$$

and define $U \in C^{1}\left(\bar{D}, \mathbb{R}^{3}\right)$ by solving (in u) the system $f_{u}(x)=0, \nabla f_{u}(x)=$ 0 .

It follows that the set $f^{-1}(0)$, known as the nodal line, consists of a finite number of disjoint simple (that is, non-self-intersecting) smooth closed curves on S^{2}.

5i6 Exercise.

$$
\mathbb{E} \operatorname{Len}_{f} g^{-1}(0)=\pi \mathbb{E} \#\left(f^{-1}(0) \cap g^{-1}(0)\right)=\mathbb{E} \operatorname{Len}_{g} f^{-1}(0) .
$$

Prove it.
Hint: 5i4, and Fubini.
Choosing $g \sim \gamma_{\text {lin }}$ we observe that $g^{-1}(0)$ is a random great circle, and $\mathrm{Len}_{g}=\mathrm{Len}$ is the usual length. Thus,

$$
\begin{equation*}
\mathbb{E} \operatorname{Len} f^{-1}(0)=\mathbb{E} \operatorname{Len}_{f}(\text { great circle }) ; \tag{5i7}
\end{equation*}
$$

the expected length of the nodal line is equal to the averaged Riemannian length of a great circle.

The condition

$$
\begin{equation*}
\operatorname{RiM}_{f}=C_{f} \cdot \operatorname{RiM} \quad \text { for some } C_{f} \in(0, \infty) \tag{5i8}
\end{equation*}
$$

is weaker than rotation-invariance; it means that the directional derivative is distributed $\mathrm{N}\left(0, C_{f}^{2}\right)$ at each point, in each direction. In this case (5i7) becomes

$$
\begin{equation*}
\mathbb{E} \operatorname{Len} f^{-1}(0)=2 \pi C_{f} . \tag{5i9}
\end{equation*}
$$

On the other hand, $\operatorname{Area}_{f}\left(S^{2}\right)=C_{f}^{2} \operatorname{Area}\left(S^{2}\right)=4 \pi C_{f}^{2}$, thus,

$$
\begin{array}{r}
\mathbb{E} \chi\left(\left\{x \in S^{2}: f(x) \geq y\right\}\right)=2(2 \pi)^{-1 / 2} y \mathrm{e}^{-y^{2} / 2} C_{f}^{2}+2 \gamma^{1}([y, \infty))= \tag{5i10}\\
=2(2 \pi)^{-5 / 2} y \mathrm{e}^{-y^{2} / 2}\left(\mathbb{E} \operatorname{Len} f^{-1}(0)\right)^{2}+2 \gamma^{1}([y, \infty))
\end{array}
$$

a nontrivial relation between the mean length of a nodal line and the mean Euler characteristic.

Waiving (5i8) we have no direct relation between $\operatorname{Area}_{f}\left(S^{2}\right)$ and $\mathbb{E} \operatorname{Len}_{f}$ (great circle), but still, we may get a nontrivial relation as follows.

Let f, g be identically distributed (and independent, as before). It appears that

$$
\begin{equation*}
\mathbb{E} \#\left(f^{-1}(0) \cap g^{-1}(0)\right)=\frac{1}{2 \pi} \operatorname{Area}_{f}\left(S^{2}\right) \tag{5i11}
\end{equation*}
$$

This is a special case of a two-dimensional counterpart of Rice's formula; I do not prove it. (Think, what happens if $f \sim \gamma_{\text {lin }}$.) Using (5i11) we get

$$
\begin{array}{r}
\mathbb{E} \chi\left(\left\{x \in S^{2}: f(x) \geq y\right\}\right)=(2 \pi)^{-1 / 2} y \mathrm{e}^{-y^{2} / 2} \mathbb{E} \#\left(f^{-1}(0) \cap g^{-1}(0)\right)+ \tag{5i12}\\
+2 \gamma^{1}([y, \infty))
\end{array}
$$

a very general nontrivial relation between the mean Euler characteristic and the mean number of intersections between two independent nodal lines. Assuming also (5i8) we get $\mathbb{E} \#\left(f^{-1}(0) \cap g^{-1}(0)\right)=2 C_{f}^{2}$.

The same holds for the torus, except for the last term;

$$
\begin{equation*}
\mathbb{E} \chi\left(\left\{x \in \mathbb{T}^{2}: f(x) \geq y\right\}\right)=(2 \pi)^{-1 / 2} y \mathrm{e}^{-y^{2} / 2} \mathbb{E} \#\left(f^{-1}(0) \cap g^{-1}(0)\right) \tag{5i13}
\end{equation*}
$$

A remarkable theorem of Taylor, Takemura and Adler [8, Th. 4.3] shows that the expected Euler characteristic is an excellent approximation for (the tail of) the distribution of $M_{f}=\max _{S^{2}} f$; namely, there exists $\varepsilon>0$ (depending on the distribution of f) such that

$$
\left|\mathbb{P}\left(M_{f} \geq y\right)-\mathbb{E} \chi\left(\left\{x \in S^{2}: f(x) \geq y\right\}\right)\right| \leq \exp \left(-\frac{1+\varepsilon}{2} y^{2}\right)
$$

for all y large enough. It is assumed that the maximizer is unique a.s. ${ }^{1}$ A sufficient condition: $\mathbb{E}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|^{2}>0$ whenever $x_{1} \neq x_{2}$.

A much, much weaker statement,

$$
\mathbb{P}\left(M_{f} \geq y\right) \sim(2 \pi)^{-3 / 2} y \mathrm{e}^{-y^{2} / 2} \operatorname{Area}_{f}\left(S^{2}\right) \sim \frac{\operatorname{Area}_{f}\left(S^{2}\right)}{2 \pi} y^{2} \gamma^{1}([y, \infty))
$$

shows that

$$
\frac{\mathbb{P}\left(M_{f} \geq y\right)}{\mathbb{P}\left(M_{g} \geq y\right)} \rightarrow \frac{\operatorname{Area}_{f}\left(S^{2}\right)}{\operatorname{Area}_{g}\left(S^{2}\right)} \quad \text { as } y \rightarrow \infty
$$

$5 i 14$ Corollary. If

$$
\frac{\mathbb{E}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|^{2}}{\mathbb{E}\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right|^{2}} \rightarrow 1 \quad \text { as } \operatorname{dist}\left(x_{1}, x_{2}\right) \rightarrow 0
$$

[^6]and $\mathbb{E}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|^{2}>0, \mathbb{E}\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right|^{2}>0$ whenever $x_{1} \neq x_{2}$, then
$$
\frac{\mathbb{P}(\max f \geq y)}{\mathbb{P}(\max g \geq y)} \rightarrow 1 \quad \text { as } y \rightarrow \infty
$$

The proof involves differential geometry, but the formulation does not!
$5 i 15$ Question. Is any differential structure essential for 5i14?:
Let f, g be Gaussian random continuous functions on a compact metric space T, satisfying $f(t) \sim \mathrm{N}(0,1)$ and $g(t) \sim \mathrm{N}(0,1)$ for all $t \in T$. Does 5i14 hold in this generality?

The same question applies to a stronger claim: if

$$
\frac{\mathbb{E}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|^{2}}{\mathbb{E}\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right|^{2}} \rightarrow C^{2} \quad \text { as } \operatorname{dist}\left(x_{1}, x_{2}\right) \rightarrow 0
$$

for some $C \in(0, \infty)$, and $\mathbb{E}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|^{2}>0, \mathbb{E}\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right|^{2}>0$ whenever $x_{1} \neq x_{2}$, then

$$
\frac{\mathbb{P}(\max f \geq y)}{\mathbb{P}(\max g \geq y)} \rightarrow C^{2} \quad \text { as } y \rightarrow \infty
$$

The theory presented here is relatively easy, since we restrict ourselves to (some) smooth compact two-dimensional manifolds without boundary. The theory of Adler and Taylor [2] is much harder, since it covers piecewise smooth n-dimensional manifolds with boundary.

References

[1] R.J. Adler, On excursion sets, tube formulas and maxima of random fields, Annals of Applied Probability 10:1, 1-74 (2000).
[2] R.J. Adler, J.E. Taylor, Random fields and geometry, a book to appear (the draft of January 2006).
[3] M.W. Hirsh, Differential topology, Springer 1976.
[4] M.A. Krasnosel'skiy, A.I. Perov, A.I. Povolotskiy, P.P. Zabreiko, Plane vector fields, London 1966 (transl. from Russian).
[5] Yu. Matsumoto, An introduction to Morse theory, Amer. Math. Soc. 2002 (transl. from Japanese).
[6] J.W. Milnor, Topology from the differentiable viewpoint, Princeton 1965, 1997.
[7] F. Morgan, Riemannian geometry: a beginner's guide, second edition, Wellesley 1998.
[8] J. Taylor, A. Takemura, R.J. Adler, Validity of the expected Euler characteristic heuristic, Annals of Probability 33:4, 1362-1396 (2005).
Also arXiv:math.PR/0507442.

Index

area, 56
critical point, 47
critical value, 47
curvature, 55
embedding, 54
Euler characteristic, 48
excursion, 47
Gauss-Bonnet theorem, 58
gradient, 50
immersion, 53
index of critical point, 48
Jacobian, 49
Morse function, 48
nodal line, 62
nondegenerate critical point, 48
Riemannian metric, 57
saddle point, 47
K_{Z}, Riemannian curvature, 57
Area $_{Z}$, Riemannian area, 57
RiM_{Z}, Riemannian metric, 57
χ, Euler characteristic, 48
$\gamma_{\text {lin }}$,45
$\gamma_{\text {quad }}$,45
J_{f}, Jacobian, 49
K, curvature, 55
Len_{f}, Riemannian length, 61
∇f, gradient, 50
σ, area, 56

[^0]: ${ }^{1}$ Accordingly, $H_{\text {quad }}$ decomposes into a line and two planes; rotating S^{2} by α around the z axis, we rotate these planes by α and 2α respectively. In terms of spin 1 these correspond to eigenvalues of the z projection of the spin: 0 (the line), ± 1 (the first plane), ± 2 (the second plane).
 ${ }^{2}$ Harmonic homogeneous forms of degree n correspond to an eigenspace of the spherical Laplacian, spherical functions, and spin n.

[^1]: ${ }^{1}$ The determinant depends on a local coordinate system, but its nondegeneracy and sign do not.
 ${ }^{2}$ The same notion of index is used in [6, Sect. 6] and [4 Sect. 11.2]. A different (but related) notion of index is used in [1] and [5], see also [3, Sect. 6.1]. In terms of their index $\operatorname{Ind}_{f}(x) \in\{0,1,2\}$, our index is $i_{f}(x)=(-1)^{\operatorname{Ind}_{f}(x)}$.
 ${ }^{3}$ Another definition is, (number of triangles) - (number of edges) + (number of vertices) in any triangulation, see [5] Th. 4.11], where also a third, homological definition can be found. In addition, $\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)$, see [5] Prop. 4.13].

[^2]: ${ }^{1}$ And, in addition, integrability of its supremum over a bounded set.

[^3]: ${ }^{1}$ See also [7] Chap. 3] for surfaces in \mathbb{R}^{3}, the famous Gauss's Theorema Egregium ('remarkable' or 'excellent' theorem): Gaussian curvature is intrinsic [7] 3.6 and 4.3] and the area of a disc of intrinsic radius r : area $=\pi r^{2}-G \frac{\pi}{12} r^{4}+\ldots$ (7) (3.8)].

[^4]: ${ }^{1}$ It is quadratic, since $\nabla_{v} Z(x)$ is linear in v.

[^5]: ${ }^{1}$ It is sufficient (but not necessary) that the second derivatives of Z satisfy some Hölder condition (in particular, $Z \in C^{3}\left(S^{2}, H\right)$ is far enough).

[^6]: ${ }^{1}$ Otherwise the approximation may fail; 5 i 2 gives a counterexample.

