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5a Introductory remarks

The sphere S2 = {x ∈ R
3 : |x| = 1} is an example of a 2-dimensional man-

ifold. We will consider the space C2(S2) of twice continuously differentiable
functions S2 → R and Gaussian measures on this space.

For example, linear functions x 7→ 〈x, ξ〉 on R
3, restricted to S2, are a

3-dimensional subspace Hlin of C2(S2), parameterized by ξ ∈ R
3. If ξ is

random, distributed γ3, we get a rotation-invariant 3-dimensional Gaussian
measure on C2(S2), denote it γlin.

5a1 Exercise. (a) Calculate E f(x)f(y), that is,
∫

C2(S2)

f(x)f(y) γlin(df) ,

for x, y ∈ S2.
(b) Prove that the norm | · |γlin

(recall page 7) is the restriction to Hlin of
the norm of L2(S

2, 3µ), where µ is the uniform distribution (in other words,
normalized area measure) on S2.

Quadratic forms on R
3, restricted to S2, are a 6-dimensional subspace of

C2(S2), containing 1 = x2 + y2 + z2. Forms orthogonal to 1 in L2(S
2, µ) are

a 5-dimensional subspace Hquad. The norm of C2(S2) does not turn it into
a Euclidean space, but the norm of L2(S

2, 5µ) does. This norm is | · |γ for
some (unique) rotation-invariant 5-dimensional Gaussian measure on C2(S2),
denote it γquad.
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5a2 Exercise. (a) Prove that the restriction of f to any great circle of S2

is distributed like the random trigonometric polynomial

1

2
ζ0 +

√
3

2
(ζ2 cos 2t+ η2 sin 2t) ,

where ζ0, ζ2, η2 are independent N(0, 1) random variables.
(b) Calculate E f(x)f(y) w.r.t. γquad for x, y ∈ S2.

Hint. First,
∫

S2 f(x)µ(dxdydz) = 1
2

∫ 1

−1
f(x) dx for any f . Second,

∫

S2 x
2y2 µ(dxdydz) = 1

15
, since (x2 + y2 + z2)2 = 1 on S2. Third, here is

a convenient orthonormal basis of Hquad ⊂ L2(S
2, 5µ):1

3z2 − 1

2
;

√
3zx,

√
3zy;

√
3xy,

√
3
x2 − y2

2
.

We may consider, say, f = g + 1
2
h where g ∼ γlin and h ∼ γquad are

independent; such f is still a rotation-invariant Gaussian random field on
S2. And, of course, we may use higher (cubic, . . . ) forms.2

The similar one-dimensional construction (over S1) leads to random trigono-
metric polynomials, in the spirit of 1c12.

The torus T
2 = S1 × S1 is another example of a 2-dimensional manifold.

The space C2(T2) may be identified with the space of double-periodic smooth
functions R

2 → R.
For example, trigonometric polynomials, spanned by cos kx cos ly,

cos kx sin ly, sin kx cos ly, sin kx sin ly with k + l ≤ n (for a given n) are
a finite-dimensional subspace of C2(T2). The norm of L2(S2) turns it into a
Euclidean space and leads to a stationary (that is, shift-invariant) Gaussian
measure on C2(T2).

We may also treat T
2 as {(x, y, u, v) : x2 + y2 = 1, u2 + v2 = 1} ⊂ R

4.
Algebraic polynomials on R

4 turn into trigonometric polynomials on T
2.

Other 2-dimensional manifolds could be used, but we restrict ourselves
to S2 and T

2.
See [1, p. 9] for a figure showing the cosmic microwave background radi-

ation treated as a Gaussian random field on S2 (the sky). See also [1, p. 10]
for tomographic brain images.

1Accordingly, Hquad decomposes into a line and two planes; rotating S2 by α around
the z axis, we rotate these planes by α and 2α respectively. In terms of spin 1 these
correspond to eigenvalues of the z projection of the spin: 0 (the line), ±1 (the first plane),
±2 (the second plane).

2Harmonic homogeneous forms of degree n correspond to an eigenspace of the spherical
Laplacian, spherical functions, and spin n.
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5b Excursions: some topology

We return for a short while to dimension one. Let f ∈ C2(S1), and y ∈ R be
such that f−1(y) is a finite nonempty set not containing critical points of f .
The set {x ∈ S1 : f(x) ≥ y} is the union of a finite set of disjoint intervals.
These intervals may be called excursions of f (above y). How to calculate
the expected number of excursions for a random f?

Clearly, the number of excursions is equal to 1
2
#f−1(y), and we may use

Rice’s formula. Unfortunately, this approach does not work in dimension
two, since f−1(y) fails to be a discrete set.

Each excursion contains a critical point, namely, a maximum of f . It may
contain k maxima, but only in combination with k − 1 minima. Thus,

(

number of
excursions
above y

)

=

(

number of
maxima
above y

)

−
(

number of
minima
above y

)

.

This approach could work in dimension two, since critical points are still a
discrete set. However, the combination (#maxima) − (#minima) fails to be
1 (or another constant) within a single two-dimensional excursion.

maximum saddle point

A local perturbation of f (near a non-critical point) can create a new max-
imum in combination with a new saddle point. Similarly it can create a
new minimum in combination with a new saddle point. Here is the only
expression that has a chance to be insensitive to perturbations:

(

number of
maxima

)

−
(

number of
saddle points

)

+
(

number of
minima

)

.

Theorem 5b1 below states that it really is.
Let f ∈ C2(S2) (however, T

2 may be used equally well);

∗ a point x ∈ S2 is called a critical point (of f), if the first derivatives of

f at x vanish; equivalently, if f(x1)−f(x)
dist(x1,x)

→ 0 as x1 → x;

∗ a number y ∈ R is called a critical value (of f), if y = f(x) for some
critical point x;
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∗ a critical point x is nondegenerate if the matrix of the second derivatives
of f at x is nondegenerate, that is, its determinant does not vanish;1

∗ the index if (x) of a nondegenerate critical point x of f is, by definition,
the sign (±1) of the determinant mentioned above;

∗ a nondegenerate critical point of index +1 is an extremum (maximum
or minimum); a nondegenerate critical point of index −1 is a saddle
point;

∗ f is called a Morse function if all its critical points are nondegenerate.

See [5, Sect. 1.2–1.4].2 Below, ‘∇f(x) = 0’ means that x is a critical point of
f .

5b1 Theorem. Let f, g ∈ C2(S2) be Morse functions such that

∀x ∈ S2 sgn f(x) = sgn g(x)

and 0 is not a critical value of f , nor of g. Then
∑

x:f(x)<0,∇f(x)=0

if(x) =
∑

x:g(x)<0,∇g(x)=0

ig(x) ,

∑

x:f(x)>0,∇f(x)=0

if(x) =
∑

x:g(x)>0,∇g(x)=0

ig(x) .

The same holds for T
2.

I give no proof. Theorem 5b1 is a simple consequence of Morse theory,
see Poincaré-Hopf theorem in [6, Sect. 6]. A rather elementary proof of the
two-dimensional case is given in [4, Sect. 3.4 and 11.2] for the planar case,
that is, when the domains {x : f(x) < 0}, {x : f(x) > 0} can be embedded
into R

2. This is enough for S2 but not T
2; see also [4, Sect. 4.7]. Beyond the

planar case we cannot define the rotation of the vector field ∇f on the curve
f−1(0), but still, we can define the difference between two such rotations (of
∇f and ∇g).

The topological invariant disclosed by Theorem 5b1 is called the Euler

(-Poincare) characteristic and denoted by χ;3

(5b2)
∑

x:f(x)>0,∇f(x)=0

if(x) = χ
(

{x : f(x) ≥ 0}
)

.

1The determinant depends on a local coordinate system, but its nondegeneracy and
sign do not.

2The same notion of index is used in [6, Sect. 6] and [4, Sect. 11.2]. A different (but
related) notion of index is used in [1] and [5], see also [3, Sect. 6.1]. In terms of their index
Indf (x) ∈ {0, 1, 2}, our index is if (x) = (−1)Indf (x).

3Another definition is, (number of triangles) − (number of edges) + (number of vertices)
in any triangulation, see [5, Th. 4.11], where also a third, homological definition can be
found. In addition, χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B), see [5, Prop. 4.13].
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Clearly, if {x : f(x) ≥ 0} is not connected then its Euler characteristic
decomposes into the sum (over connected components). A connected region
D ⊂ S2 is S2 with k holes (for some k ∈ {0, 1, 2, . . .}), and χ(D) = 2 − k
[3, Th. 9.3.7 for p = 0]; especially, χ(S2) = 2, χ(disk) = 1, χ(annulus) = 0
(and note that negative values are also possible). The torus T

2 with k holes
is a non-planary connected region D; in this case χ(D) = −k [3, Th. 9.3.7
for p = 1]. Especially, χ(T2) = 0.

A trivial generalization of (5b2),

(5b3)
∑

x:f(x)>y,∇f(x)=0

if (x) = χ
(

{x : f(x) ≥ y}
)

(assuming that f is a Morse function, and y is not a critical value of f), will
be applied to a random function f . Calculating the expectation of the sum
we will get the expected Euler characteristic, Eχ

(

{x : f(x) ≥ y}
)

. True,
this is not the expected number of excursions above y (that is, connected
components of the excursion set {x : f(x) ≥ y}). However, for a high level
y we have usually no excursion at all, and sometimes a single, small excur-
sion (roughly, ellipse) with no holes inside; its Euler characteristic equals 1.
Other cases are relatively rare. This is why the expected Euler characteristic
can give a valuable information about (the tail of) the distribution of the
maximum of a smooth random field.

Dealing with a small excursion D with 1−χ(D) holes inside we may call
these holes ‘antiexcursions’. In this sense,

χ
(

{x : f(x) ≥ y}
)

=
(

number of
excursions

)

−
(

number of
antiexcursions

)

.

5c Nonrandom function

Taking into account that a small piece of S2 or T
2 is a planar domain, for

now we consider functions on a bounded open set D ⊂ R
2 or its closure D.

Recall that every map f ∈ C1(D,R2) has the Jacobian Jf ∈ C(D,R);

(5c1) Jf(x) =

∣

∣

∣

∣

∣

∂y1

∂x1

∂y2

∂x1

∂y1

∂x2

∂y2

∂x2

∣

∣

∣

∣

∣

,

where (y1, y2) = y = f(x) = f(x1, x2). If f is one-to-one on D then

(5c2) mes2 f(D) =

∫

D

|Jf(x)| dx

(‘mes2’ is the two-dimensional Lebesgue measure) and moreover,

(5c3)

∫

f(D)

ϕ(y) dy =

∫

D

ϕ(f(x))|Jf(x)| dx
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for every bounded Borel function ϕ : f(D) → R.

5c4 Exercise. For every bounded Borel function ϕ : D × R
2 → R,

∫

R2

dy
∑

x∈f−1(y)

ϕ(x, y) =

∫

D

ϕ(x, f(x))|Jf(x)| dx .

Prove it.
Hint: partition the graph of f into a (finite or infinite) sequence of small

parts and apply (5c3) on each part; consider positive and negative values
of ϕ separately; and use (two-dimensional) Sard’s theorem, similarly to the
proof of 3b1.

A function f ∈ C2(D) has the gradient ∇f ∈ C1(D,R2),

∇f(x) =
( ∂y

∂x1

,
∂y

∂x2

)

where y = f(x) = f(x1, x2). A critical point of f is x such that ∇f(x) =
0. The critical point x is nondegenerate if J∇f(x) 6= 0. The index of a
nondegenerate critical point x is

if (x) = sgn J∇f(x) .

5c5 Exercise. For all bounded Borel functions ϕ : R → R, ψ : R
2 → R and

all f ∈ C2(D),

∫

R2

dy′ψ(y′)
∑

x∈D:∇f(x)=y′

ϕ(f(x)) sgnJ∇f(x) =

∫

D

dxψ(∇f(x))ϕ(f(x))J∇f(x) .

Prove it.
Hint: similar to 4a3.

5d Random function

Similarly to 4a we consider a probability measure µ on C2(D) such that for
each x ∈ D some density (y, y′) 7→ px(y, y

′) and some regression function
(y, y′) 7→ E

(

J∇f(x)
∣

∣f(x) = y,∇f(x) = y′
)

satisfy the equalities

(5d1) Eϕ(f(x))ψ(∇f(x)) =

∫

R

dy

∫

R2

dy′ px(y, y
′)ϕ(y)ψ(y′)
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and

(5d2) Eϕ(f(x))ψ(∇f(x))J∇f(x) =

=

∫

R

dy

∫

R2

dy′ px(y, y
′)ϕ(y)ψ(y′)E

(

J∇f(x)
∣

∣f(x) = y,∇f(x) = y′
)

for all bounded Borel functions ϕ : R → R, ψ : R
2 → R (similarly to 4a7).

We also assume that

(5d3) E

∫

D

|J∇f(x)| dx <∞ .

Similarly to (4a6) we get

(5d4) E

∑

x∈D:∇f(x)=y′

ϕ(f(x)) sgnJ∇f(x) =

=

∫

D

dx px(y
′)

∫

R

dy px(y|y′)ϕ(y)E
(

J∇f(x)
∣

∣f(x) = y,∇f(x) = y′
)

for almost all y′ ∈ R
2; as before,

px(y, y
′) = px(y

′)px(y|y′) .

5e Gaussian case

Similarly to 4b we consider a (centered) Gaussian measure γ on C2(D) such
that for every x ∈ D (assuming that f is distributed γ),

(5e1) the joint distribution of f(x) and ∇f(x) is a nondegenerate

Gaussian measure on R
3.

In other words,

∗ the variance of f(x) does not vanish,

∗ conditionally, given f(x), the variance of the directional derivative of
f at x does not vanish

(at each point, in each direction). Compare it with (4b1), (4b2). For now
the variance of f(x) need not be equal to 1 (yet).

The conditions of 5d are thus ensured, and therefore (5d4) holds for al-
most all y′. In fact it holds for all y′, as is shown below (similarly to 4b).
Especially, for y′ = 0, taking into account that sgn J∇f(x) = if (x) (and
letting if (x) = 0 if x is degenerate) we get

(5e2) E

∑

x∈D:∇f(x)=0

ϕ(f(x))if (x) =

=

∫

D

dx px(0)

∫

R

dy px(y|y′ = 0)ϕ(y)E
(

J∇f(x)
∣

∣f(x) = y,∇f(x) = 0
)

.
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The right-hand side of (5d4) is continuous in y′ (check it); we have to
prove that the left-hand side

E

∑

x∈D:∇f(x)=y′

ϕ(f(x)) sgn J∇f(x)

is also continuous in y′. Similarly to 3d and 4b, it is sufficient to check
continuity of the function1

y′ 7→
∫

R2

γ2(du)
∑

x∈D:∇fu(x)=y′

ϕ(fu(x)) sgn J∇fu
(x) ,

where fu(·) = fu1,u2
(·) = g(·) + u1h1(·) + u2h2(·); g, h1, h2 ∈ C2(D) and the

two vectors ∇h1(x),∇h2(x) are linearly independent for all x ∈ D. To this
end we transform the integral in u into an integral in x (compare it with
(4b6)):
(5e3)
∫

R2

γ2(du)
∑

x∈D:∇fu(x)=y′

ϕ(fu(x)) sgnJ∇fu
(x) = ±

∫

D

ϕ
(

fU(x)(x)
)

γ2(dU(x)) ;

here the sign is ‘+’ if Jh(·) = det(∇h1,∇h2) > 0 on D, or ‘−’ if Jh(·) < 0 on
D; and U(x) =

(

U1(x), U2(x)
)

is the (unique) solution of the linear equation

(5e4) ∇g(x) + U1(x)∇h1(x) + U2(x)∇h2(x) = y1 .

(Note that U ∈ C1(D,R2).) Clearly, the right-hand side of (5e3) is continu-
ous in y′ (assuming continuity of ϕ without loss of generality, recall (4b8)).

In order to get (5e3) we start with a two-dimensional counterpart of (3b7):

∫

R2

dy
∑

x∈f−1(y)

g(x) sgnJf (x) =

∫

D

g(x)Jf(x) dx

for f ∈ C1(D,R2) (which follows from 5c4). Replacing f with U and g(x)
with ϕ(fU(x)(x))

1
2π

exp
(

−1
2
U2

1 (x) − 1
2
U2

2 (x)
)

we get

∫

R2

γ2(du)
∑

x:U(x)=u

ϕ(fu(x)) sgn JU(x) =

=

∫

D

ϕ(fU(x)(x))
1

2π
exp

(

−1
2
U2

1 (x) − 1
2
U2

2 (x)
)

JU(x) dx .

1And, in addition, integrability of its supremum over a bounded set.
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However, U(x) = u ⇐⇒ ∇fu(x) = y′, and J∇f(·) = JU(·)Jh(·). In
order to get the latter equality we differentiate (5e4) in x getting f,kl =
−h1,kU1,l − h2,kU2,l where

f,kl =

(

∂2

∂xk∂xl
fu(x1, x2)

)
∣

∣

∣

∣

u=U(x1,x2)

.

Finally,

J∇f = f,11f,22 − f,12f,21 = (h1,1h2,2 − h1,2h2,1)(U1,1U2,2 − U1,2U2,1) = JhJU ,

which completes the proof of (5e2).

5e5 Exercise. With probability 1, f is a Morse function.
Prove it. Do you need the whole (5e1), or something weaker?
Hint: fu = g+u1h1 +u2h2 and U(·) as before; if x is a degenerate critical

point of fu, then u is a critical value of U , since u = U(x) and

∇g(x+ ∆x) + U1(x)∇h1(x+ ∆x) + U2(x)∇h2(x+ ∆x) = o(|∆x|) ,
therefore

(U1(x+∆x)−U1(x))∇h1(x+∆x)+(U2(x+∆x)−U2(x))∇h2(x+∆x) = o(|∆x|) .

5f Curvature appears

No kind of curvature can be detected by a bug

on a curve. But if the bug moves to a surface,

it can detect Gaussian curvature.

F. Morgan [7, Sect. 3.6 (p. 24)].

Upgrading 3e and 4d we consider a surface (rather than curve) on Sn−1 =
{z ∈ R

n : |z| = 1} parameterized by S2;

Z ∈ C2
(

S2,Rn
)

, Z
(

S2
)

⊂ Sn−1 .

We assume that Z is an immersion, that is [3, Sect. 1.3],

(5f1) ∇vZ(x) 6= 0

for every x ∈ S2 and every vector v 6= 0 tangent to S2 at x (that is, 〈v, x〉 =
0); of course,

(5f2) ∇vZ(x) = lim
ε→0

1

ε

(

Z
( x+ εv

|x+ εv|
)

− Z(x)

)

.

It leads to a Gaussian random vector in C2(S2),

f(x) = 〈Z(x), ξ〉 ,
where ξ is distributed γn.
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5f3 Exercise. (a) Some choice of n and Z makes f distributed γlin (recall
5a).

(b) The same holds for γquad.
(c) The same holds for the convolution of γquad and γlin, that is, the

distribution of f = g + h for independent g ∼ γquad and h ∼ γlin.
Prove it. What about ag + bh?
Hint: (b) use 5a2; (c) take the orthogonal sum of the spaces used in (a)

and (b).

A crucial distinction between curves and surfaces is that all curves are
mutually isometric but surfaces are not. I mean, on every curve there exists
a coordinate u such that

dist(A,B) = |u(A) − u(B)| · (1 + o(1))

as dist(A,B) → 0. In contrast, a surface generally does not admit coordinates
u1, u2 such that

dist(A,B) =
√

|u1(A) − u1(B)|2 + |u2(A) − u2(B)|2 · (1 + o(1))

as dist(A,B) → 0.
The natural parameter helped us a lot in 4c, but cannot help now. And

do not blame the domain, S2. Blame the range, Z(S2) ⊂ Sn−1. The same
difficulty appears for Gaussian random fields on planar domains.

Critical points of the function x 7→ f(x) = 〈Z(x), ξ〉 on S2 correspond
to critical points of the function z 7→ 〈z, ξ〉 on the two-dimensional surface
Z(S2) ⊂ Sn−1. True, Z need not be one-to-one (it is an immersion, not
necessarily embedding [3, Sect. 1.3]), but this is not an obstacle. We may
count critical points on small pieces of S2; on such piece Z is one-to-one,
and its inverse Z−1 is also smooth (C2) on the corresponding piece of Z(S2).
Thus, we may forget for a while about S2 and Z and consider the random
function z 7→ 〈z, ξ〉 on a small piece T ⊂ Sn−1 of a two-dimensional surface.
(Afterwards we will translate the result into the language of Z and S2.)

Given a point of T , we want to choose coordinates that are as convenient
as possible around this point. To this end we rotate the coordinate system
of R

n so that the given point becomes e3 = (0, 0, 1, 0, . . . , 0) and the tangent
plane to T at e3 becomes Re1 + Re2 + e3. We get

T = {z1e1 + z2e2 + e3 + h(z1, z2) : (z1, z2) ∈ D}

where D ⊂ R
2 is an open neighborhood of the origin (of R

2), and h ∈
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C2(D,Rn) satisfies

h(z1, z2)
√

z2
1 + z2

2

→ 0 as z1 → 0, z2 → 0 ;

〈h(z1, z2), e1〉 = 〈h(z1, z2), e2〉 = 0 for all (z1, z2) ∈ D .

Introducing

ai,j =
∂2

∂zi∂zj

∣

∣

∣

∣

z1=z2=0

h(z1, z2) ∈ R
n for i, j ∈ {1, 2}

we get 〈ai,j, e1〉 = 〈ai,j, e2〉 = 0 and

h(z1, z2) = 1
2
a1,1z

2
1 + a1,2z1z2 + 1

2
a2,2z

2
2 + o(z2

1 + z2
2) .

The Gauss curvature of the surface T at e3 is, by definition,

(5f4) K = 〈a1,1, a2,2〉 − |a1,2|2 ;

see [7, p. 30] (there it is denoted by G instead of the traditional K).1

Instead of the random function z 7→ 〈z, ξ〉 on T we consider the corre-
sponding random function f ∈ C2(D),

f(z1, z2) = 〈z1e1 + z2e2 + e3 + h(z1, z2), ξ〉 ;

as before, ξ is distributed γn.

5f5 Exercise. E J∇f(0) = K.
Prove it.
Hint: first, ∂2

∂zi∂zj

∣

∣

z1=z2=0
f(z1, z2) = 〈ai,j, ξ〉; second, E

(

〈a, ξ〉〈b, ξ〉
)

=

〈a, b〉 for all a, b ∈ R
n.

5f6 Exercise. 〈a1,1, e3〉 = 〈a2,2, e3〉 = −1 and 〈a1,2, e3〉 = 0.
Prove it.
Hint: |z1e1 +z2e2 +e3 +h(z1, z2)|2 = 1, therefore 〈h(z1, z2), e3〉 = −1

2

(

z2
1 +

z2
2 + o(z2

1 + z2
2)

)

.

5f7 Exercise. The following two three-dimensional random vectors are in-
dependent:

(

f(0), f,1(0), f,2(0)
)

,
(

f,11(0) + f(0), f,22(0) + f(0), f,12(0)
)

;

1See also [7, Chap. 3] for surfaces in R
3, the famous Gauss’s Theorema Egregium (‘re-

markable’ or ‘excellent’ theorem): Gaussian curvature is intrinsic [7, 3.6 and 4.3] and the
area of a disc of intrinsic radius r: area = πr2 − G π

12r4 + . . . [7, (3.8)].
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here f,i(0) = ∂
∂zi

∣

∣

z1=z2=0
f(z1, z2) and f,ij(0) = ∂2

∂zi∂zj

∣

∣

z1=z2=0
f(z1, z2).

Prove it.
Hint: each one of the three vectors a1,1 + e3, a2,2 + e3, a1,2 is orthogonal

to e1, e2, e3.

5f8 Exercise. The regression function E
(

J∇f(0)
∣

∣f(0) = y,∇f(0) = y′
)

=

y2 − 1+K and the density p0(y, y
′) = (2π)−3/2 exp

(

−1
2
y2 − 1

2
|y′|2

)

for y ∈ R,
y′ ∈ R

2 satisfy (5d1) and (5d2) (for x = 0).
Prove it.
Hint: first, a formal calculation: E

(

f,11(0)f,22(0)
∣

∣ . . .
)

= E
((

(f,11(0) +
f(0)−f(0))(f,22(0)+f(0)−f(0))

∣

∣ . . .
)

= E (f,11(0)+f(0))(f,22(0)+f(0))−. . .
etc; second, prove (5d1) and (5d2).

Now we are in position to evaluate the integrand of (the external integral
of) (5e2) at the point 0 of D; it is equal to

(5f9)
1

2π

∫

R

(y2 − 1 +K)ϕ(y) γ1(dy) .

Still, we cannot evaluate the integral, since every point needs its own coor-
dinate system!

5g Curvature disappears

Recall the notion ‘surface area’; it may be calculated as

σ(T ) =

∫

D

√

|a1(z1, z2)|2|a2(z1, z2)|2 − (〈a1(z1, z2), a2(z1, z2)〉)2 dz1dz2 ,

(5g1)

where ai(z1, z2) = ei +
∂

∂zi
h(z1, z2) for i = 1, 2 ,

but it is ‘geometric’ in the sense that it does not depend on the choice of a
coordinate system. Moreover, σ is a measure on T (still, ‘geometric’).

Another ‘geometric’ measure µ on T is defined by

(5g2) µ(A) = E

∑

z∈A:∇f(z)=0

ϕ(f(z))if (z) for A ⊂ T ;

the formula (5e2) (in combination with (5g1)) shows that µ has a density
dµ/dσ, and in fact, the density is continuous. Clearly, dµ/dσ is also ‘geo-
metric’. It means that, when calculating dµ/dσ, we may choose a convenient
coordinate system for each point separately.
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Taking into account that the integrand of (5g1) at 0 is equal to 1, we
conclude from (5f9) that

(5g3)
dµ

dσ
(z) =

1

2π

∫

R

(y2 − 1 +K(z))ϕ(y) γ1(dy)

for z ∈ T ; here K(z) is the Gauss curvature of T at z. Thus,

E

∑

z∈T :∇f(z)=0

ϕ(f(z))if(z) =
1

2π
σ(T )

∫

R

(y2 − 1)ϕ(y) γ1(dy)+

+
1

2π

(
∫

T

K(z) σ(dz)

)(
∫

R

ϕ(y) γ1(dy)

)

.

Summing up small pieces T of the surface Z(S2) and returning to the random
function x 7→ f(x) = 〈Z(x), ξ〉 on S2 we get

E

∑

x∈S2:∇f(x)=0

ϕ(f(x))if(x) =
1

2π
σ(Z(S2))

∫

R

(y2 − 1)ϕ(y) γ1(dy)+

+
1

2π

(
∫

Z(S2)

K(z) σ(dz)

)(
∫

R

ϕ dγ1

)

.

This is correct if Z is an embedding, but for an immersion we should
write AreaZ(S2) rather than σ(Z(S2)), and

∫

S2 KZ(x) AreaZ(dx) rather than
∫

Z(S2)
K(z) σ(dz). Here S2 is equipped with a new Riemannian metric RiMZ

induced by the immersion Z (see below); AreaZ is the area measure corre-
sponding to the new Riemannian metric; and KZ(x) is the Gauss curvature
at x, corresponding to the new Riemannian metric.

For any smooth curve (xt)t∈[0,1] on S2, its length is
∫ 1

0
|vt| dt where vt =

d
dt
xt. The length of the corresponding curve

(

Z(xt)
)

t∈[0,1] on Sn−1 is

∫ 1

0

∣

∣

∣

d

dt
Z(xt)

∣

∣

∣
dt =

∫ 1

0

|∇vt
Z(xt)| dt =

∫ 1

0

√

RiMZ(xt)(vt) dt

(recall (5f2)), where RiMZ(x) is the quadratic form1 v 7→ RiMZ(x)(v) =
|∇vZ(x)|2 on the tangent plane to S2 at x. The family

(

RiMZ(x)
)

x∈S2 of
these quadratic forms is, by definition, the Riemannian metric RiMZ . (In
general, a Riemannian metric is a smooth family of strictly positive quadratic
forms on tangent spaces.)

Both AreaZ and KZ are uniquely determined by RiMZ (which is the
meaning of the term ‘intrinsic’).

1It is quadratic, since ∇vZ(x) is linear in v.
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5g4 Exercise. (a) For γlin (recall 5f3(a)) the new Riemannian metric RiMZ

is equal to the old (usual) Riemannian metric RiM of S2.
(b) For γquad (recall 5f3(b)), RiMZ =

√
3 RiM.

Prove it.
Hint: (b) |Z(x) − Z(y)|2 = 2 − 2〈Z(x), Z(y)〉 = 2

(

1 − E f(x)f(y)
)

; use
5a2.

Here comes a surprise: we do not need to calculate the curvature for every
given Z, since the integral of the curvature is a topological invariant, namely,

(5g5)

∫

S2

KZ(x) AreaZ(dx) = 4π ;

this is a special case of the famous Gauss-Bonnet theorem [7, Sect. 8.2].
Thus,

E

∑

x∈S2:∇f(x)=0

ϕ(f(x))if(x) =
1

2π
AreaZ(S2)

∫

R

(y2 − 1)ϕ(y) γ1(dy)+

+ 2

∫

R

ϕ dγ1 .

Finally, using (5b3), 5e5 and taking into account that (y2 − 1)e−y2/2 =
−(ye−y2/2)′ we get

(5g6) Eχ
(

{x ∈ S2 : f(x) ≥ y}
)

= (2π)−3/2ye−y2/2 AreaZ(S2) + 2γ1
(

[y,∞))

for every y ∈ R and every random process of the type introduced in (the
beginning of) 5f. In particular, for y = 0,

Eχ
(

{x ∈ S2 : f(x) ≥ 0}
)

= 1

irrespective of AreaZ(S2), but this fact is rather a simple consequence of the
symmetry of γ under f 7→ (−f).1 Note also the limiting cases y → −∞
and y → +∞. And one more limiting case: AreaZ(S2) → 0, the constant
process.

All said above holds also for a surface on Sn−1 parameterized by the torus
T

2 (rather than the sphere S2), except for (5g5); this time,2

(5g7)

∫

T2

KZ(x) AreaZ(dx) = 0 ,

and the last term of (5g6) disappears:

(5g8) Eχ
(

{x ∈ T
2 : f(x) ≥ y}

)

= (2π)−3/2ye−y2/2 AreaZ(T2) .

1Indeed, χ
(

{x ∈ S2 : f(x) ≥ 0}
)

+ χ
(

{x ∈ S2 : f(x) ≤ 0}
)

= χ(S2) + χ
(

{x ∈ S2 :

f(x) = 0}
)

= 2 + 0 = 2.
2Since χ(T2) = 0. Generally,

∫

M
KZ(x)AreaZ(dx) = 2πχ(M).
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5h A generalization

Let γ be a (centered) Gaussian measure on C2(S2) such that for every x ∈ S2

(assuming that f is distributed γ),

(5h1)
the distribution of f(x) is N(0, 1) ,

the distribution of ∇f(x) is a 2-dimensional Gaussian measure .

In other words, the variance of the directional derivative of f does not vanish
(at each point, in each direction).

We consider the Hilbert space H = Llin
2 (γ) of γ-measurable linear func-

tionals (or rather, their equivalence classes), its unit sphere S(H) = {z ∈
H : ‖z‖ = 1} and the map

Z ∈ C2(S2, H) , Z(S2) ⊂ S(H) ,

Z(x)(f) = f(x) for x ∈ S2, f ∈ C2(S2) .

5h2 Exercise. Prove that the map Z : S2 → H is indeed twice continuously
differentiable.

Hint: recall (the hint to) 3d3.

Do not think that the necessary condition Z ∈ C2(S2, H) is also sufficient.
Some γ on C1(S2) satisfy this condition but do not fit into C2(S2).1

5h3 Exercise. f(x) and ∇f(x) are independent (for each x ∈ S2 separately).
Prove it.
Hint: similar to (3d4).

Thus, γ satisfies (5e1) (in any smooth coordinate system on a small piece
of S2), which ensures (5e2). Now, all arguments of 5f and 5g work, giving
(5g6). The only point that needs some attention is this: the extrinsic def-
inition (5f4) of the Gauss curvature is equivalent to its intrinsic definition,
based on the Riemannian metric RiMZ . The proof is quite similar to the
finite-dimensional case. The Gauss-Bonnet theorem works as before, since it
is applied to (S2,RiMZ) (rather than Z(S2) ⊂ S(H)).

Similarly, (5g8) holds for every Gaussian random function on the torus,
satisfying (5h1).

1It is sufficient (but not necessary) that the second derivatives of Z satisfy some Hölder
condition (in particular, Z ∈ C3(S2, H) is far enough).
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5i Final remarks

5i1 Exercise. Let f ∈ C2(S2) be distributed γlin (recall 5a), and M =
supS2 f . Then

χ
(

{x ∈ S2 : f(x) ≥ y}
)

=











2 for y ∈ (−∞,−M),

1 for y ∈ (−M,M),

0 for y ∈ (M,∞),

thus

Eχ
(

{x ∈ S2 : f(x) ≥ y}
)

=

{

2 − P
(

M > −y
)

for y < 0,

P
(

M > y
)

for y ≥ 0,

and (5g6) gives

P
(

M > y
)

=
2√
2π
ye−y2/2 + 2γ1

(

[y,∞)
)

=
2√
2π

∫ ∞

y

u2e−u2/2 du

for y ≥ 0.
Check it. Give an elementary explanation, why the density of M is

fM(u) = 2√
2π
u2e−u2/2 on (0,∞).

5i2 Exercise. Let f ∈ C2(S2) be distributed γquad (recall 5a), and M1 >
M2 > M3 be the eigenvalues of the quadratic form f , in other words, the
critical values of f on S2 (two symmetric maxima, two symmetric saddle
points and two symmetric minima). Then

χ
(

{x ∈ S2 : f(x) ≥ y}
)

=



















2 for y ∈ (−∞,M3),

0 for y ∈ (M3,M2),

2 for y ∈ (M2,M1),

0 for y ∈ (M1,∞),

thus

Eχ
(

{x ∈ S2 : f(x) ≥ y}
)

= 2P
(

M1 > y
)

− 2P
(

M2 > y
)

+ 2P
(

M3 > y
)

,

and (5g6) gives

P
(

M1 > y
)

− P
(

M2 > y
)

+ P
(

M3 > y
)

=
3√
2π
ye−y2/2 + γ1

(

[y,∞)
)

=

=
1√
2π

∫ ∞

y

(3u2 − 2)e−u2/2 du
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for y ∈ R. In terms of densities,

fM1
(u) − fM2

(u) + fM3
(u) =

1√
2π

(3u2 − 2)e−u2/2 .

Check it.

Here we have no exact formula for P
(

M > y
)

, where M = supS2 f = M1.
However, we have an inequality,

P
(

M > y
)

≥ 3√
2π
ye−y2/2 + γ1

(

[y,∞)
)

,

and in fact, the right-hand side is a very good approximation of P
(

M > y
)

for large y.

5i3 Exercise. Consider a linear combination f = aζ+bg+ch of independent
ζ, g, h distributed N(0, 1), γlin and γquad respectively (ζ is treated as a random
constant function), assuming that a2 + b2 + c2 = 1.

(a) f satisfies (5h1).
(b) RiMf =

√
b2 + 3c2 RiM.

Check it.

We see that different rotation-invariant Gaussian measures on C2(S2) may
lead to the same Riemannian metric. For example, g and

√

2/3 ζ +
√

1/3h.
In fact, the same (rotation-invariant) Riemannian metric results also from
many Gaussian measures that are not rotation-invariant.

From now on we assume that f and g are random functions of C2(S2)
whose distributions satisfy the conditions of 5h.

Given a smooth curve C ⊂ S2, we denote by Lenf(C) its length according
to the Riemannian metric RiMf .

5i4 Exercise. For any smooth closed curve C ⊂ S2,

E #
(

C ∩ f−1(0)
)

= Lenf(C) .

Prove it.
Hint: parameterize C by S1 and apply 3d6.

5i5 Exercise. The degenerate case

f(x) = 0 and ∇f(x) = 0

is excluded for almost all f .
Prove it.
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Hint: in the spirit of 5e, introduce fu(·) = g(·)+u1h1(·)+u2h2(·)+u3h3(·)
where

∣

∣

∣

∣

∣

∣

h1(·) h2(·) h3(·)
h1,1(·) h2,1(·) h3,1(·)
h1,2(·) h2,2(·) h3,2(·)

∣

∣

∣

∣

∣

∣

6= 0 ,

and define U ∈ C1(D,R3) by solving (in u) the system fu(x) = 0, ∇fu(x) =
0.

It follows that the set f−1(0), known as the nodal line, consists of a finite
number of disjoint simple (that is, non-self-intersecting) smooth closed curves
on S2.

5i6 Exercise.

E Lenf g
−1(0) = πE #

(

f−1(0) ∩ g−1(0)
)

= E Leng f
−1(0) .

Prove it.
Hint: 5i4, and Fubini.

Choosing g ∼ γlin we observe that g−1(0) is a random great circle, and
Leng = Len is the usual length. Thus,

(5i7) E Len f−1(0) = E Lenf(great circle) ;

the expected length of the nodal line is equal to the averaged Riemannian
length of a great circle.

The condition

(5i8) RiMf = Cf · RiM for some Cf ∈ (0,∞)

is weaker than rotation-invariance; it means that the directional derivative
is distributed N(0, C2

f ) at each point, in each direction. In this case (5i7)
becomes

(5i9) E Len f−1(0) = 2πCf .

On the other hand, Areaf(S
2) = C2

f Area(S2) = 4πC2
f , thus,

(5i10) Eχ
(

{x ∈ S2 : f(x) ≥ y}
)

= 2(2π)−1/2ye−y2/2C2
f + 2γ1([y,∞)) =

= 2(2π)−5/2ye−y2/2
(

E Len f−1(0)
)

2 + 2γ1([y,∞)) ,

a nontrivial relation between the mean length of a nodal line and the mean
Euler characteristic.
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Waiving (5i8) we have no direct relation between Areaf (S
2) and

E Lenf (great circle), but still, we may get a nontrivial relation as follows.
Let f, g be identically distributed (and independent, as before). It appears

that

(5i11) E #
(

f−1(0) ∩ g−1(0)
)

=
1

2π
Areaf (S

2) .

This is a special case of a two-dimensional counterpart of Rice’s formula; I
do not prove it. (Think, what happens if f ∼ γlin.) Using (5i11) we get

(5i12) Eχ
(

{x ∈ S2 : f(x) ≥ y}
)

= (2π)−1/2ye−y2/2
E #

(

f−1(0) ∩ g−1(0)
)

+

+ 2γ1([y,∞)) ,

a very general nontrivial relation between the mean Euler characteristic and
the mean number of intersections between two independent nodal lines. As-
suming also (5i8) we get E #

(

f−1(0) ∩ g−1(0)
)

= 2C2
f .

The same holds for the torus, except for the last term;

(5i13) Eχ
(

{x ∈ T
2 : f(x) ≥ y}

)

= (2π)−1/2ye−y2/2
E #

(

f−1(0) ∩ g−1(0)
)

.

A remarkable theorem of Taylor, Takemura and Adler [8, Th. 4.3] shows
that the expected Euler characteristic is an excellent approximation for (the
tail of) the distribution of Mf = maxS2 f ; namely, there exists ε > 0 (de-
pending on the distribution of f) such that

|P
(

Mf ≥ y
)

− Eχ
(

{x ∈ S2 : f(x) ≥ y}
)

| ≤ exp
(

− 1 + ε

2
y2

)

for all y large enough. It is assumed that the maximizer is unique a.s.1 A
sufficient condition: E |f(x1) − f(x2)|2 > 0 whenever x1 6= x2.

A much, much weaker statement,

P
(

Mf ≥ y
)

∼ (2π)−3/2ye−y2/2 Areaf (S
2) ∼ Areaf(S

2)

2π
y2γ1([y,∞)) ,

shows that
P

(

Mf ≥ y
)

P
(

Mg ≥ y
) → Areaf (S

2)

Areag(S2)
as y → ∞ .

5i14 Corollary. If

E |f(x1) − f(x2)|2
E |g(x1) − g(x2)|2

→ 1 as dist(x1, x2) → 0

1Otherwise the approximation may fail; 5i2 gives a counterexample.
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and E |f(x1) − f(x2)|2 > 0, E |g(x1) − g(x2)|2 > 0 whenever x1 6= x2, then

P
(

max f ≥ y
)

P
(

max g ≥ y
) → 1 as y → ∞ .

The proof involves differential geometry, but the formulation does not!

5i15 Question. Is any differential structure essential for 5i14?
Let f, g be Gaussian random continuous functions on a compact metric

space T , satisfying f(t) ∼ N(0, 1) and g(t) ∼ N(0, 1) for all t ∈ T . Does 5i14
hold in this generality?

The same question applies to a stronger claim: if

E |f(x1) − f(x2)|2
E |g(x1) − g(x2)|2

→ C2 as dist(x1, x2) → 0 ,

for some C ∈ (0,∞), and E |f(x1) − f(x2)|2 > 0, E |g(x1) − g(x2)|2 > 0
whenever x1 6= x2, then

P
(

max f ≥ y
)

P
(

max g ≥ y
) → C2 as y → ∞ .

The theory presented here is relatively easy, since we restrict ourselves to
(some) smooth compact two-dimensional manifolds without boundary. The
theory of Adler and Taylor [2] is much harder, since it covers piecewise smooth
n-dimensional manifolds with boundary.
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