Consider a pure death process in which $i \rightarrow i-1$ at rate $\mu$ when $i \geq 1$. Find the transition probability $p_{i, j}(t)$.

The process may be represented as $X_{t}=Y_{N(t)}$, where $N(t)$ is a Poisson process with rate $\mu$, and the discrete-time Markov chain $Y_{n}$ is deterministic: $p_{Y}(i, i-1)=1$ for $i \geq 1$, and $p_{Y}(0,0)=1$. Thus, for $i>j>0$ we have
$p_{i, j}(t)=\mathbb{P}(X(t)=j \mid X(0)=i)=\mathbb{P}\left(Y_{N(t)}=j \mid Y_{0}=i\right)=\mathbb{P}(N(t)=i-j)=\frac{(\mu t)^{i-j}}{(i-j)!} \mathrm{e}^{-\mu t}$.
Also,
$p_{i, 0}(t)=\mathbb{P}(X(t)=0 \mid X(0)=i)=\mathbb{P}\left(Y_{N(t)}=0 \mid Y_{0}=i\right)=\mathbb{P}(N(t) \geq i)=\sum_{k=i}^{\infty} \frac{(\mu t)^{k}}{k!} \mathrm{e}^{-\mu t}$.
Consider two machines that are maintained by a single repairman. Machine $i$ functions for an exponentially distributed amount of time with rate $\lambda_{i}$ before it fails. The repair times for each unit are exponential with rate $\mu_{i}$. They are repaired in the order in which they fail. (a) Let $X_{t}$ be the number of working machines at time $t$. Is $X_{t}$ a Markov chain? (b) Formulate a Markov chain model for this situation with state space $\{0,1,2,12,21\}$. (c) Suppose that $\lambda_{1}=1, \mu_{1}=2, \lambda_{2}=3, \mu_{2}=4$. Find the stationary distribution.
(a) $X_{t}$ is probably not a Markov chain (unless $\lambda_{1}=\lambda_{2}$ and $\mu_{1}=\mu_{2}$ ), since the future after $X_{t}=1$ depends on the number of the working machine, and the past probably gives some information about this number.
(b) The queue to the repairman can be empty (state 0 ); it can contain a single machine 1 (state 1 ) or 2 (state 2 ); it can also contain machine 1 being repaired and machine 2 waiting (state 12), or other way round (state 21). We have transition rates

$$
\begin{aligned}
q(0,1) & =\lambda_{1} ; & q(0,2) & =\lambda_{2} ; \\
q(2,21) & =\lambda_{1} ; & q(1,12) & =\lambda_{2} ; \\
q(1,0) & =\mu_{1} ; & q(2,0) & =\mu_{2} ; \\
q(12,2) & =\mu_{1} ; & q(21,1) & =\mu_{2} .
\end{aligned}
$$

In addition, $q(0,0)=-\sum_{x \neq 0} q(0, x)=-\left(\lambda_{1}+\lambda_{2}\right)$, and similarly $q(1,1)=-\left(\lambda_{2}+\mu_{1}\right)$, $q(2,2)=-\left(\lambda_{1}+\mu_{2}\right), q(12,12)=-\mu_{1}, q(21,21)=-\mu_{2}$.
(c) $\sum_{x} \pi(x) q(x, y)=0$ for all $y$; that is,

$$
\begin{gathered}
\pi(1) \mu_{1}+\pi(2) \mu_{2}-\pi(0)\left(\lambda_{1}+\lambda_{2}\right)=0, \\
\pi(0) \lambda_{1}+\pi(21) \mu_{2}-\pi(1)\left(\lambda_{2}+\mu_{1}\right)=0 \\
\pi(0) \lambda_{2}+\pi(12) \mu_{1}-\pi(2)\left(\lambda_{1}+\mu_{2}\right)=0, \\
\pi(1) \lambda_{2}-\pi(12) \mu_{1}=0, \\
\pi(2) \lambda_{1}-\pi(21) \mu_{2}=0 .
\end{gathered}
$$

For $\lambda_{1}=1, \mu_{1}=2, \lambda_{2}=3, \mu_{2}=4$ we get $3 \pi(1)=2 \pi(12), \pi(2)=4 \pi(21)$ and $2 \pi(1)+4 \pi(2)=$ $4 \pi(0), \pi(0)+4 \pi(21)=5 \pi(1), 3 \pi(0)+2 \pi(12)=5 \pi(2)$; further, $\pi(1)+2 \pi(2)=2 \pi(0)$, $\pi(0)+\pi(2)=5 \pi(1), 3 \pi(0)+3 \pi(1)=5 \pi(2)$. We get $\pi(1)=\frac{4}{11} \pi(0), \pi(2)=\frac{9}{11} \pi(0)$, $\pi(12)=\frac{6}{11} \pi(0), \pi(21)=\frac{9}{44} \pi(0) ; 1=\pi(0) \cdot\left(1+\frac{4}{11}+\frac{9}{11}+\frac{6}{11}+\frac{9}{44}\right) ; \pi(0)=\frac{44}{129} ; \pi(1)=\frac{16}{129}$, $\pi(2)=\frac{36}{129}, \pi(12)=\frac{24}{129}, \pi(21)=\frac{9}{129}$.

