2 Cramér's theorem

2a A very important notion 6
2b Surprisingly useful generating functions 10
2c Independent summands 13

2a A very important notion

You should be puzzled: what about the name of the notion? The answer is that this notion was introduced several times, under different names:

* "tilted measure" (in the theory of large deviations); ${ }^{1}$
* "canonical ensemble" (in statistical physics);
* "exponential family" (in statistics);
* "Esscher transform" (mostly, in financial mathematics and actuarial science).
Here is the simplest nontrivial example. Consider n independent copies X_{1}, \ldots, X_{n} of a random variable X that takes three values $-1,0,+1$ with equal probabilities $(1 / 3)$. The frequencies $\nu_{-1}=\frac{1}{n} \cdot \#\left\{k: X_{k}=-1\right\}$, $\nu_{0}=\frac{1}{n} \cdot \#\left\{k: X_{k}=0\right\}, \nu_{+1}=\frac{1}{n} \cdot \#\left\{k: X_{k}=+1\right\}$ are random; together they are the so-called empirical distribution ($\nu_{-1}, \nu_{0}, \nu_{+1}$); and the sample mean $\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)=\nu_{+1}-\nu_{-1}$ is also random.

For large n the event $E=\left\{\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) \geq \frac{3}{7}\right\}$ is of exponentially small probability, and nevertheless, let us consider the conditional distribution of $\left(\nu_{-1}, \nu_{0}, \nu_{+1}\right)$ given E. We'll see that, given E,

$$
\left(\nu_{-1}, \nu_{0}, \nu_{+1}\right) \rightarrow\left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right) \quad \text { as } n \rightarrow \infty
$$

in probability; that is, for every $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\nu_{-1}-\frac{1}{7}\right| \leq \varepsilon,\left|\nu_{0}-\frac{2}{7}\right| \leq \varepsilon,\left|\nu_{+1}-\frac{4}{7}\right| \leq \varepsilon\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty .
$$

A wonder, isn't it?
As you may guess, more generally, for arbitrary $a \in(1, \infty)$ the condition $E_{a}=\left\{\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) \geq \frac{a^{2}-1}{a^{2}+a+1}\right\}^{2}$ leads in the limit to

$$
\left(\nu_{-1}, \nu_{0}, \nu_{+1}\right)=\left(\frac{1}{a^{2}+a+1}, \frac{a}{a^{2}+a+1}, \frac{a^{2}}{a^{2}+a+1}\right)
$$

[^0]that is, to
$$
\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)=\nu_{+1}-\nu_{-1}=\frac{a^{2}-1}{a^{2}+a+1} \quad \text { and } \quad \frac{\nu_{+1}}{\nu_{0}}=\frac{\nu_{0}}{\nu_{-1}} .
$$

It is easy to realize that any violation of the equality $\nu_{+1}-\nu_{-1}=\frac{a^{2}-1}{a^{2}+a+1}$ leads to an event $\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) \geq \frac{a^{2}-1}{a^{2}+a+1}+\varepsilon$ of probability exponentially smaller than that of E_{a}. It is less evident that any violation of the equality $\frac{\nu_{+1}}{\nu_{0}}=\frac{\nu_{0}}{\nu_{-1}}$ leads also to exponentially smaller probability. But it does, as we'll see.

This fact illustrates a key principle in large deviation theory:
ANY LARGE DEVIATION IS DONE IN THE LEAST UNLIKELY
OF ALL THE UNLIKELY WAYS!
(Quoted from: Hollander, p. 10.)
For $a \in(0,1)$ the same holds under the condition $\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right) \leq$ $\frac{a^{2}-1}{a^{2}+a+1}\left(=-\frac{b^{2}-1}{b^{2}+b+1}\right.$ for $\left.b=1 / a \in(0, \infty)\right)$.

It is hardly possible to observe in practice the convergence $\left(\nu_{-1}, \nu_{0}, \nu_{+1}\right) \rightarrow$ $\left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right)$, since for large n it is not feasible to see condition E satisfied even once in a long run.

Now consider a large system of n so-called spin- 1 particles, described by the configuration space $\{-1,0,1\}^{n}$. The average spin $\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)$ has practically no chance to reach $3 / 7$ spontaneously, but can be forced by an external magnetic field. If a measurement shows that the average spin is (close to) $3 / 7$, then ${ }^{1}$ a physicist knows that $\left(\nu_{-1}, \nu_{0}, \nu_{+1}\right)$ is (close to) $\left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right)$; and in particular, $\frac{1}{n}\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)$ is (close to) $5 / 7$.

The transition from the distribution $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ on the three-point set $\{-1,0,1\}$ to the distribution $\left(\frac{1}{a^{2}+a+1}, \frac{a}{a^{2}+a+1}, \frac{a^{2}}{a^{2}+a+1}\right)$ on the same set is a simple example of tilting (called also ${ }^{2}$ twisting, or exponential change of measure, etc).

2a1 Definition. (a) Let μ be a probability measure on \mathbb{R}. For every $t \in \mathbb{R}$ such that $\int \mathrm{e}^{t x} \mu(\mathrm{~d} x)=M_{\mu}(t)<\infty$ we define the tilted measure μ_{t} by

$$
\frac{\mathrm{d} \mu_{t}}{\mathrm{~d} \mu}(x)=\frac{1}{M_{\mu}(t)} \mathrm{e}^{t x}
$$

that is,

$$
\int f(x) \mu_{t}(\mathrm{~d} x)=\frac{1}{M_{\mu}(t)} \int f(x) \mathrm{e}^{t x} \mu(\mathrm{~d} x)
$$

[^1]for all bounded continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ (and therefore also for all bounded μ-measurable f). Also, the function $M_{\mu}: \mathbb{R} \rightarrow(0, \infty], M_{\mu}(t)=$ $\int \mathrm{e}^{t x} \mu(\mathrm{~d} x)$, is called the moment generating function (MGF) of μ; and its $\operatorname{logarithm} \Lambda_{\mu}: \mathbb{R} \rightarrow(-\infty,+\infty], \Lambda_{\mu}(t)=\ln M_{\mu}(t)$, is called the cumulant generating function. ${ }^{1}$
(b) More generally, let μ be a probability measure on a measurable space. For every measurable function ${ }^{2} u$ on this space, satisfying $\int \mathrm{e}^{u} \mathrm{~d} \mu=M_{\mu}(u)<$ ∞, we define the tilted measure μ_{u} by
$$
\frac{\mathrm{d} \mu_{u}}{\mathrm{~d} \mu}(\cdot)=\frac{1}{M_{\mu}(u)} \mathrm{e}^{u(\cdot)}
$$

Also, M is called the moment generating functional, and $\Lambda=\ln M$ is called the cumulant generating functional.

Note that the tilted measure is a probability measure.
2a2 Example (Standard normal distribution). $\frac{\mu(\mathrm{d} x)}{\mathrm{d} x}=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} ; M_{\mu}(t)=$ $\mathrm{e}^{t^{2} / 2}$ (check it); $\Lambda_{\mu}(t)=t^{2} / 2 ; \mu_{t}$ is just μ shifted by t, that is, $\int f(x-t) \mu_{t}(\mathrm{~d} x)=$ $\int f(x) \mu(\mathrm{d} x)$ (check it).

2 a3 Example (Fair coin). $\mu(\{-1\})=1 / 2=\mu(\{+1\}) ; M_{\mu}(t)=\cosh t$; $\mu_{t}(\{-1\})=\frac{\mathrm{e}^{-t}}{\mathrm{e}^{t}+\mathrm{e}^{-t}}, \mu_{t}(\{+1\})=\frac{\mathrm{e}^{t}}{\mathrm{e}^{t}+\mathrm{e}^{-t}}$ (unfair coin).

2a4 Example (Exponential distribution). $\frac{\mu(\mathrm{d} x)}{\mathrm{d} x}=\mathrm{e}^{-x}$ for $x>0 ; M_{\mu}(t)=$ $\frac{1}{1-t}$ for $-\infty<t<1$, otherwise $+\infty$ (check it); μ_{t} is homothetic to μ, that is, $\int f((1-t) x) \mu_{t}(\mathrm{~d} x)=\int f(x) \mu(\mathrm{d} x)$ for $-\infty<t<1$ (check it).

2a5 Example (Discontinuous generating function). $\frac{\mu(\mathrm{d} x)}{\mathrm{d} x}=\frac{1}{2} \exp (-\sqrt{x})$ for $x>0 ; M_{\mu}(t) \leq 1$ for $-\infty<t \leq 0$, but $M_{\mu}(t)=+\infty$ for $t>0$, even though $\int x^{k} \mu(\mathrm{~d} x)<\infty$ for all k.

2a6 Exercise.

(a) If $M_{\mu}(s)<\infty$ then $\forall t \quad M_{\mu}(s) M_{\mu_{s}}(t)=M_{\mu}(s+t)$;
(b) if both are finite then $\left(\mu_{s}\right)_{t}=\mu_{s+t}$;
(c) if $M_{\mu}(u)<\infty$ then $\forall v M_{\mu}(u) M_{\mu_{u}}(v)=M_{\mu}(u+v)$;
(d) if both are finite then $\left(\mu_{u}\right)_{v}=\mu_{u+v}$.

Prove it.

[^2]In statistical physics (as was noted in Sect. 1b) probabilities are proportional to $\exp (-\beta H(\cdot))$, where $H(\cdot)$ is the energy, and β the inverse temperature. ${ }^{1}$ Thus, if we add a function $h(\cdot)$ to the energy $H(\cdot)$ (which is a usual description of an external field, or another influence) then probabilities are multiplied by $\exp (-\beta h(\cdot))$ and a normalizing constant. It means that the initial probability measure μ is replaced with the tilted measure $\mu_{-\beta h}$. Such a measure is called "canonical ensemble" (or "Gibbs measure") corresponding to H and β (or $H+h$ and β). A change of the temperature leads to tilting, too.

Tilting on \mathbb{R}^{d} is a slight generalization of 2a1(a) toward 2a1(b); x and t run over \mathbb{R}^{d}, and $\langle t, x\rangle$ replaces $t x ; M$ and Λ are defined on \mathbb{R}^{d} (but still real-valued, or $+\infty$).

The general case 2 a 1 (b) boils down to the tilting on \mathbb{R}^{d} (sometimes even to $d=1$, that is, 2a1(a)) as follows. Given μ and u as in 2a1(b), we consider the distribution of u under μ, that is, the pushforward probability measure ν on \mathbb{R} (denoted often $u_{*}(\mu)$ or $\mu \circ u^{-1}$) defined by
$\nu([a, b])=\mu\left(u^{-1}([a, b])\right)=\mu(\{\omega: a \leq u(\omega) \leq b\}) \quad$ for $-\infty<a<b<+\infty$,
that is, ${ }^{2}$

$$
\int f \mathrm{~d} \nu=\int(f \circ u) \mathrm{d} \mu
$$

for all bounded continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ (and therefore also for all ν-integrable f). Then the distribution of u under μ_{u} is

$$
\nu_{1}=u_{*}\left(\mu_{u}\right)
$$

since

$$
\begin{gathered}
M_{\nu}(1)=\int \mathrm{e}^{x} \nu(\mathrm{~d} x)=\int \mathrm{e}^{u} \mathrm{~d} \mu=M_{\mu}(u)<\infty ; \\
\int f(x) \nu_{1}(\mathrm{~d} x)=\frac{1}{M_{\nu}(1)} \int f(x) \mathrm{e}^{x} \nu(\mathrm{~d} x)= \\
=\frac{1}{M_{\mu}(u)} \int(f \circ u) \mathrm{e}^{u} \mathrm{~d} \mu=\int(f \circ u) \mathrm{d} \mu_{u} .
\end{gathered}
$$

Likewise, given μ and u as above, and another measurable function v on the same measurable space, we consider the joint distribution $\nu=(u, v)_{*}(\mu)$ of u and v under μ, that is,

$$
\nu([a, b] \times[c, d])=\mu(\{\omega: a \leq u(\omega) \leq b, c \leq v(\omega) \leq b\})
$$

[^3]and get the joint distribution of u and v under μ_{u},
$$
\nu_{(1,0)}=(u, v)_{*}\left(\mu_{u}\right)
$$

Also,

$$
\nu_{(s, t)}=(u, v)_{*}\left(\mu_{s u+t v}\right) \quad \text { whenever } M_{\mu}(s u+t v)<\infty .
$$

Change of temperature is a special case. Let μ be the canonical ensemble for H and β_{1}; then the canonical ensemble for H and β_{2} is $\mu_{\left(\beta_{1}-\beta_{2}\right) H}$; and if ν is the joint distribution of H and u at β_{1} (that is, under μ), then $\nu_{\left(\beta_{1}-\beta_{2}, 0\right)}$ is the joint distribution of H and u at β_{2} (that is, under $\left.\mu_{\left(\beta_{1}-\beta_{2}\right) H}\right)$. And the distribution of u at β_{2} is the corresponding marginal distribution (onedimensional projection of the two-dimensional distribution).

Likewise, the change of the joint distribution of u_{1}, \ldots, u_{k} when $\beta_{1} H_{1}$ is replaced with $\beta_{2} \mathrm{H}_{2}$ boils down to tilting in \mathbb{R}^{k+2}.

In statistics, a natural exponential family on \mathbb{R} consists of probability measures, parametrized by $\theta \in \mathbb{R}$, with the density $f(\cdot \mid \theta)$ of the form ${ }^{1}$

$$
f(x \mid \theta)=h(x) \exp (\theta x-A(\theta)) .
$$

Clearly, $f(\cdot \mid \theta)$ is the tilted $f(\cdot \mid 0)$, and $A(\cdot)$ is (up to an additive constant) the cumulant generating function.

Also the Esscher transform ${ }^{2}$ is another name of tilting.

2b Surprisingly useful generating functions

The generating functions M_{μ} and $\Lambda_{\mu}=\ln M_{\mu}$, defined in 2a1, are surprisingly useful. So much useful that physicists often calculate in terms of these functions only, ${ }^{3}$ without mentioning tilted measures!

First, let μ be a compactly supported probability measure on \mathbb{R}. Then Λ_{μ} is finite on the whole \mathbb{R}, and for all t,

$$
M_{\mu}(t)=\int \mathrm{e}^{t x} \mu(\mathrm{~d} x)=\int\left(\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} x^{k}\right) \mu(\mathrm{d} x)=\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} \int x^{k} \mu(\mathrm{~d} x),
$$

which justifies the name "moment generating function".

[^4]In particular, for small t,

$$
\begin{aligned}
& \Lambda_{\mu}(t)=\ln M_{\mu}(t)=\ln \left(1+t M_{\mu}^{\prime}(0)+\frac{1}{2} t^{2} M_{\mu}^{\prime \prime}(0)+O\left(t^{3}\right)\right)= \\
& \quad=t M_{\mu}^{\prime}(0)+\frac{1}{2} t^{2} M_{\mu}^{\prime \prime}(0)-\frac{1}{2} t^{2}\left(M_{\mu}^{\prime}(0)\right)^{2}+\mathcal{O}\left(t^{3}\right)= \\
& = \\
& t \int x \mu(\mathrm{~d} x)+\frac{1}{2} t^{2}\left(\int x^{2} \mu(\mathrm{~d} x)-\left(\int x \mu(\mathrm{~d} x)\right)^{2}\right)+\mathcal{O}\left(t^{3}\right)
\end{aligned}
$$

that is, $\Lambda_{\mu}^{\prime}(0)$ is the expectation of μ, and $\Lambda_{\mu}^{\prime \prime}(0)$ is the variance of μ. In fact, the derivatives $\Lambda^{(m)}(0)$ are the so-called cumulants of μ.

The equality

$$
\Lambda_{\mu}(t)+\Lambda_{\mu_{t}}(s)=\Lambda_{\mu}(t+s)
$$

follows from 2a6. Differentiating it in s at $s=0$ we get

$$
\Lambda_{\mu}^{(k)}(t)=\Lambda_{\mu_{t}}^{(k)}(0) ;
$$

in particular, $\Lambda_{\mu}^{\prime}(t)$ and $\Lambda_{\mu}^{\prime \prime}(t)$ are the expectation and the variance of μ_{t}.
The variance cannot be negative, therefore Λ_{μ} is convex. Moreover, it is strictly convex, unless μ is a single atom. Another proof of the convexity uses Hölder's inequality: for $s, t \in \mathbb{R}$ and $\alpha, \beta>0$ with $\alpha+\beta=1$,

$$
\begin{aligned}
& M_{\mu}(\alpha s+\beta t)=\int\left(\mathrm{e}^{s x}\right)^{\alpha}\left(\mathrm{e}^{t x}\right)^{\beta} \mu(\mathrm{d} x) \leq \\
& \quad \leq\left(\int \mathrm{e}^{s x} \mu(\mathrm{~d} x)\right)^{\alpha}\left(\int \mathrm{e}^{t x} \mu(\mathrm{~d} x)\right)^{\beta}=M_{\mu}^{\alpha}(s) M_{\mu}^{\beta}(t)
\end{aligned}
$$

take the logarithm.
In general, a probability measure μ on \mathbb{R} need not be compactly supported. Rather, $\mu_{k} \uparrow \mu$ for some compactly supported subprobability measures μ_{k}. Accordingly, $\Lambda_{\mu_{k}} \uparrow \Lambda_{\mu}$. Convexity of $\Lambda_{\mu_{k}}$ implies convexity of Λ_{μ}, therefore, convexity of the set $\left\{t: \Lambda_{\mu}(t)<\infty\right\}$. This set is an interval, containing 0 , but not always of the form (a, b); it can be $[a, b],[a, b),(a, b]$; it can be unbounded from below, from above, or both; and it can be $\{0\}$.

2b1 Exercise. Find examples (of μ) for all these possibilities.
Consider the interior

$$
G=\left\{t: \Lambda_{\mu}(t)<\infty\right\}^{\circ}=(a, b), \quad-\infty \leq a \leq 0 \leq b \leq+\infty .
$$

Leaving aside the trivial case $a=0=b$, we get a convex $\Lambda_{\mu}:(a, b) \rightarrow \mathbb{R}$.

2b2 Lemma. Λ_{μ} is real-analytic ${ }^{1}$ on (a, b).
Proof. It is sufficient to prove that M_{μ} is real-analytic. ${ }^{2}$ Let $a<t-\varepsilon<$ $t<t+\varepsilon<b$; we'll prove that M_{μ} on $[t-\varepsilon, t+\varepsilon]$ is the sum of a power series. By $2 a 6$ (a), $M_{\mu_{t}}(\pm \varepsilon)<\infty$, and it is sufficient to prove that $M_{\mu_{t}}$ on $[-\varepsilon, \varepsilon]$ is the sum of a power series. Now we forget the original μ and rename μ_{t} into μ. We need to prove that M_{μ} on $[-\varepsilon, \varepsilon]$ is the sum of a power series, given that $M_{\mu}(\pm \varepsilon)<\infty$. We have

$$
\begin{gathered}
\sum_{k=0}^{\ell} \frac{t^{k} x^{k}}{k!} \rightarrow \mathrm{e}^{t x} \quad \text { as } \ell \rightarrow \infty, \\
\forall \ell \\
\left|\sum_{k=0}^{\ell} \frac{t^{k} x^{k}}{k!}\right| \leq \mathrm{e}^{|t x|} \leq \mathrm{e}^{-\varepsilon x}+\mathrm{e}^{\varepsilon x}
\end{gathered}
$$

for $|t| \leq \varepsilon$. By the dominated convergence theorem,

$$
M_{\mu}(t)=\int \mathrm{e}^{t x} \mu(\mathrm{~d} x)=\lim _{\ell} \int \sum_{k=0}^{\ell} \frac{t^{k} x^{k}}{k!} \mu(\mathrm{d} x)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \int x^{k} \mu(\mathrm{~d} x) .
$$

Given a measure μ on \mathbb{R}^{d} we have for $a \in \mathbb{R}^{d}$ and $t \in \mathbb{R}$

$$
M_{\mu}(t a)=\int \mathrm{e}^{\langle t a, x\rangle} \mu(\mathrm{d} x)=\int \mathrm{e}^{t y} \nu(\mathrm{~d} y)=M_{\nu}(t)
$$

where ν is the distribution of $\langle a, x\rangle$ under μ. Assuming that M_{μ} is finite on some neighborhood of 0 we see that ${ }^{3}$

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} M_{\mu}(t a)=M_{\nu}^{\prime}(0)=\int y \nu(\mathrm{~d} y)=\int\langle a, x\rangle \mu(\mathrm{d} x) .
$$

Similarly,

$$
\left.\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}}\right|_{t=0} M_{\mu}(t a)=\int\langle a, x\rangle^{k} \mu(\mathrm{~d} x) .
$$

Lemma 2b2 gives

$$
M_{\mu}(a)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \int\langle a, x\rangle^{k} \mu(\mathrm{~d} x)
$$

[^5]for all a in a neighborhood of $0,{ }^{1}$ which shows that M_{μ} (and therefore also Λ_{μ}) is real-analytic near 0 .

By 2a6, $M_{\mu}(a+b)=M_{\mu}(a) M_{\mu_{a}}(b)$ for $a, b \in \mathbb{R}^{d}$ such that $M_{\mu}(a)<\infty$. Thus, all said about M_{μ} and Λ_{μ} around 0 applies also to $M_{\mu}(a+\cdot) / M_{\mu}(a)$ and $\Lambda_{\mu}(a+\cdot)-\Lambda_{\mu}(a)$. The functions M_{μ} and Λ_{μ} are real-analytic on the interior G of the set $\left\{a: M_{\mu}(a)<\infty\right\}$. For all $a \in G$ and $b \in \mathbb{R}^{d}$,

$$
\begin{gathered}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \Lambda_{\mu}(a+t b)=\int\langle b, x\rangle \mu_{a}(\mathrm{~d} x) \\
\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\right|_{t=0} \Lambda_{\mu}(a+b t)=\int\langle b, x\rangle^{2} \mu(\mathrm{~d} x)-\left(\int\langle b, x\rangle \mu(\mathrm{d} x)\right)^{2},
\end{gathered}
$$

the expectation and the variance of $\langle b, \cdot\rangle$ under μ_{a}. It follows that Λ_{μ} is convex on G, and moreover, strictly convex, unless μ sits on some affine subspace of dimension $d-1$ (or less). On the other hand, by Hölder's inequality, Λ_{μ} is convex on the whole \mathbb{R}^{d}, thus, the set $\left\{a: \Lambda_{\mu}(a)<\infty\right\}$ is convex, and its interior G is also convex.

2c Independent summands

For two independent random variables X and Y, the distribution μ_{X+Y} of the sum $X+Y$ is the convolution $\mu_{X} * \mu_{Y}$ of their distributions;

$$
\begin{equation*}
\int f(z)\left(\mu_{X} * \mu_{Y}\right)(\mathrm{d} z)=\iint f(x+y) \mu_{X}(\mathrm{~d} x) \mu_{Y}(\mathrm{~d} y) \tag{2c1}
\end{equation*}
$$

Taking $f(z)=\mathrm{e}^{t z}$ we have $f(x+y)=f(x) f(y)$, thus,

$$
\begin{equation*}
M_{X+Y}(t)=M_{X}(t) M_{Y}(t), \quad \Lambda_{X+Y}(t)=\Lambda_{X}(t)+\Lambda_{Y}(t) \tag{2c2}
\end{equation*}
$$

In terms of convolution,

$$
\begin{equation*}
M_{\mu * \nu}(t)=M_{\mu}(t) M_{\nu}(t) ; \quad \Lambda_{\mu * \nu}(t)=\Lambda_{\mu}(t)+\Lambda_{\nu}(t) \tag{2c3}
\end{equation*}
$$

(However, this does not apply to $M(u), \Lambda(u)$.) Here is the tilted convolution:

$$
\begin{equation*}
(\mu * \nu)_{t}=\mu_{t} * \nu_{t} \quad \text { whenever } M_{\mu}(t), M_{\nu}(t)<\infty \tag{2c4}
\end{equation*}
$$

since

$$
\int f \mathrm{~d}(\mu * \nu)_{t}=\frac{1}{M_{\mu * \nu}(t)} \int f(z) \mathrm{e}^{t z}(\mu * \nu)(\mathrm{d} z)=
$$

[^6]\[

$$
\begin{aligned}
=\frac{1}{M_{\mu}(t) M_{\nu}(t)} & \iint f(x+y) \mathrm{e}^{t(x+y)} \mu(\mathrm{d} x) \nu(\mathrm{d} y)= \\
& =\iint f(x+y) \mu_{t}(\mathrm{~d} x) \nu_{t}(\mathrm{~d} y)=\int f \mathrm{~d}\left(\mu_{t} * \nu_{t}\right)
\end{aligned}
$$
\]

for all bounded continuous f.
We turn to the sum of independent, identically distributed (i.i.d.) random variables; its distribution is

$$
\mu^{* n}=\underbrace{\mu * \cdots * \mu}_{n} .
$$

By (2c4),

$$
\begin{equation*}
\left(\mu^{* n}\right)_{t}=\left(\mu_{t}\right)^{* n} \tag{2c5}
\end{equation*}
$$

thus we need not hesitate writing just $\mu_{t}^{* n}$.
The Legendre transform Λ_{μ}^{*} of Λ_{μ} will be very useful:

$$
\Lambda_{\mu}^{*}(x)=\sup _{t \in \mathbb{R}}\left(t x-\Lambda_{\mu}(t)\right) \in[0, \infty]
$$

If $x=\Lambda_{\mu}^{\prime}(t)$ for some $t \in G$ (that is, $\Lambda_{\mu}<\infty$ near t), then

$$
\Lambda_{\mu}^{*}(x)=t x-\Lambda_{\mu}(t)
$$

by convexity of Λ_{μ}.
2c6 Example (Standard normal distribution, see 2a2). $\Lambda_{\mu}(t)=\frac{1}{2} t^{2} ; x=$ $\Lambda_{\mu}^{\prime}(t)=t ; \Lambda_{\mu}^{*}(x)=x \cdot x-\frac{1}{2} x^{2}=\frac{1}{2} x^{2}$.

2c7 Example (Fair coin, see 2a3). $\Lambda_{\mu}(t)=\ln \cosh t ; x=\Lambda_{\mu}^{\prime}(t)=\tanh t$; note that $\tanh ^{2} t+\frac{1}{\cosh ^{2} t}=1$, thus $\cosh t=\frac{1}{\sqrt{1-x^{2}}}$ and $\Lambda_{\mu}(t)=-\frac{1}{2} \ln \left(1-x^{2}\right)$. Also, $t=\operatorname{artanh} x=\frac{1}{2} \ln \frac{1+x}{1-x}$, thus
$\Lambda_{\mu}^{*}(x)=\frac{x}{2} \ln \frac{1+x}{1-x}+\frac{1}{2} \ln \left(1-x^{2}\right)=\frac{1}{2}(1+x) \ln (1+x)+\frac{1}{2}(1-x) \ln (1-x)$
for $x \in[-1,1]$ (otherwise, ∞); just the function γ of (1a1).
2c8 Example (Exponential distribution, see 2a4). $\Lambda_{\mu}(t)=-\ln (1-t) ; x=$ $\Lambda_{\mu}^{\prime}(t)=\frac{1}{1-t} ; t=1-\frac{1}{x} ; \Lambda_{\mu}^{*}(x)=\left(1-\frac{1}{x}\right) x-\ln x=x-1-\ln x$.

2c9 Example (Discontinuous generating function, see 2a5). $\Lambda_{\mu}(t) \leq 0$ for $-\infty<t \leq 0$, but $+\infty$ for $t>0$. Nevertheless, $\int x \mu(\mathrm{~d} x)=6<\infty$, and $\Lambda_{\mu}^{\prime}(0-)=6$. In fact,

$$
M_{\mu}(t)=\frac{1}{-2 t}\left(1-\sqrt{\frac{2 \pi}{-2 t}} \Phi\left(-\frac{1}{\sqrt{-2 t}}\right) \exp \left(\frac{1}{-4 t}\right)\right) \quad \text { for } t<0
$$

$\Lambda^{*}(x)=\infty$ for $x \in(-\infty, 0] ; 0<\Lambda^{*}(x)<\infty$ for $x \in(0,6)$; and $\Lambda^{*}(x)=0$ for $x \in[6, \infty)$. Thus, Λ^{*} fails to be real-analytic near 6 .

2c10 Example (Multiscale case). $\mu(\{-1\})=\frac{1}{2} \mathrm{e}^{-a}=\mu(\{+1\}), \mu(\{-2\})=$ $\frac{1}{2} \mathrm{e}^{-3 a}=\mu(\{+2\}), \mu(\{0\})=1-\mathrm{e}^{-a}-\mathrm{e}^{-3 a} ; \Lambda_{\mu}(t)=1+\mathrm{e}^{-a}(-1+\cosh t)+$ $\mathrm{e}^{-3 a}(-1+\cosh 2 t)$.

$a=2$

$a=10$

$a=20$

For large a both functions are approximately piecewise linear. Note that the variance (and higher moments) of μ_{t} is not at all monotone in t.

2c11 Lemma. Let $t \in G, x=\Lambda_{\mu}^{\prime}(t)$, and $\varepsilon>0$; then $\mu_{t}^{* n}([n x-\varepsilon, n x+\varepsilon])>0$ if and only if $\mu^{* n}([n x-\varepsilon, n x+\varepsilon])>0$, and in this case

$$
\left|\ln \frac{\mu_{t}^{* n}([n x-\varepsilon, n x+\varepsilon])}{\mu^{* n}([n x-\varepsilon, n x+\varepsilon])}-n \Lambda_{\mu}^{*}(x)\right| \leq \varepsilon|t| .
$$

Proof. Follows from the inequality

$$
\left|\ln \frac{\mathrm{d} \mu_{t}^{* n}}{\mathrm{~d} \mu^{* n}}(y)-n \Lambda_{\mu}^{*}(x)\right| \leq \varepsilon|t| \quad \text { for all } y \in[n x-\varepsilon, n x+\varepsilon]
$$

checked easily:
$\ln \frac{\mathrm{d} \mu_{t}^{* n}}{\mathrm{~d} \mu^{* n}}(y)=t y-\Lambda_{\mu^{* n}}(t)=t(y-n x)+t n x-n \Lambda_{\mu}(t)=t(y-n x)+n \Lambda_{\mu}^{*}(x)$.

We see that $\ln \mu^{* n}([n x-\varepsilon, n x+\varepsilon])$ is $\varepsilon|t|$-close to $\ln \mu_{t}^{* n}([n x-\varepsilon, n x+$ $\varepsilon])-n \Lambda_{\mu}^{*}(x)$. An upper bound follows immediately:

$$
\begin{equation*}
\ln \mu^{* n}([n x-\varepsilon, n x+\varepsilon]) \leq-n \Lambda_{\mu}^{*}(x)+\varepsilon|t| . \tag{2c12}
\end{equation*}
$$

A lower bound needs more effort. The measure $\mu_{t}^{* n}$ has the expectation $n \Lambda_{\mu}^{\prime}(t)=n x$ and the variance $n \Lambda_{\mu}^{\prime \prime}(t)$; by Chebyshev's inequality,

$$
\mu_{t}^{* n}([n x-\varepsilon, n x+\varepsilon]) \geq 1-\frac{n \Lambda_{\mu}^{\prime \prime}(t)}{\varepsilon^{2}}
$$

which leads to the lower bound

$$
\begin{equation*}
\ln \mu^{* n}([n x-\varepsilon, n x+\varepsilon]) \geq-n \Lambda_{\mu}^{*}(x)-\varepsilon|t|+\ln \left(1-\frac{n \Lambda_{\mu}^{\prime \prime}(t)}{\varepsilon^{2}}\right) \tag{2c13}
\end{equation*}
$$

2c14 Theorem. Let $t \in G, x=\Lambda_{\mu}^{\prime}(t)$, and $\varepsilon_{n}>0$ satisfy

$$
\frac{\varepsilon_{n}}{n} \rightarrow 0, \quad \frac{\varepsilon_{n}}{\sqrt{n}} \rightarrow \infty
$$

Then

$$
\frac{1}{n} \ln \mu^{* n}\left(\left[n x-\varepsilon_{n}, n x+\varepsilon_{n}\right]\right) \rightarrow-\Lambda_{\mu}^{*}(x) \quad \text { as } n \rightarrow \infty
$$

Proof. The upper limit is at most $-\Lambda_{\mu}^{*}(x)$ by 2c122. Taking into account that $\frac{n \Lambda_{\mu}^{\prime \prime}(t)}{\varepsilon_{n}^{2}} \rightarrow 0$ we see that the lower limit is at least $-\Lambda_{\mu}^{*}(x)$ by (2c13).

Here is the same result in a slightly different language.
2c15 Theorem. Let $t \in \mathbb{R}$, and X_{1}, X_{2}, \ldots be i.i.d. random variables such that $\ln \mathbb{E} \exp \lambda X_{1}=\Lambda(\lambda)<\infty$ for all λ close enough to t. Let $\varepsilon_{n}>0$ satisfy

$$
\varepsilon_{n} \rightarrow 0, \quad \sqrt{n} \varepsilon_{n} \rightarrow \infty
$$

Denote $x=\Lambda^{\prime}(t)$. Then
$\mathbb{P}\left(x-\varepsilon_{n} \leq \frac{X_{1}+\cdots+X_{n}}{n} \leq x+\varepsilon_{n}\right)=\exp (-n(t x-\Lambda(t))+o(n)) \quad$ as $n \rightarrow \infty$.

Now we turn to moderate deviations. Here we assume that $0 \in G$, and in addition, $\Lambda_{\mu}^{\prime}(0)=0, \Lambda_{\mu}^{\prime \prime}(0)=1$ (otherwise, use a linear transformation).

2c16 Theorem. Let $x_{n} \rightarrow 0, \sqrt{n}\left|x_{n}\right| \rightarrow \infty$, and $\varepsilon_{n}>0$ satisfy

$$
\frac{\varepsilon_{n}}{n\left|x_{n}\right|} \rightarrow 0, \quad \frac{\varepsilon_{n}}{\sqrt{n}} \rightarrow \infty
$$

Then

$$
\ln \mu^{* n}\left(\left[n x_{n}-\varepsilon_{n}, n x_{n}+\varepsilon_{n}\right]\right)=-\frac{1}{2} n x_{n}^{2}(1+o(1)) \quad \text { as } n \rightarrow \infty .
$$

Proof. We take $t_{n} \rightarrow 0$ such that $x_{n}=\Lambda_{\mu}^{\prime}\left(t_{n}\right)$ and note that $x_{n} \sim t_{n}$ (that is, their ratio converges to 1), $\Lambda_{\mu}\left(t_{n}\right) \sim \frac{1}{2} t_{n}^{2}$, and $\Lambda_{\mu}^{*}\left(x_{n}\right)=t_{n} x_{n}-\Lambda_{\mu}\left(t_{n}\right) \sim \frac{1}{2} x_{n}^{2}$.

By (2c12), $\ln (\ldots) \leq-n \Lambda_{\mu}^{*}\left(x_{n}\right)+\varepsilon_{n}\left|t_{n}\right|=-n \cdot \frac{1}{2} x_{n}^{2}(1+o(1))+\varepsilon_{n}\left|x_{n}\right|(1+$ $o(1))=-\frac{1}{2} n x_{n}^{2}(1+o(1))$, since $\varepsilon_{n}\left|x_{n}\right| \ll n x_{n}^{2}$.

By (2c13), taking into account that $\frac{n \Lambda_{\mu}^{\prime \prime}\left(t_{n}\right)}{\varepsilon_{n}^{2}} \sim \frac{n}{\varepsilon_{n}^{2}} \rightarrow 0$, we get $\ln (\ldots) \geq$ $-n \Lambda_{\mu}^{*}\left(x_{n}\right)-\varepsilon_{n}\left|t_{n}\right|+o(1)=-\frac{1}{2} n x_{n}^{2}(1+o(1))^{n}+o(1) \stackrel{n}{=}-\frac{1}{2} n x_{n}^{2}(1+o(1))$, since $n x_{n}^{2} \rightarrow \infty$.

And the same result in the slightly different language.
2c17 Theorem. Let X_{1}, X_{2}, \ldots be i.i.d. random variables such that $\ln \mathbb{E} \exp \lambda X_{1}<\infty$ for all λ close enough to 0 , and $\mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}=1$. Let $x_{n} \in \mathbb{R}$ and $\varepsilon_{n}>0$ satisfy

$$
\left|x_{n}\right| \rightarrow \infty, \quad x_{n}=o(\sqrt{n}), \quad \varepsilon_{n} \rightarrow 0, \quad\left|x_{n}\right| \varepsilon_{n} \rightarrow \infty
$$

Then

$$
\mathbb{P}\left(x_{n}\left(1-\varepsilon_{n}\right) \leq \frac{X_{1}+\cdots+X_{n}}{\sqrt{n}} \leq x_{n}\left(1+\varepsilon_{n}\right)\right)=\exp \left(-\frac{1}{2} x_{n}^{2}(1+o(1))\right)
$$

as $n \rightarrow \infty$.
2c18 Exercise. Generalize these results (2c11, 2c14 2c17) to probability measures on \mathbb{R}^{d}; in the other language, to i.i.d. random vectors.

The condition " $\frac{\varepsilon_{n}}{\sqrt{n}} \rightarrow \infty$ " in Theorem 2c14 may be replaced with $\frac{\varepsilon_{n}}{\sqrt{n}} \geq$ const with an appropriate absolute constant (think, why). The same applies to " $\sqrt{n} \varepsilon_{n} \rightarrow \infty$ " in 2c15. " $\frac{\varepsilon_{n}}{\sqrt{n}} \rightarrow \infty$ " in 2c16, and " $\left|x_{n}\right| \varepsilon_{n} \rightarrow \infty$ " in 2c17.

Much better bounds are obtained via the Berry-Esseen bound for the central limit theorem (CLT). By CLT, the distribution of $\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}$ converges
weakly to the standard normal distribution (assuming $\mathbb{E} X_{1}=0$ and $\mathbb{E} X_{1}^{2}=$ $1)$. That is,

$$
\sup _{-\infty<a<b<+\infty}\left|\mu^{* n}([\sqrt{n} a, \sqrt{n} b])-(\Phi(b)-\Phi(a))\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

By the Berry-Esseen bound, this supremum never exceeds const•E $\left|X_{1}\right|^{3} / \sqrt{n}$, the constant being absolute. ${ }^{1}$ Using the fact that $\left(\mathbb{E}\left|X_{1}\right|^{3}\right)^{1 / 3} \leq\left(\mathbb{E} X_{1}^{4}\right)^{1 / 4}$ we get

$$
\left|\mu_{t}^{* n}([n x-\varepsilon, n x+\varepsilon])-\left(2 \Phi\left(\frac{\varepsilon}{\sqrt{n \Lambda_{\mu}^{\prime \prime}(t)}}\right)-1\right)\right| \leq \frac{\text { const }}{\sqrt{n}} \cdot\left(\frac{\Lambda_{\mu}^{(4)}(t)}{\left(\Lambda_{\mu}^{\prime \prime}(t)\right)^{2}}+3\right)^{3 / 4}
$$

Thus, we may take ε that depends on $\Lambda_{\mu}^{(4)}(t)$ and $\Lambda_{\mu}^{\prime \prime}(t)$ but does not depend on n, and get for $\mu_{t}^{* n}([n x-\varepsilon, n x+\varepsilon])$ a lower bound of order $1 / \sqrt{n}$, which leads to the lower bound

$$
\ln \mu^{* n}([n x-\varepsilon, n x+\varepsilon]) \geq-n \Lambda_{\mu}^{*}(x)-\mathcal{O}(|t|)-\frac{1}{2} \ln n-\mathcal{O}(1) .
$$

The same Berry-Esseen bound gives $\mu_{t}^{* n}([n x-\varepsilon, n x+\varepsilon])=\mathcal{O}(1 / \sqrt{n})$, which leads to the upper bound

$$
\ln \mu^{* n}([n x-\varepsilon, n x+\varepsilon]) \leq-n \Lambda_{\mu}^{*}(x)+\mathcal{O}(|t|)-\frac{1}{2} \ln n+\mathcal{O}(1)
$$

In both cases, LDP and MDP, t is bounded (in n); also $\Lambda_{\mu}^{(4)}(t)$ and $\Lambda_{\mu}^{\prime \prime}(t)$ are bounded; thus,

$$
\mu^{* n}([n x-\varepsilon, n x+\varepsilon])=\frac{1}{\sqrt{n}} \exp \left(-n \Lambda_{\mu}^{*}(x)+\mathcal{O}(1)\right) .
$$

Here are sLD-counterparts of the LD-theorems 2c14, 2c15.
2c19 Theorem. Let $t \in G$ and $x=\Lambda_{\mu}^{\prime}(t)$. Then for every $\varepsilon>0$ large enough,

$$
\mu^{* n}([n x-\varepsilon, n x+\varepsilon])=\frac{1}{\sqrt{n}} \exp \left(-n \Lambda_{\mu}^{*}(x)+\mathcal{O}(1)\right) \quad \text { as } n \rightarrow \infty
$$

2c20 Theorem. Let $t \in \mathbb{R}$, and X_{1}, X_{2}, \ldots be i.i.d. random variables such that $\ln \mathbb{E} \exp \lambda X_{1}=\Lambda(\lambda)<\infty$ for all λ close enough to t. Denote $x=\Lambda^{\prime}(t)$. Then for every $\varepsilon>0$ large enough,

$$
\mathbb{P}\left(x-\frac{\varepsilon}{n} \leq \frac{X_{1}+\cdots+X_{n}}{n} \leq x+\frac{\varepsilon}{n}\right)=\frac{1}{\sqrt{n}} \exp (-n(t x-\Lambda(t))+\mathcal{O}(1))
$$

as $n \rightarrow \infty$.

[^7]Think, what happens for the fair coin case, if $\varepsilon<1 / 2$.
It is possible to get an approximation up to equivalence (that is, o(1) instead of $\mathcal{O}(1)$ under $\exp (\ldots))$, but not easily. To this end, first of all, one has to separate lattice and non-lattice distributions, and not only in proofs but also in formulations.

Now, what about sMD? Here we assume (as before) that $0 \in G, \Lambda_{\mu}^{\prime}(0)=$ $0, \Lambda_{\mu}^{\prime \prime}(0)=1$, and $x_{n} \rightarrow 0, \sqrt{n}\left|x_{n}\right| \rightarrow \infty$. We take (again) $t_{n} \rightarrow 0$ such that $x_{n}=\Lambda_{\mu}^{\prime}\left(t_{n}\right)$; still, $x_{n} \sim t_{n}, \Lambda_{\mu}\left(t_{n}\right) \sim \frac{1}{2} t_{n}^{2}$, and $\Lambda_{\mu}^{*}\left(x_{n}\right) \sim \frac{1}{2} x_{n}^{2}$. However, now this relation does not satisfy us! Now we need $\Lambda_{\mu}^{*}\left(x_{n}\right)=\frac{1}{2} x_{n}^{2}+\mathcal{O}\left(\frac{1}{n}\right)$ in order to get the normal approximation $\frac{1}{\sqrt{n}} \exp \left(-\frac{n}{2} x_{n}^{2}+\mathcal{O}(1)\right)$.

The function Λ_{μ}^{*} is real-analytic near 0 , which follows from the equality $\Lambda_{\mu}^{*}\left(\Lambda_{\mu}^{\prime}(t)\right)=t \Lambda_{\mu}^{\prime}(t)-\Lambda_{\mu}(t)$, since Λ_{μ} is real-analytic near $0, \Lambda_{\mu}^{\prime}(0)=0$, and $\Lambda_{\mu}^{\prime \prime}(0)=1 \neq 0$ (indeed, the inverse function to Λ_{μ}^{\prime} is real-analytic near 0). For small x we have $\Lambda_{\mu}^{*}(x) \sim \frac{1}{2} x^{2}$, thus,

$$
\Lambda_{\mu}^{*}(x)=\frac{1}{2} x^{2}-a_{0} x^{3}-a_{1} x^{4}-\ldots
$$

The numbers a_{0}, a_{1}, \ldots are called the coefficients of the Cramer series. ${ }^{1}$ In particular, ${ }^{2}$

$$
a_{0}=\frac{1}{6} \Lambda_{\mu}^{(3)}(0) ; \quad a_{1}=\frac{1}{24}\left(\Lambda_{\mu}^{(4)}(0)-3\left(\Lambda_{\mu}^{(3)}(0)\right)^{2}\right) .
$$

If $x_{n}=\mathcal{O}\left(n^{-1 / 3}\right)$ then indeed $\Lambda_{\mu}^{*}\left(x_{n}\right)=\frac{1}{2} x_{n}^{2}+\mathcal{O}\left(\frac{1}{n}\right)$, and we get sMDcounterparts of Theorems 2c16, 2c17.
2c21 Theorem. Let $x_{n}=\mathcal{O}\left(n^{-1 / 3}\right)$. Then for every $\varepsilon>0$ large enough,

$$
\mu^{* n}\left(\left[n x_{n}-\varepsilon, n x_{n}+\varepsilon\right]\right)=\frac{1}{\sqrt{n}} \exp \left(-\frac{1}{2} n x_{n}^{2}+\mathcal{O}(1)\right) \quad \text { as } n \rightarrow \infty .
$$

2c22 Theorem. Let X_{1}, X_{2}, \ldots be i.i.d. random variables such that $\ln \mathbb{E} \exp \lambda X_{1}<\infty$ for all λ close enough to 0 , and $\mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}=1$. Let $x_{n} \in \mathbb{R}$ satisfy

$$
x_{n}=\mathcal{O}\left(n^{1 / 6}\right)
$$

[^8]Then for every $\varepsilon>0$ large enough,

$$
\mathbb{P}\left(x_{n}-\frac{\varepsilon}{\sqrt{n}} \leq \frac{X_{1}+\cdots+X_{n}}{\sqrt{n}} \leq x_{n}+\frac{\varepsilon}{\sqrt{n}}\right)=\frac{1}{\sqrt{n}} \exp \left(-\frac{1}{2} x_{n}^{2}+\mathcal{O}(1)\right)
$$

as $n \rightarrow \infty$.
If $a_{0}=0$, that is, $\mathbb{E} X_{1}^{3}=0$ (in particular, for all symmetric distributions, for example, the fair coin), then " $n^{-1 / 3}$ " in Theorem 2c21 may be replaced with " $n^{-1 / 4}$ ", and " $n^{1 / 6 "}$ in Theorem 2c22 with " $n^{1 / 4 \text { ". In general, under }}$ these conditions we get " $-\frac{1}{2} n x_{n}^{2}+a_{0} n x_{n}^{3 "}$ instead of " $-\frac{1}{2} n x_{n}^{2}$ " in Theorem 2 c 21 , and " $-\frac{1}{2} x_{n}^{2}+\frac{a_{0}}{\sqrt{n}} x_{n}^{3 "}$ instead of " $-\frac{1}{2} x_{n}^{2}$ " in Theorem 2c22. The new factor, being $\exp \left(\mathcal{O}\left(n^{1 / 4}\right)\right)$, matters for sMD but does not matter for MD.

That is, under $n^{1 / 6}$ (in terms of 2c22) all distributions μ are served by a single, normal approximation. Between $n^{1 / 6}$ and $n^{1 / 4}$ they are not; a oneparameter family of approximations is needed. Likewise, between $n^{1 / 4}$ and $n^{3 / 10}$, two parameters are needed $\left(a_{0}\right.$ and $a_{1} ;$ or $\mathbb{E} X_{1}^{3}$ and $\left.\mathbb{E} X_{1}^{4}\right)$. And generally, k parameters work between $n^{k /(2(k+2))}$ and $n^{(k+1) /(2(k+3))}$. Somehow, $k=\infty$ means $n^{1 / 2}$, - the LD territory; and indeed, LD uses a function Λ_{μ}^{*} that depends on all μ (rather than several parameters of μ).

In contrast, in the framework of MD (rather than sMD) the normal approximation works in the whole domain $o\left(n^{1 / 2}\right)$; the dependence on μ appears at once when $\mathcal{O}\left(n^{1 / 2}\right)$ is reached.

Index

Berry-Esseen, 18
canonical ensemble, 9
convolution, 13
Cramer series, 19
cumulant, 11
cumulant generating function, 8
cumulant generating functional, 8
i.i.d., 14

Legendre transform, 14
MGF, 8
moment generating function, 8
moment generating functional, 8
real-analytic, 12
tilted measure, 7
$\mu * \nu, 13$
$\mu^{* n}, 14$
G, 13
$\Lambda^{*}, 14$
$\Lambda_{\mu}, 8$
$M_{\mu}, 8$
$\mu_{t}, 7$
$\mu_{u}, 8$

[^0]: ${ }^{1}$ Also, "Cramér-transform" (Hollander, p. 7).
 ${ }^{2}$ Thus, $E=E_{2}$.

[^1]: ${ }^{1}$ Assuming thermal equilibrium in the external field.
 ${ }^{2}$ Bucklev, p. 13.

[^2]: ${ }^{1}$ Or the logarithmic MGF; also denoted by K_{μ}.
 ${ }^{2}$ Real-valued.

[^3]: ${ }^{1}$ See "Canonical ensemble" and "Gibbs measure" in Wikipedia.
 ${ }^{2}$ See "Pushforward measure" in Wikipedia.

[^4]: ${ }^{1}$ See "Exponential family" and "Natural exponential family" in Wikipedia.
 ${ }^{2}$ See "Esscher transform" in Wikipedia.
 ${ }^{3}$ Physicists call M_{μ} the partition function and denote it $Z_{n}(\beta)$; they also denote Λ_{μ} by $\varphi(\beta)$ and call either $\varphi(\beta) / \beta$ or $\varphi(\beta)$ the (canonical) free energy. (See page 30 in "The large deviation approach to statistical mechanics" by H. Touchette, Physics Reports 2009, 478 1-69.)

[^5]: ${ }^{1}$ That is, locally a sum of a power series.
 ${ }^{2}$ However, the radius of convergence for Λ_{μ} may be smaller because of zeros of M_{μ} on the complex plane.
 ${ }^{3}$ This derivative is a linear function of a, but be careful: this fact itself does not ensure that M_{μ} is differentiable at 0 .

[^6]: ${ }^{1}$ In fact, in every ball (centered at 0) on which $M_{\mu}<\infty$; recall the proof of 2 b 2

[^7]: ${ }^{1}$ See "Berry-Esseen theorem" in Wikipedia.

[^8]: ${ }^{1}$ Some authors define the Cramer series as $a_{0}+a_{1} x+\ldots$ (V.V. Petrov and J. Robinson 2008, "Large deviations for sums of independent non identically distributed random variables", Communications in Statistics 37 2984-2990); others define it as $a_{0} x^{3}+a_{1} x^{4}+\ldots$ (L.V. Rozovsky 1999, "On the Cramér series coefficients", Theory Probab. Appl. 43 152-157).
 ${ }^{2}$ For a_{2}, a_{3} and a formula for a_{k} see Rozovsky 1999.

