4 Large deviations in spaces of functions

4a Some motivation 32
4b A joint compactification 32
4c Gärtner-Ellis theorem 35
4d Exponential tightness 40
4e Mogulskii's theorem 43

4a Some motivation

Sanov's theorem for a discrete distribution with d atoms was obtained in dimension $(d-1)$; for a nonatomic distribution, infinite dimension is required.

On the other hand, the sum of n random variables is a symmetric (that is, permutation invariant) function of them; the same holds for the empirical distribution (sample frequencies). But we are also interested in more general, non-symmetric functions. For example, given i.i.d. random variables X_{1}, X_{2}, \ldots with the expectation 1 , consider

$$
\mathbb{P}\left(\exists n X_{1}+\cdots+X_{n} \leq-100\right)
$$

(Think about the risk of ruin in gambling, insurance or finance.) Or, like this:

$$
\mathbb{P}\left(\exists k, \ell: 1 \leq k \leq \ell \leq n, X_{k}+\cdots+X_{\ell} \leq-100\right)
$$

Or, for a large 2-dimensional array $n \times n$ of such i.i.d. random variables one may ask about existence of a $k \times k$ sub-array whose sum is ≤-100; etc. Here, infinite dimension is involved even if each random variable takes only two values.

4b A joint compactification

When dealing with a sequence of models, for $n=1,2, \ldots$, and interested in the limit as $n \rightarrow \infty$, it may help to embed these models into a single compact space.

Recall the Banach space $L_{p}[0,1]$, for $p \in(1, \infty)$, of all equivalence classes of measurable functions $[0,1] \rightarrow \mathbb{R}$, with the norm $\|f\|_{p}=\left(\int_{0}^{1}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}$. Its dual space is $L_{q}[0,1]$ for $q=\frac{p}{p-1}$ (that is, $\frac{1}{p}+\frac{1}{q}=1$); if $f \in L_{p}$ and $g \in L_{q}$ then $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{d} x$ is well-defined, and $|\langle f, g\rangle| \leq\|f\|_{p}\|g\|_{q}$
(Hölder). Every linear ${ }^{1}$ functional ℓ on L_{p} is of the form $\langle\cdot, g\rangle$ for some $g \in L_{q} .{ }^{2}$ The unit ball $B_{p}=\left\{f \in L_{p}:\|f\|_{p} \leq 1\right\}$ in the norm topology is separable, ${ }^{3}$ but not compact. ${ }^{4}$ Here is a weaker, compact topology on B_{p}.

Given $f, f_{1}, f_{2}, \cdots \in B_{p}$, all $g \in L_{q}$ such that $\left\langle f_{n}, g\right\rangle \rightarrow\langle f, g\rangle($ as $n \rightarrow \infty)$ are a linear ${ }^{5}$ subspace (think, why); if it is the whole L_{q}, one says that $f_{n} \rightarrow f$ in the weak topology. ${ }^{6}$ This topology is metrizable on $B_{p} ;{ }^{7}$ in particular, it corresponds to the norm

$$
\|f\|_{\text {int }}=\sup _{a \in(0,1)}\left|\int_{0}^{a} f(x) \mathrm{d} x\right| .
$$

Weak compactness of B_{p} is easy to prove. We take $g_{1}, g_{2}, \cdots \in B_{q}$ dense in B_{q}. Given a sequence $\left(f_{k}\right)_{k}$ in B_{p}, we take a subsequence (denoted by $\left(f_{k}\right)_{k}$ again) such that $\left\langle f_{k}, g_{1}\right\rangle$ converges; then, such that also $\left\langle f_{k}, g_{2}\right\rangle$ converges; and so on. The diagonal construction ensures that $\lim _{k}\left\langle f_{k}, g_{i}\right\rangle$ exists for all i. We get a linear functional $\ell(g)=\lim _{k}\left\langle f_{k}, g\right\rangle$ on L_{q}; it is $\ell(g)=\langle f, g\rangle$ for some f; and $f_{k} \rightarrow f$ weakly.

We turn to probability measures on L_{p} that are concentrated on finitedimensional subspaces, but the rate function that describes their large deviations is not. If puzzled, recall Sect. 1a: the binomial distributions are concentrated on rational numbers, but their rate function $\gamma(\cdot)$ is not.

Let μ be a probability measure on \mathbb{R} such that, ${ }^{8}$ for a given $q \in(1, \infty)$,

$$
\Lambda_{\mu}(t)=\mathcal{O}\left(|t|^{q}\right) \quad \text { as } t \rightarrow \pm \infty
$$

and $\Lambda_{\mu}^{\prime}(0)=0$ (that is, expectation zero), and $\Lambda_{\mu}^{\prime \prime}(0)>0$ (that is, not a single atom). We introduce a random element S_{n} of L_{p}, where $\frac{1}{p}+\frac{1}{q}=1$,

$$
S_{n}=n X_{1} \mathbb{1}_{\left(0, \frac{1}{n}\right)}+\cdots+n X_{n} \mathbb{1}_{\left(\frac{n-1}{n}, 1\right)}
$$

[^0]where X_{1}, \ldots, X_{n} are independent random variables, each distributed μ. Here is the corresponding cumulant generating function:
$\Lambda_{n}(g)=\ln \mathbb{E} \exp \left\langle S_{n}, g\right\rangle=\Lambda_{\mu}\left(n \int_{0}^{1 / n} g\right)+\cdots+\Lambda_{\mu}\left(n \int_{\frac{n-1}{n}}^{1} g\right) \quad$ for $g \in L_{q}$.
It is easy to guess that $\frac{1}{n} \Lambda_{n}(g) \rightarrow \int_{0}^{1} \Lambda_{\mu}(g(x)) \mathrm{d} x$ as $n \rightarrow \infty$.
4b1 Lemma. $\Lambda_{\mu}^{\prime}(t)=\mathcal{O}\left(|t|^{q-1}\right)$ as $t \rightarrow \pm \infty$.
Proof. For $s, t>0$, by convexity, $\Lambda_{\mu}(t+s) \geq \Lambda_{\mu}(t)+s \Lambda_{\mu}^{\prime}(t)$; if t is large enough, then $s \Lambda_{\mu}^{\prime}(t) \leq C(t+s)^{q}$ for all $s>0$; and $\min _{s>0} \frac{1}{s}(t+s)^{q}=$ $\frac{q^{q}}{(q-1)^{q-1}} t^{q-1}$. The case $t<0$ is similar.
$\mathbf{4 b} \mathbf{2}$ Lemma. There exists C such that for all $g_{1}, g_{2} \in L_{q}$,
$$
\left|\int_{0}^{1} \Lambda_{\mu}\left(g_{1}(x)\right) \mathrm{d} x-\int_{0}^{1} \Lambda_{\mu}\left(g_{2}(x)\right) \mathrm{d} x\right| \leq C\left\|g_{1}-g_{2}\right\|_{q}\left(1+\left\|g_{1}\right\|_{q}+\left\|g_{2}\right\|_{q}\right)^{q-1}
$$

Proof. Using 4b1, we take C such that

$$
\forall t_{1}, t_{2}\left|\Lambda_{\mu}\left(t_{1}\right)-\Lambda_{\mu}\left(t_{2}\right)\right| \leq C\left|t_{1}-t_{2}\right|\left(\max \left(1,\left|t_{1}\right|,\left|t_{2}\right|\right)\right)^{q-1}
$$

then

$$
\begin{aligned}
& \left|\int_{0}^{1} \Lambda_{\mu}\left(g_{1}(x)\right) \mathrm{d} x-\int_{0}^{1} \Lambda_{\mu}\left(g_{2}(x)\right) \mathrm{d} x\right| \leq \int_{0}^{1}\left|\Lambda_{\mu}\left(g_{1}(x)\right)-\Lambda_{\mu}\left(g_{2}(x)\right)\right| \mathrm{d} x \leq \\
& \leq C\langle | g_{1}-g_{2}\left|,\left(\max \left(1,\left|g_{1}\right|,\left|g_{2}\right|\right)\right)^{q-1}\right\rangle \leq C\left\|g_{1}-g_{2}\right\|_{q}\left\|\left(\max \left(1,\left|g_{1}\right|,\left|g_{2}\right|\right)\right)^{q-1}\right\|_{p}
\end{aligned}
$$

and $\left\|(\max (\ldots))^{q-1}\right\|_{p}=\|\max (\ldots)\|_{q}^{q-1}$, and finally, $\|\max (\ldots)\|_{q} \leq \| 1+$ $\left|g_{1}\right|+\left|g_{2}\right|\left\|_{q} \leq\right\| 1\left\|_{q}+\right\| g_{1}\left\|_{q}+\right\| g_{2} \|_{q}$.
4b3 Proposition. For every $g \in L_{q}[0,1]$,

$$
\frac{1}{n} \Lambda_{n}(g) \rightarrow \Lambda_{\infty}(g)=\int_{0}^{1} \Lambda_{\mu}(g(x)) \mathrm{d} x \quad \text { as } n \rightarrow \infty
$$

and $\frac{1}{n} \Lambda_{n}(g) \leq \Lambda_{\infty}(g)$ for all n.
Proof. Introducing linear operators $A_{n}: L_{q} \rightarrow L_{q}$ by $A_{n} g=\left(n \int_{0}^{1 / n} g\right) \mathbb{1}_{\left(0, \frac{1}{n}\right)}+$ $\cdots+\left(n \int_{\frac{n-1}{n}}^{1} g\right) \mathbb{1}_{\left(\frac{n-1}{n}, 1\right)}$ we have $\left\|A_{n}\right\| \leq 1$ and $A_{n} g \rightarrow g$ (in the norm topology) for all $g \in L_{q}^{n}$ (indeed, such g are a subspace containing all continuous functions). We note that $\frac{1}{n} \Lambda_{n}(g)=\Lambda_{\infty}\left(A_{n} g\right)$; by 4b2, $\Lambda_{\infty}\left(A_{n} g\right) \rightarrow \Lambda_{\infty}(g)$. Also, $\frac{1}{n} \Lambda_{n}(g) \leq \Lambda_{\infty}(g)$, since $\Lambda_{\mu}\left(n \int_{k / n}^{(k+1) / n} g(x) \mathrm{d} x\right) \leq n \int_{k / n}^{(k+1) / n} \Lambda_{\mu}(g(x)) \mathrm{d} x$ by convexity of Λ_{μ}.

4b4 Example (Normal distribution, see 2a2). Let $\frac{\mu(\mathrm{d} x)}{\mathrm{d} x}=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}$, then $\Lambda_{\mu}(t)=t^{2} / 2$, and $\Lambda_{\infty}(g)=\int_{0}^{1} \frac{1}{2} g^{2}(x) \mathrm{d} x=\frac{1}{2}\|g\|_{2}^{2}$. Every $p \in(1,2]$ may be used.

4b5 Example (Fair coin, see 2a3). Let $\mu(\{-1\})=1 / 2=\mu(\{+1\})$, then $\Lambda_{\mu}(t)=\ln \cosh t$, and $\Lambda_{\infty}(g)=\int_{0}^{1} \ln \cosh g(x) \mathrm{d} x$. Every $p \in(1, \infty)$ may be used.

Note that $\frac{1}{t} \Lambda_{\mu}(t)$ converges to $\Lambda_{\mu}^{\prime}(+\infty) \in(0,+\infty]$ as $t \rightarrow+\infty$, and to $\Lambda_{\mu}^{\prime}(-\infty) \in[-\infty, 0)$ as $t \rightarrow-\infty$; the least closed interval of full measure μ is $\left[\Lambda_{\mu}^{\prime}(-\infty), \Lambda_{\mu}^{\prime}(+\infty)\right] \cap \mathbb{R}$. Also,

$$
\begin{align*}
\lim _{t \rightarrow+\infty} \frac{1}{t} \Lambda_{\infty}(t g)=\left|\Lambda_{\mu}^{\prime}(-\infty)\right| \int_{0}^{1} & g^{-}(x) \mathrm{d} x+\left|\Lambda_{\mu}^{\prime}(+\infty)\right| \int_{0}^{1} g^{+}(x) \mathrm{d} x \geq \tag{4b6}\\
& \geq \min \left(\left|\Lambda_{\mu}^{\prime}(-\infty)\right|,\left|\Lambda_{\mu}^{\prime}(+\infty)\right|\right)\|g\|_{1}
\end{align*}
$$

For the (one-dimensional) distribution ν_{n} of $\left\langle S_{n}, g\right\rangle$ we have $\Lambda_{\nu_{n}}(t)=$ $\ln \mathbb{E} \exp \left(t\left\langle S_{n}, g\right\rangle\right)=\Lambda_{n}(t g)$, thus,

$$
\begin{equation*}
\frac{1}{n} \Lambda_{\nu_{n}}(t) \rightarrow \Lambda_{\infty}(t g)=\int_{0}^{1} \Lambda_{\mu}(t g(x)) \mathrm{d} x \quad \text { as } n \rightarrow \infty \tag{4b7}
\end{equation*}
$$

Much more can be said about ν_{n}, since it corresponds to a sum of n independent (but not identically distributed) random variables. On the other hand, (4b7) itself leads to LDP, according to "finite-dimensional" Sect. 4c below.

4c Gärtner-Ellis theorem

Let probability measures ν_{1}, ν_{2}, \ldots on \mathbb{R} be such that the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \Lambda_{\nu_{n}}(t)=\Lambda(t) \in \mathbb{R} \tag{4c1}
\end{equation*}
$$

exists for all $t \in \mathbb{R}$. (In particular, $\nu_{n}=\nu^{* n}$ satisfy just $\frac{1}{n} \Lambda_{\nu_{n}}(t)=\Lambda_{\nu}(t)$.)
Convexity of $\Lambda_{\nu_{n}}$ implies convexity of Λ, and therefore, existence of onesided derivatives $\Lambda^{\prime}(t-) \leq \Lambda^{\prime}(t+)$. However, these can differ (in spite of analyticity of $\Lambda_{\nu_{n}}$); recall Example 2c10.

The Legendre transform

$$
\Lambda^{*}(x)=\sup _{t \in \mathbb{R}}(t x-\Lambda(t))
$$

is a convex function $\mathbb{R} \rightarrow[0, \infty]$ (since $\Lambda(0)=0$), and $\frac{1}{|x|} \Lambda^{*}(x) \rightarrow \infty$ as $x \rightarrow \pm \infty$ (since $\Lambda(\cdot)<\infty$).

Note that $\sup _{t \geq 0}(t x-\Lambda(t))=0 \Longleftrightarrow x \leq \Lambda^{\prime}(0+)$, and $\sup _{t \leq 0}(t x-$ $\Lambda(t))=0 \Longleftrightarrow x \geq \Lambda^{\prime}(0-)$; thus,

$$
\Lambda^{*}(x)= \begin{cases}\sup _{t \leq 0}(t x-\Lambda(t))>0 & \text { for } x<\Lambda^{\prime}(0-) \\ 0 & \text { for } \Lambda^{\prime}(0-) \leq x \leq \Lambda^{\prime}(0+) \\ \sup _{t \geq 0}(t x-\Lambda(t))>0 & \text { for } x>\Lambda^{\prime}(0+)\end{cases}
$$

Consider $\Lambda^{\prime}(-\infty) \in[-\infty,+\infty)$ and $\Lambda^{\prime}(+\infty) \in(-\infty,+\infty]$. For $x \in$ $\left(\Lambda^{\prime}(-\infty), \Lambda^{\prime}(+\infty)\right)$ the function $t \mapsto t x-\Lambda(t)$ is maximal at some t (maybe, non-unique); then clearly $\Lambda^{\prime}(t-) \leq x \leq \Lambda^{\prime}(t+)$ and $\Lambda^{*}(x)=t x-\Lambda(t)$. On this open interval Λ^{*} is finite and convex, therefore continuous. If $x \notin$ $\left[\Lambda^{\prime}(-\infty), \Lambda^{\prime}(+\infty)\right]$ then $\Lambda^{*}(x)=+\infty(\operatorname{try} t \rightarrow-\infty, t \rightarrow+\infty)$. But if $x \in\left\{\Lambda^{\prime}(-\infty), \Lambda^{\prime}(+\infty)\right\} \cap \mathbb{R}$, two cases are possible: either $\Lambda^{*}(x)<\infty$ (recall 2 c 7), or $\Lambda^{*}(x)=\infty$ (recall 2c8).

4 c 2 Lemma.

$$
\begin{aligned}
\nu_{n}[n x, \infty) \leq \exp \left(-n \Lambda^{*}(x)+o(n)\right) & \text { for } x \geq \Lambda^{\prime}(0+) \\
\nu_{n}(-\infty, n x] \leq \exp \left(-n \Lambda^{*}(x)+o(n)\right) & \text { for } x \leq \Lambda^{\prime}(0-)
\end{aligned}
$$

Proof. Let $x \geq \Lambda^{\prime}(0+)$ (the other case is similar). For $t \geq 0$ we have

$$
\begin{gathered}
\nu_{n}[n x, \infty) \leq \frac{\int \mathrm{e}^{t x} \nu_{n}(\mathrm{~d} x)}{\mathrm{e}^{t n x}}=\exp \left(\Lambda_{\nu_{n}}(t)-n t x\right) \\
\frac{1}{n} \ln \nu_{n}[n x, \infty) \leq \frac{1}{n} \Lambda_{\nu_{n}}(t)-t x \rightarrow \Lambda(t)-t x \\
\limsup _{n} \frac{1}{n} \ln \nu_{n}[n x, \infty) \leq-\sup _{t \geq 0}(t x-\Lambda(t))=-\Lambda^{*}(x) .
\end{gathered}
$$

For tilted measures $\nu_{n, t}$ we have $\Lambda_{\nu_{n, t}}(s)=\Lambda_{\nu_{n}}(t+s)-\Lambda_{\nu_{n}}(t)$, thus $\frac{1}{n} \Lambda_{\nu_{n, t}}(s) \rightarrow \Lambda_{t}(s)=\Lambda(t+s)-\Lambda(t)$. The corresponding Legendre transform is

$$
\Lambda_{t}^{*}(x)=\Lambda^{*}(x)-t x+\Lambda(t)
$$

since $\sup _{s}\left(s x-\Lambda_{t}(s)\right)=\sup _{s}(s x-\Lambda(t+s)+\Lambda(t))=\sup _{s}((s-t) x-$ $\Lambda(s)+\Lambda(t))=\sup _{s}(s x-\Lambda(s))-t x+\Lambda(t)$. Note that Λ_{t}^{*} vanishes on $\left[\Lambda_{t}^{\prime}(0-), \Lambda_{t}^{\prime}(0+)\right]=\left[\Lambda^{\prime}(t-), \Lambda^{\prime}(t+)\right]$ (only). By 4c2,

$$
\begin{aligned}
\nu_{n, t}[n x, \infty) & \leq \exp \left(-n \Lambda_{t}^{*}(x)+o(n)\right) & & \text { for } x>\Lambda^{\prime}(t+) \\
\nu_{n, t}(-\infty, n x] & \leq \exp \left(-n \Lambda_{t}^{*}(x)+o(n)\right) & & \text { for } x<\Lambda^{\prime}(t-) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\nu_{n, t}(n a, n b) \rightarrow 1 \quad \text { whenever }(a, b) \supset\left[\Lambda^{\prime}(t-), \Lambda^{\prime}(t+)\right] \tag{4c3}
\end{equation*}
$$

Taking into account that
$\frac{\mathrm{d} \nu_{n}}{\mathrm{~d} \nu_{n, t}}(x)=\exp \left(-t x+\Lambda_{\nu_{n}}(t)\right) \geq \exp \left(-n \max (t a, t b)+\Lambda_{\nu_{n}}(t)\right) \quad$ for $x \in(n a, n b)$
we get

$$
\begin{equation*}
\nu_{n}(n a, n b) \geq \exp (-n \max (t a, t b)+n \Lambda(t)+o(n)) \tag{4c4}
\end{equation*}
$$

whenever $(a, b) \supset\left[\Lambda^{\prime}(t-), \Lambda^{\prime}(t+)\right]$.
Now we assume that Λ is differentiable (that is, $\Lambda^{\prime}(t-)=\Lambda^{\prime}(t+)$ for all $t \in \mathbb{R}) .{ }^{1}$
$4 c 5$ Lemma. If $\Lambda^{\prime}(0) \leq x<\Lambda^{\prime}(+\infty)$, then for every $\varepsilon>0$,

$$
\nu_{n}(n x, n(x+\varepsilon)) \geq \exp \left(-n \Lambda^{*}(x)+o(n)\right)
$$

Proof. We take the maximal ${ }^{2} t_{0} \geq 0$ such that $\Lambda^{\prime}\left(t_{0}\right)=x$. By (4c4), for every $b>x$ and every t such that $x<\Lambda^{\prime}(t)<b$ we have $\nu_{n}(n x, n b) \geq$ $\exp (-n t b+n \Lambda(t)+o(n))$; that is, $\liminf _{n} \frac{1}{n} \ln \nu_{n}(n x, n b) \geq-t b+\Lambda(t)$ whenever $x<\Lambda^{\prime}(t)<b$; the latter holds whenever $t>t_{0}$ is close enough to t_{0}, therefore it also holds for $t=t_{0}: \liminf _{n} \frac{1}{n} \ln \nu_{n}(n x, n b) \geq-t_{0} b+\Lambda\left(t_{0}\right)=$ $-t_{0} x+\Lambda\left(t_{0}\right)-t_{0}(b-x)=-\Lambda^{*}(x)-t_{0}(b-x)$ for all $b>x$. Finally, $\liminf _{n} \frac{1}{n} \ln \nu_{n}(n x, n(x+\varepsilon)) \geq-\Lambda^{*}(x)-t_{0}(b-x)$ for all $b \in(x, x+\varepsilon]$, therefore also for $b=x$.

In combination with (4c2) we get the following.
4c6 Proposition. If ν_{n} satisfy (4c1) with a differentiable Λ, then

$$
\nu_{n}(n x, n(x+\varepsilon))=\exp \left(-n \Lambda^{*}(x)+o(n)\right)
$$

for all $x \in\left[\Lambda^{\prime}(0), \Lambda^{\prime}(+\infty)\right)$ and $\varepsilon>0$.
And, of course,

$$
\nu_{n}(n(x-\varepsilon), n x)=\exp \left(-n \Lambda^{*}(x)+o(n)\right)
$$

for all $x \in\left(\Lambda^{\prime}(-\infty), \Lambda^{\prime}(0)\right]$ and $\varepsilon>0$.

[^1]4c7 Example. Do not think that Λ determines uniquely $\lim _{n} \frac{1}{n} \ln \nu_{n}(n a, n b)$ in all cases.
Let ν_{n} be the atom (of probability 1) at $1 / n$. Then $\Lambda_{n}(t)=\frac{1}{n} t ; \Lambda(t)=0$ for all $t ; \Lambda^{*}(x)=+\infty$ for all $x \neq 0 ; \Lambda^{*}(0)=0$; and $\nu_{n}(0, \infty)=1$ for all n.
The atom at $-1 / n$ leads to the same Λ (and Λ^{*}), but here $\nu_{n}(0, \infty)=0$ for all n.

We turn to a finite dimension. Let probability measures ν_{1}, ν_{2}, \ldots on \mathbb{R}^{d} be such that the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \Lambda_{\nu_{n}}(t)=\Lambda(t) \in \mathbb{R} \tag{4c8}
\end{equation*}
$$

exists for all $t \in \mathbb{R}^{d}$. As before, Λ is convex, and

$$
\Lambda^{*}(x)=\sup _{t \in \mathbb{R}^{d}}(\langle t, x\rangle-\Lambda(t))
$$

is a convex function $\mathbb{R}^{d} \rightarrow[0, \infty]$, and $\frac{1}{|x|} \Lambda^{*}(x) \rightarrow \infty$ as $|x| \rightarrow \infty$ (since Λ is locally bounded).

We consider the interior (possibly, empty) G of the set $\left\{x: \Lambda^{*}(x)<\infty\right\} .{ }^{1}$
4c9 Exercise. (a) $x \in G$ if and only if $\liminf _{|t| \rightarrow \infty} \frac{\Lambda(t)-\langle t, x\rangle}{|t|}>0$.
(b) G is convex.

Prove it.
4 c 10 Theorem. (a) For every nonempty closed set $F \subset \mathbb{R}^{d}$,

$$
\limsup _{n} \frac{1}{n} \ln \nu_{n}(n F) \leq-\min _{x \in F} \Lambda^{*}(x) .
$$

(b) If Λ is differentiable and G is nonempty, ${ }^{2}$ then for every open set $U \subset \mathbb{R}^{d}$,

$$
\liminf _{n} \frac{1}{n} \ln \nu_{n}(n U) \geq-\inf _{x \in U} \Lambda^{*}(x)
$$

(The infimum over F is reached; think, why.)
4c11 Exercise (upper bound for a half-space). ${ }^{3}$

$$
\nu_{n}(\{n x:\langle t, x\rangle-\Lambda(t) \geq c\}) \leq \exp (-c n+o(n))
$$

for all $t \in \mathbb{R}^{d}$ and $c \geq 0$.
Prove it.

[^2]Now we assume that Λ is differentiable.
As before, for every $x \in G$ there exists $t \in \mathbb{R}^{d}$ (maybe, non-unique) such that $\nabla \Lambda(t)=x$ and $\Lambda^{*}(x)=\langle t, x\rangle-\Lambda(t)$.

The upper bound 4c11 applies to a half-space not containing the "expectation", since $\langle t, \nabla \Lambda(0)\rangle-\Lambda(t) \leq 0$ by convexity.

4 c 12 Exercise (half-space not containing the "expectation"). ${ }^{1}$ If $\left.c\right\rangle\langle t, \nabla \Lambda(0)\rangle$, then

$$
\exists \varepsilon>0 \quad \nu_{n}(\{n x:\langle t, x\rangle \geq c\})=\mathcal{O}\left(\mathrm{e}^{-\varepsilon n}\right)
$$

Prove it.
4c13 Exercise (exponential concentration near the "expectation"). ${ }^{2}$ If $U \subset \mathbb{R}^{d}$ is a neighborhood of the point $\nabla \Lambda(0)$, then

$$
\exists \varepsilon>01-\nu_{n}(n U)=\mathcal{O}\left(\mathrm{e}^{-\varepsilon n}\right) .
$$

Prove it.
4 c 14 Exercise (lower bound). ${ }^{3}$ If $G \neq \emptyset$ and $U \subset \mathbb{R}^{d}$ is open, then

$$
\ln \nu_{n}(n U) \geq-n \inf _{x \in U \cap G} \Lambda^{*}(x)+o(n) .
$$

Prove it.
Proof of Theorem 4c10(b). We have

$$
\inf _{x \in U} \Lambda^{*}(x)=\inf _{x \in U \cap G} \Lambda^{*}(x)
$$

since, first, $\Lambda^{*}(x)=\infty$ for $x \notin \bar{G}$, and second, for $x \in \partial G$ and $y \in G$, by convexity, $\Lambda^{*}(x+\varepsilon(y-x)) \leq \Lambda^{*}(x)+\varepsilon\left(\Lambda^{*}(y)-\Lambda^{*}(x)\right)$ and $x+\varepsilon(y-x) \in G$. It remains to apply 4c14.

Proof of Theorem 4c10(a). If $\Lambda^{*}(x)>c$ then, by 4c11, x belongs to some open half-space $H=\{y:\langle t, y\rangle-\Lambda(t)>c\}$ such that $\nu_{n}(n H) \leq \exp (-c n+$ $o(n))$. If $\Lambda^{*}(x)>c$ for all x of a compact set F, then $\nu_{n}(n F) \leq \exp (-c n+$ $o(n)$), since F is covered by a finite number of such half-spaces (recall 3a6). However, we need it for a closed F, not just compact.

Similarly to the proof of 3a5, we apply 4c11 to $t= \pm e_{1}, \ldots, \pm e_{d}$ and obtain, for every R,

$$
1-\nu_{n}\left(n[-R, R]^{d}\right) \leq \exp (-n(R-C)+o(n))
$$

[^3]where $C=\max \left(\Lambda\left(-e_{1}\right), \Lambda\left(e_{1}\right), \ldots, \Lambda\left(-e_{d}\right), \Lambda\left(e_{d}\right)\right)$. Thus, for every c there exists a compact $K \subset \mathbb{R}^{d}$ such that $1-\nu_{n}(n K) \leq \exp (-c n+o(n)) .{ }^{1}$ Finally, $\nu_{n}(n F) \leq \nu_{n}(n(F \cap K))+1-\nu_{n}(n K)$.

Here is a reason, why dimension $d>1$ needs more caution than dimension 1. In one dimension, the function $\Lambda^{*}: \mathbb{R} \rightarrow[0, \infty]$ may be discontinuous (in the compact topology of $[0, \infty]$) at $\Lambda^{\prime}(-\infty)$ or/and $\Lambda^{\prime}(+\infty)$ (recall (2c7), but its restriction to $\left[\Lambda^{\prime}(-\infty), \Lambda^{\prime}(+\infty)\right] \cap \mathbb{R}$ is continuous, since Λ^{*} is convex and lower semicontinuous (as was noted before (3c2)). In higher dimensions, $\left.\Lambda^{*}\right|_{\bar{G}}$ need not be continuous.

4c15 Example. There exist $t_{n} \in \mathbb{R}^{2}$ and $c_{n} \in \mathbb{R}$ such that the function f : $x \mapsto \sup _{n}\left(\left\langle t_{n}, x\right\rangle+c_{n}\right) \in[0, \infty]$ (evidently convex and lower semicontinuous) is finite on the disk $\left\{x \in \mathbb{R}^{2}:|x|<1\right\}$ but has a discontinuous restriction to its boundary.

We choose $\varphi_{n} \in(0, \pi / 2), \varphi_{n} \downarrow 0$, introduce $\varphi_{n+o .5}=\left(\varphi_{n}+\varphi_{n+1}\right) / 2$, $x_{n}=\left(\cos \varphi_{n}, \sin \varphi_{n}\right) \in \mathbb{R}^{2}, x_{n+0.5}=\left(\cos \varphi_{n+0.5}, \sin \varphi_{n+0.5}\right) \in \mathbb{R}^{2}$, and define t_{n}, c_{n} by

$$
\left\langle t_{n}, x_{n}\right\rangle+c_{n}=0=\left\langle t_{n}, x_{n+1}\right\rangle+c_{n}, \quad\left\langle t_{n}, x_{n+0.5}\right\rangle+c_{n}=1 .
$$

In addition, we take $t_{0}=0, c_{0}=0$. We get $x_{n+0.5} \rightarrow x_{\infty}=(1,0), f\left(x_{n+0.5}\right)=$ 1 for all n, but $f\left(x_{\infty}\right)=0$.

Using the "multiscale" approach as in 2c10 one can construct a probability measure μ on \mathbb{R}^{2} such that Λ_{μ} behaves like f above.

4d Exponential tightness

We return to the random elements S_{n} of L_{p}, introduced in Sect. 4b.
4d1 Proposition. There exists $\varepsilon>0$ such that for all R large enough,

$$
\sup _{n} \frac{1}{n} \ln \mathbb{P}\left(\left\|S_{n}\right\|_{p} \geq R n\right) \leq-\varepsilon R^{p}
$$

Using the weak topology of L_{p} we have, for every C, a compact set $K \subset L_{p}$ such that $\mathbb{P}\left(S_{n} \notin n K\right)=\mathcal{O}\left(\mathrm{e}^{-C n}\right)$. This is called exponential tightness.

Recall that $\Lambda_{n}(g)=\ln \mathbb{E} \exp \left\langle S_{n}, g\right\rangle$ for $g \in L_{q}, \frac{1}{p}+\frac{1}{q}=1 ; \frac{1}{n} \Lambda_{n}(g) \rightarrow$ $\Lambda_{\infty}(g)=\int_{0}^{1} \Lambda_{\mu}(g(x)) \mathrm{d} x$ by 4b3 and $\frac{1}{n} \Lambda_{n}(g) \leq \Lambda_{\infty}(g)$. Also, $\Lambda_{\mu}(t)=\mathcal{O}\left(|t|^{q}\right)$

[^4]as $t \rightarrow \pm \infty$, which implies ${ }^{1} \Lambda_{\infty}(g)=\mathcal{O}\left(\|g\|_{q}^{q}\right)$ as $\|g\|_{q} \rightarrow \infty$. We introduce Legendre transforms
\[

$$
\begin{aligned}
\Lambda_{n}^{*}(f) & =\sup _{g \in L_{q}}\left(\langle f, g\rangle-\Lambda_{n}(g)\right) \in[0, \infty] ; \\
\Lambda_{\infty}^{*}(f) & =\sup _{g \in L_{q}}\left(\langle f, g\rangle-\Lambda_{\infty}(g)\right) \in[0, \infty] .
\end{aligned}
$$
\]

4d2 Lemma.

$$
\Lambda_{\infty}^{*}(f)=\int_{0}^{1} \Lambda_{\mu}^{*}(f(x)) \mathrm{d} x \quad \text { for all } f \in L_{p}
$$

Proof. First, $\Lambda_{\infty}^{*}(f) \leq \int_{0}^{1} \Lambda_{\mu}^{*}(f(x)) \mathrm{d} x$, since $\langle f, g\rangle-\Lambda_{\infty}(g)=\int_{0}^{1} f(x) g(x) \mathrm{d} x-$ $\int_{0}^{1} \Lambda_{\mu}(g(x)) \mathrm{d} x=\int\left(f(x) g(x)-\Lambda_{\mu}(g(x))\right) \mathrm{d} x$, and the integrand does not exceed $\Lambda_{\mu}^{*}(f(x))$ irrespective of g.

In order to prove that $\Lambda_{\infty}^{*}(f) \geq \int_{0}^{1} \Lambda_{\mu}^{*}(f(x)) \mathrm{d} x$ we use operators A_{n} introduced in the proof of $4 \mathrm{~b} 3: A_{n} f=\sum_{k} f_{k} \mathbb{1}_{\left(\frac{k-1}{n}, \frac{k}{n}\right)}$ where $f_{k}=n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) \mathrm{d} x$; and the same for g.

We have

$$
\begin{aligned}
& \Lambda_{\infty}^{*}(f) \geq \sup _{g=A_{n} g}\left(\langle f, g\rangle-\Lambda_{\infty}(g)\right)= \\
& =\sup _{g_{1}, \ldots, g_{n}}\left(\frac{1}{n} \sum_{k} f_{k} g_{k}-\frac{1}{n} \sum_{k} \Lambda_{\mu}\left(g_{k}\right)\right)=\frac{1}{n} \sup _{g_{1}, \ldots, g_{n}} \sum_{k}\left(f_{k} g_{k}-\Lambda_{\mu}\left(g_{k}\right)\right)= \\
& \quad=\frac{1}{n} \sum_{k} \sup _{t}\left(f_{k} t-\Lambda_{\mu}(t)\right)=\frac{1}{n} \sum_{k} \Lambda_{\mu}^{*}\left(f_{k}\right)=\int_{0}^{1} \Lambda_{\mu}^{*}\left(A_{n} f(x)\right) \mathrm{d} x .
\end{aligned}
$$

Also, $A_{n} f \rightarrow f$ in L_{p}; we take $n_{1}<n_{2}<\ldots$ such that $A_{n_{i}} f \rightarrow f$ almost everywhere. The lower semicontinuity of $\Lambda_{\mu}^{*} \operatorname{implies} \Lambda_{\mu}^{*}(f(\cdot)) \leq$ $\liminf _{i} \Lambda_{\mu}^{*}\left(A_{n_{i}} f(\cdot)\right) \quad$ a.e.; by Fatou's lemma, $\quad \int_{0}^{1} \Lambda_{\mu}^{*}(f(x)) \mathrm{d} x \quad \leq$ $\liminf _{i} \int_{0}^{1} \Lambda_{\mu}^{*}\left(A_{n_{i}} f(x)\right) \mathrm{d} x \leq \Lambda_{\infty}^{*}(f)$.
4d3 Exercise. (a) $\Lambda_{n}^{*}(f)=+\infty$ whenever $f \neq A_{n} f$;
(b) $\frac{1}{n} \Lambda_{n}^{*}(n f)=\int_{0}^{1} \Lambda_{\mu}^{*}(f(x)) \mathrm{d} x=\Lambda_{\infty}^{*}(f)$ whenever $f=A_{n} f$;
(c) $\frac{1}{n} \Lambda_{n}^{*}\left(n A_{n} f\right) \rightarrow \Lambda_{\infty}^{*}(f)$ for all f.

Prove it.
4d4 Example (Normal distribution, see 2 c 6 and 4b4). $\Lambda_{\mu}^{*}(x)=\frac{1}{2} x^{2}$, and $\Lambda_{\infty}^{*}(f)=\int_{0}^{1} \frac{1}{2} f^{2}(x) \mathrm{d} x=\frac{1}{2}\|f\|_{2}^{2}$.

[^5]4d5 Example (Fair coin, see 2c7 and 4b5). $\Lambda_{\mu}^{*}(x)=\gamma(x)$ is just the function of (1a1); $\Lambda_{\infty}^{*}(f)=\int_{0}^{1} \gamma(f(x)) \mathrm{d} x$; note that $\gamma(x)=+\infty$ for $x \notin[-1,1]$.

4d6 Lemma. There exists $\varepsilon>0$ such that for all x large enough,
$\Lambda_{\mu}^{*}(x) \geq \varepsilon x^{p}, \Lambda_{\mu}^{*}(-x) \geq \varepsilon x^{p}, \mu[x, \infty) \leq \exp \left(-\varepsilon x^{p}\right), \mu(-\infty,-x] \leq \exp \left(-\varepsilon x^{p}\right)$.
Proof. We know that $\Lambda_{\mu}(t) \leq C|t|^{q}$ for $|t| \geq T$. Thus, for every $t \geq T$ we have $\Lambda_{\mu}^{*}(x) \geq t x-C|t|^{q}$ and $\mu[x, \infty) \leq \exp \left(C|t|^{q}-t x\right)$. Given $x \geq C q T^{q-1}$, we take $t \geq T$ such that $C q t^{q-1}=x$. Then $t x-C|t|^{q}=\varepsilon x^{p}$, where $\varepsilon=$ $\frac{1}{p(C q)^{p-1}}$. For $(-x)$ the proof is similar.

It follows from 4d6 and 4d2 that

$$
\inf _{\|f\|_{p} \geq R} \Lambda_{\infty}^{*}(f) \geq \varepsilon R^{p} \quad \text { for large } R
$$

(Hint: $\Lambda_{\mu}^{*}(x) \geq \varepsilon|x|^{p}-$ const for all x.) It may seem that Prop. 4 d 1 follows, similarly to Theorem 4c10(a). But no, in the infinite dimension we cannot cover $\{f:\|f\| \geq R\}$ by finitely many half-spaces (not containing 0).

4d7 Lemma. There exists $\varepsilon>0$ such that

$$
\int \exp \left(\varepsilon|x|^{p}\right) \mu(\mathrm{d} x)<\infty
$$

Proof. Using the equality $\exp \left(\varepsilon|x|^{p}\right)=1+\varepsilon \int_{0}^{|x|^{p}} \mathrm{e}^{\varepsilon u} \mathrm{~d} u$ we get

$$
\int \exp \left(\varepsilon|x|^{p}\right) \mu(\mathrm{d} x)=1+\varepsilon \iint_{0<u<|x|^{p}} \mathrm{e}^{\varepsilon u} \mathrm{~d} u \mu(\mathrm{~d} x)=1+\varepsilon \int_{0}^{\infty} \mathrm{d} u \mathrm{e}^{\varepsilon u} \int_{|x|^{p}>u} \mu(\mathrm{~d} x)
$$

Lemma 4 d 6 gives $\delta>0$ such that $\int_{|x|^{p}>u} \mu(\mathrm{~d} x) \leq 2 \mathrm{e}^{-\delta u}$ for large u; it remains to take $\varepsilon<\delta$.

Proof of Prop. 4d1.

Lemma 4 d 7 gives ε such that $\mathbb{E} \exp \left(\varepsilon\left|X_{1}\right|^{p}\right)=M<\infty$. We have $\left\|\frac{S_{n}}{n}\right\|_{p}^{p}=$ $\frac{1}{n}\left(\left|X_{1}\right|^{p}+\cdots+\left|X_{n}\right|^{p}\right)$, therefore

$$
\begin{aligned}
& \mathbb{P}\left(\left\|S_{n}\right\|_{p} \geq R n\right)=\mathbb{P}\left(\left\|\frac{S_{n}}{n}\right\|_{p}^{p} \geq R^{p}\right)=\mathbb{P}\left(\left|X_{1}\right|^{p}+\cdots+\left|X_{n}\right|^{p} \geq n R^{p}\right) \leq \\
& \leq \frac{\mathbb{E} \exp \varepsilon\left(\left|X_{1}\right|^{p}+\cdots+\left|X_{n}\right|^{p}\right)}{\exp \varepsilon n R^{p}}=M^{n} \exp \left(-\varepsilon n R^{p}\right)
\end{aligned}
$$

that is, $\frac{1}{n} \ln \mathbb{P}\left(\left\|S_{n}\right\|_{p} \geq R n\right) \leq-\varepsilon R^{p}+\ln M$; and of course, $\ln M \leq \frac{\varepsilon}{2} R^{p}$ for large R.

4e Mogulskii's theorem

Recall the weak topology on the closed unit ball B_{p} of L_{p}; it is compact. A set $F \subset L_{p}$ is called sequentially weakly closed, ${ }^{1}$ if $F \cap R B_{p}$ is weakly closed for all $R \in(0, \infty)$. A set $U \subset L_{p}$ is called sequentially weakly open, if its complement is sequentially weakly closed.

4 e 1 Theorem. (a) For every nonempty sequentially weakly closed set $F \subset$ L_{p},

$$
\limsup _{n} \frac{1}{n} \ln \mathbb{P}\left(S_{n} \in n F\right) \leq-\min _{f \in F} \Lambda_{\infty}^{*}(f)
$$

(b) For every sequentially weakly open set $U \subset L_{p}$,

$$
\liminf _{n} \frac{1}{n} \ln \mathbb{P}\left(S_{n} \in n U\right) \geq-\inf _{f \in U} \Lambda_{\infty}^{*}(f)
$$

4 e 2 Corollary. Let a nonempty set $A \subset L_{p}$ satisfy

$$
\inf _{f \in A^{\circ}} \Lambda_{\infty}^{*}(f)=\min _{f \in \bar{A}} \Lambda_{\infty}^{*}(f)=a
$$

where A° and \bar{A} are the interior and closure of A in the sequential weak topology. Then

$$
\mathbb{P}\left(S_{n} \in n A\right)=\exp (-a n+o(n)) \quad \text { as } n \rightarrow \infty
$$

We choose linearly independent $g_{1}, g_{2}, \cdots \in B_{q}$ that $\operatorname{span}^{2} L_{q}$, and note that

$$
\left(f_{n} \rightarrow f \text { weakly }\right) \Longleftrightarrow \forall k\left\langle f_{n}, g_{k}\right\rangle \underset{n \rightarrow \infty}{\longrightarrow}\left\langle f, g_{k}\right\rangle
$$

for all $f, f_{1}, f_{2}, \cdots \in B_{p}$. We introduce linear operators $T_{d}: L_{p} \rightarrow \mathbb{R}^{d}$ by

$$
T_{d} f=\left(\left\langle f, g_{1}\right\rangle, \ldots,\left\langle f, g_{d}\right\rangle\right)
$$

they are weakly continuous, and

$$
\left(f_{n} \rightarrow f \text { weakly }\right) \Longleftrightarrow \forall d T_{d} f_{n} \underset{n \rightarrow \infty}{ } T_{d} f .
$$

Denote by $\nu_{d, n}$ the distribution of $T_{d} S_{n}$. Similarly to 4b7), by 4b3,

$$
\frac{1}{n} \Lambda_{\nu_{d, n}}\left(t_{1}, \ldots, t_{d}\right) \rightarrow \Lambda_{\infty}\left(t_{1} g_{1}+\cdots+t_{d} g_{d}\right) \quad \text { as } n \rightarrow \infty
$$

[^6]for all d and $\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}$, since $\Lambda_{\nu_{d, n}}\left(t_{1}, \ldots, t_{d}\right)=\ln \mathbb{E} \exp \left(t_{1}\left\langle S_{n}, g_{1}\right\rangle+\right.$ $\left.\cdots+t_{d}\left\langle S_{n}, g_{d}\right\rangle\right)=\ln \mathbb{E} \exp \left\langle S_{n}, t_{1} g_{1}+\cdots+t_{d} g_{d}\right\rangle=\Lambda_{n}\left(t_{1} g_{1}+\cdots+t_{d} g_{d}\right)$. Theorem 4c10 applies to $\nu_{d, n}$ and Λ_{d}^{*}, the Legendre transform of $\Lambda_{d}:\left(t_{1}, \ldots, t_{d}\right) \mapsto$ $\Lambda_{\infty}\left(t_{1} g_{1}+\cdots+t_{d} g_{d}\right)=\int_{0}^{1} \Lambda_{\mu}\left(t_{1} g_{1}(x)+\cdots+t_{d} g_{d}(x)\right) \mathrm{d} x$.
4 e 3 Exercise. Λ_{d} is differentiable.
Prove it. ${ }^{1}$

4e4 Exercise.

$$
\liminf _{|t| \rightarrow \infty} \frac{\Lambda_{d}(t)}{|t|}>0
$$

Prove it. ${ }^{2}$
By 4 e 4 and $4 \mathrm{c} 9, G$ contains 0 (and so, $G \neq \emptyset$).
4e5 Exercise. (a) $\Lambda_{d}^{*}\left(T_{d} f\right)$ is the supremum of $\langle f, g\rangle-\Lambda_{\infty}(g)$ over all g from the finite-dimensional subspace spanned by g_{1}, \ldots, g_{d};
(b) $\Lambda_{d}^{*}\left(T_{d} f\right) \uparrow \Lambda_{\infty}^{*}(f)$ as $d \rightarrow \infty$.

Prove it. ${ }^{3}$

4 e 6 Lemma.

$$
\min _{f \in F} \Lambda_{d}^{*}\left(T_{d} f\right) \uparrow \min _{f \in F} \Lambda_{\infty}^{*}(f) \quad \text { as } d \rightarrow \infty
$$

for every weakly closed $F \subset B_{p}$.
Proof. We denote $M=\min _{f \in F} \Lambda_{\infty}^{*}(f)$ and take $f_{d} \in F$ such that $\Lambda_{d}^{*}\left(T_{d} f_{d}\right)=\min _{f \in F} \Lambda_{d}^{*}\left(T_{d} f\right)$; clearly, this minimum does not exceed M. Assume the contrary (to the claim of the lemma); $\liminf _{d \rightarrow \infty} \Lambda_{d}^{*}\left(T_{d} f_{d}\right)=$ $M-4 \varepsilon<M$. We take $d_{i} \rightarrow \infty$ such that $\forall i \Lambda_{d_{i}}^{*}\left(T_{d_{i}} f_{d_{i}}\right) \leq M-3 \varepsilon$. WLOG, $f_{d_{i}} \rightarrow f_{\infty}$ weakly (otherwise, choose a subsequence); and $\Lambda_{\infty}^{*}\left(f_{\infty}\right) \geq M$, since $f_{\infty} \in F$. Using 4 e 5 (b) we take d such that $\Lambda_{d}^{*}\left(T_{d} f_{\infty}\right) \geq \Lambda_{\infty}^{*}\left(f_{\infty}\right)-\varepsilon \geq M-\varepsilon$. For all i large enough we have $\Lambda_{d}^{*}\left(T_{d} f_{d_{i}}\right) \geq \Lambda_{d}^{*}\left(T_{d} f_{\infty}\right)-\varepsilon$ by weak lower semicontinuity of $f \mapsto \Lambda_{d}^{*}\left(T_{d} f\right)$. Also, $d_{i} \geq d$. Hence, $\Lambda_{d_{i}}^{*}\left(T_{d_{i}} f_{d_{i}}\right) \geq \Lambda_{d}^{*}\left(T_{d} f_{d_{i}}\right) \geq$ $\Lambda_{d}^{*}\left(T_{d} f_{\infty}\right)-\varepsilon \geq M-2 \varepsilon ;$ a contradiction.

Proof of Theorem 4e1(a). We denote $M=\min _{f \in F} \Lambda_{\infty}^{*}(f)$. WLOG, F is bounded (otherwise we turn to $F \cap R B_{p}$ with R such that $\sup _{n} \frac{1}{n} \ln \mathbb{P}\left(\left\|S_{n}\right\|_{p} \geq\right.$ $R n) \leq-M$; such R exists by Prop. 4d1p; $F \subset R B_{p}$. By Theorem 4c10(a),

$$
\limsup _{n} \frac{1}{n} \ln \mathbb{P}\left(S_{n} \in n F\right) \leq-\min _{x \in T_{d}(F)} \Lambda_{d}^{*}(x)
$$

[^7]since $\nu_{d, n}\left(n T_{d}(F)\right)=\mathbb{P}\left(T_{d} S_{n} \in n T_{d}(F)\right) \geq \mathbb{P}\left(S_{n} \in n F\right)$. Finally, $\min _{x \in T_{d}(F)} \Lambda_{d}^{*}(x)=\min _{f \in F} \Lambda_{d}^{*}\left(T_{d} f\right) \rightarrow M$ by 4 e 6 .
4 e 7 Lemma. Let $U \subset L_{p}$ be sequentially weakly open, and $f_{0} \in U \cap B_{p}$. Then there exist d and $\varepsilon>0$ such that
$$
\forall f \in B_{p} \quad\left(\left\|T_{d} f-T_{d} f_{0}\right\| \leq \varepsilon \Longrightarrow f \in U\right)
$$

Proof. Assume the contrary: $f_{d} \in B_{p} \backslash U,\left\|T_{d} f_{d}-T_{d} f_{0}\right\| \leq \frac{1}{d}$. Taking into account that $\left\|T_{d} f-T_{d} f_{0}\right\|$ is increasing in d we have $\left\|T_{d} f_{n}-T_{d} f_{0}\right\| \leq \frac{1}{n}$ whenever $n \geq d$; thus $T_{d} f_{n} \rightarrow T_{d} f_{0}$ for all d, that is, $f_{n} \rightarrow f_{0}$ weakly; a contradiction.

Proof of Theorem 4e1(b). Let $f_{0} \in U$; we'll prove that $\lim _{\inf } \frac{1}{n} \ln \mathbb{P}\left(S_{n} \in\right.$ $n U) \geq-\Lambda_{\infty}^{*}\left(f_{0}\right)$. We take R such that $f_{0} \in R B_{p}$ and $\sup _{n} \frac{1}{n} \ln \mathbb{P}\left(\left\|S_{n}\right\|_{p} \geq\right.$ $R n) \leq-\Lambda_{\infty}^{*}\left(f_{0}\right)$; such R exists by Prop. 4d1. Lemma 4e7 gives d and $\varepsilon>0$ such that $\forall f \in R B_{p} \quad\left(\left\|T_{d} f-T_{d} f_{0}\right\| \leq \varepsilon \Longrightarrow f \in \bar{U}\right)$. It is sufficient to prove that

$$
\liminf _{n} \frac{1}{n} \ln \mathbb{P}\left(\left\|T_{d} \frac{S_{n}}{n}-T_{d} f_{0}\right\|<\varepsilon\right) \geq-\inf _{x:\left\|x-T_{d} f_{0}\right\|<\varepsilon} \Lambda_{d}^{*}(x),
$$

since $\inf _{x:\left\|x-T_{d} f_{0}\right\|<\varepsilon} \Lambda_{d}^{*}(x) \leq \Lambda_{d}^{*}\left(T_{d} f_{0}\right) \leq \Lambda_{\infty}^{*}\left(f_{0}\right)$ by 4e5. Theorem 4c10(b) gives the needed inequality, since $\nu_{d, n}\left(\left\{n x:\left\|x-T_{d} f_{0}\right\|<\varepsilon\right\}\right)=\mathbb{P}\left(\| T_{d} \frac{S_{n}}{n}-\right.$ $\left.T_{d} f_{0} \|<\varepsilon\right)$.
4 e 8 Example. Let X_{1}, X_{2}, \ldots be independent standard normal random variables, and $a, b>0$. Consider events

$$
E_{n}=\left\{\max _{m=0, \ldots, n} \sum_{k=1}^{m}\left(X_{k}-a\right) \geq b n\right\} .
$$

We'll see that

$$
\frac{1}{n} \ln \mathbb{P}\left(E_{n}\right) \rightarrow \begin{cases}-2 a b & \text { for } b \leq a \\ -\frac{1}{2}(a+b)^{2} & \text { for } b \geq a\end{cases}
$$

as $n \rightarrow \infty$.
In terms of the random elements S_{n} of L_{p},

$$
\frac{1}{n} \max _{m=0, \ldots, n} \sum_{k=1}^{m}\left(X_{k}-a\right)=\max _{0 \leq x \leq 1} \int_{0}^{x}\left(\frac{1}{n} S_{n}(u)-a\right) \mathrm{d} u
$$

We introduce the set

$$
A=\left\{f \in L_{p}: \max _{0 \leq x \leq 1} \int_{0}^{x}(f(u)-a) \mathrm{d} u \geq b\right\}
$$

then $E_{n}=\left\{S_{n} \in n A\right\}$. According to 4d4, $\Lambda_{\infty}^{*}(f)=\frac{1}{2}\|f\|_{2}^{2}$.

4 e 9 Exercise. Prove that A satisfies the condition of Corollary 4e2, and find a there.
$4 e 10$ Exercise. Formulate and prove a counterpart of 4 e 9 for

$$
\max _{0 \leq i \leq j \leq n} \sum_{k=i}^{j}\left(X_{k}-a\right) \geq b n .
$$

Multidimensional arrays of i.i.d. random variables may be treated similarly. Various geometric bodies may be used instead of the intervals $[i, j]$.

4 e 11 Exercise. In the situation of 4 e 8 , formulate and prove a statement about the conditional distribution (in the spirit of Prop. 3d2).

As was mentioned in Sect. 4 b , the weak topology on B_{p} is metrizable and, in particular, corresponds to the norm

$$
\|f\|_{\text {int }}=\sup _{a \in(0,1)}\left|\int_{0}^{a} f(x) \mathrm{d} x\right| .
$$

On the whole L_{p} the situation is more complicated; a linear functional $\langle\cdot, g\rangle$ is bounded w.r.t. $\|\cdot\|_{\text {int }}$ if and only if g is (equivalent to) a function of bounded ${ }^{1}$ variation. Nevertheless, we have the following fact.

4 e 12 Lemma. Λ_{∞}^{*} is lower semicontinuous w.r.t. $\|\cdot\|_{\text {int }}$.
Proof. It was seen (recall 4e5) that Λ_{∞}^{*} is the supremum of $\langle\cdot, g\rangle-\Lambda_{\infty}(g)$ when g runs over (finite) linear combinations of $g_{1}, g_{2}, \ldots ;{ }^{2}$ and the only requirement on these g_{1}, g_{2}, \ldots was that they span L_{q} (and are linearly independent). Thus, we may take $g_{k}=\mathbb{1}_{\left(0, x_{k}\right)}$ for a dense set $\left\{x_{1}, x_{2}, \ldots\right\} \subset[0,1]$. Then each $\left\langle\cdot, g_{k}\right\rangle$ is continuous w.r.t. $\|\cdot\|_{\text {int }}$.

4 e 13 Proposition. For every $f \in L_{p}$ such that $\Lambda_{\infty}^{*}(f)<\infty$,

$$
\limsup _{n}\left|\frac{1}{n} \ln \mathbb{P}\left(\left\|\frac{S_{n}}{n}-f\right\|_{\mathrm{int}} \leq \varepsilon\right)+\Lambda_{\infty}^{*}(f)\right| \underset{\varepsilon \rightarrow 0}{\longrightarrow} 0 .
$$

Proof. We denote $F_{\varepsilon}=\left\{f_{1}:\left\|f_{1}-f\right\|_{\text {int }} \leq \varepsilon\right\}$ and $U_{\varepsilon}=\left\{f_{1}:\left\|f_{1}-f\right\|_{\text {int }}<\varepsilon\right\} ;$ F_{ε} is sequentially weakly closed, and U_{ε} is sequentially weakly open. In order to prove that

$$
\limsup _{n}\left|\frac{1}{n} \ln \mathbb{P}\left(\frac{S_{n}}{n} \in F_{\varepsilon}\right)+\Lambda_{\infty}^{*}(f)\right| \underset{\varepsilon \rightarrow 0}{\longrightarrow} 0
$$

[^8]it is sufficient to prove that
\[

$$
\begin{aligned}
0 \leq \liminf _{\varepsilon} \liminf _{n} & \left(\frac{1}{n} \ln \mathbb{P}\left(\frac{S_{n}}{n} \in U_{\varepsilon}\right)+\Lambda_{\infty}^{*}(f)\right) \\
& \leq \limsup _{\varepsilon} \limsup _{n}\left(\frac{1}{n} \ln \mathbb{P}\left(\frac{S_{n}}{n} \in F_{\varepsilon}\right)+\Lambda_{\infty}^{*}(f)\right) \leq 0
\end{aligned}
$$
\]

The second (middle) inequality is trivial. The first inequality follows from Th. 4e1 (b), since $\inf _{f_{1} \in U_{\varepsilon}} \Lambda_{\infty}^{*}\left(f_{1}\right) \rightarrow \Lambda_{\infty}^{*}(f)$ by 4e12. Similarly, the third inequality follows from Th. 4e1(a).

It means that

$$
\frac{1}{n} \ln \mathbb{P}\left(\left\|\frac{S_{n}}{n}-f\right\|_{\mathrm{int}} \leq \varepsilon\right) \rightarrow-\Lambda_{\infty}^{*}(f)
$$

when $\varepsilon \rightarrow 0$ and $n \geq N_{\varepsilon}$, that is, n grows fast enough when ε tends to 0 . Otherwise, if n grows with ε but not fast enough, the situation may differ.
4 e 14 Exercise. (a) It may happen that

$$
\min _{f_{1} \in F_{\varepsilon}} \Lambda_{\infty}^{*}\left(f_{1}\right)<\inf _{f_{1} \in U_{\varepsilon}} \Lambda_{\infty}^{*}\left(f_{1}\right)=+\infty .
$$

Find an example. ${ }^{1}$
(b) If $\Lambda_{\infty}^{*}(f)<\infty$, then

$$
\min _{f_{1} \in F_{\varepsilon}} \Lambda_{\infty}^{*}\left(f_{1}\right)=\inf _{f_{1} \in U_{\varepsilon}} \Lambda_{\infty}^{*}\left(f_{1}\right)
$$

and therefore Corollary 4 e 2 applies, giving

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \mathbb{P}\left(\left\|\frac{S_{n}}{n}-f\right\|_{\mathrm{int}} \leq \varepsilon\right) \underset{\varepsilon \rightarrow 0}{\longrightarrow}-\Lambda_{\infty}^{*}(f)
$$

Prove it. ${ }^{2}$
4 e 15 Exercise. A fair coin is tossed n times, giving $\left(\beta_{1}, \ldots, \beta_{n}\right) \in\{0,1\}^{n}$. Consider
$p_{n, \varepsilon}=\mathbb{P}\left(\forall k=1, \ldots, n\left|\frac{\beta_{1}+\cdots+\beta_{k}}{n}-\frac{1}{2}\left(\frac{k}{n}\right)^{2}\right| \leq \varepsilon\right)$.

Prove that

$$
\limsup _{n \rightarrow \infty}\left|\sqrt[n]{p_{n, \varepsilon}}-\frac{\sqrt{\mathrm{e}}}{2}\right| \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

[^9]4 e 16 Exercise. A fair coin is tossed n times, giving $\left(\beta_{1}, \ldots, \beta_{n}\right) \in\{0,1\}^{n}$. Given $c \in[0,1]$, we consider

$$
p_{n}=\mathbb{P}\left(\forall k=1, \ldots, n \quad \frac{\beta_{1}+\cdots+\beta_{k}}{n} \geq c\left(\frac{k}{n}\right)^{2}\right) .
$$

Prove that

$$
\begin{array}{lr}
\sqrt[n]{p_{n}} \rightarrow 1 & \text { for } 0 \leq c \leq 0.5 \\
\sqrt[n]{p_{n}} \rightarrow \frac{1}{2 c^{c}(1-c)^{1-c}} & \text { for } 0.5 \leq c \leq 1
\end{array}
$$

$\left(0^{0}=1\right.$, as before). ${ }^{1}$
Another example:
$p_{n}=\mathbb{P}\left(\forall k=1, \ldots, n \quad \frac{\beta_{1}+\cdots+\beta_{k}}{n} \geq \frac{k}{n}-\frac{1}{2}\left(\frac{k}{n}\right)^{2}\right)$.

It appears that

$$
\sqrt[n]{p_{n}} \rightarrow \frac{\mathrm{e}^{1 / 4}}{\sqrt{2}} \quad \text { as } n \rightarrow \infty
$$

The extremal function is

$$
w(x)= \begin{cases}x-0.5 x^{2} & \text { for } 0 \leq x \leq 0.5 \\ 0.5 x+0.125 & \text { for } 0.5 \leq x \leq 1\end{cases}
$$

In order to prove its extremality, the following lemma helps: $\Lambda_{\infty}^{*}\left((w \wedge v)^{\prime}\right) \leq$ $\Lambda_{\infty}^{*}\left(w^{\prime}\right)$ for every linear function $v:[0,1] \rightarrow \mathbb{R}$ such that $v(0) \geq 0$ and $v^{\prime}(\cdot) \geq 0.5$; here $w \wedge v$ is the pointwise minimum.

[^10]
Index

sequentially weakly, 43
weak, 33
$B_{p}, 33$
G, 38
$\langle f, g\rangle, 32$
$L_{p}, 32$
^, 35,38
$\Lambda^{*}, 35,38$
$\Lambda_{\infty}^{*}, 41$
$\Lambda_{n}^{*}, 41$
$\Lambda_{\infty}, 34$
$\Lambda_{n}, 34$
$\Lambda_{t}, 36$
$\Lambda_{t}^{*}, 36$
$\nu_{n}, 35,38$
$\nu_{n, t}, 36$
$\|f\|_{\text {int }}, 33$
$S_{n}, 33$

[^0]: ${ }^{1}$ I mean, algebraically linear and continuous (that is, bounded).
 ${ }^{2}$ Hint: first, $\ell\left(\mathbb{1}_{A}\right)=\int_{A} g$ by Radon-Nikodym. Second, take f such that $f g=|g|^{q}$, that is, $f=|g|^{q / p} \operatorname{sgn} g$; then, for every measurable A such that g is bounded on A we have $\ell\left(f \cdot \mathbb{1}_{A}\right)=\int_{A} f g=\int_{A}|g|^{q}$ and $\left\|f \cdot \mathbb{1}_{A}\right\|_{p}=\left(\int_{A}|g|^{q}\right)^{1 / p}$, thus $\|\ell\| \geq\left(\int_{A}|g|^{q}\right)^{1 / q}$.
 ${ }^{3}$ Rational step functions are dense; rational piecewise linear functions are also dense.
 ${ }^{4} \operatorname{Try} f_{n}(x)=\sin n x$, or the Rademacher functions $f_{n}(x)=\frac{\cos 2^{n} \pi x}{\left|\cos 2^{n} \pi x\right|}$.
 ${ }^{5}$ I mean, algebraically linear and closed.
 ${ }^{6}$ In this case the convergence is uniform on compact subsets of L_{q}, but (generally) not uniform on B_{q}.
 ${ }^{7}$ But not on the whole L_{p}; never mind.
 ${ }^{8}$ More generally, one may require $\forall t \Lambda_{\mu}(t)<\infty$ and use Orlicz spaces (more general than L_{p} spaces).

[^1]: ${ }^{1}$ Without this assumption Lemma 4 c 5 still holds for $a \notin \cup_{t}\left[\Lambda^{\prime}(t-), \Lambda^{\prime}(t+)\right)$.
 ${ }^{2}$ Recall 2c10...

[^2]: ${ }^{1}$ But in Sect. $3 G$ was a set of t, not x.
 ${ }^{2}$ The claim still holds when $G=\emptyset$, but the proof is more complicated; see Dembo and Zeitouni, Exer. 2.3.20.
 ${ }^{3}$ Recall 3a3.

[^3]: ${ }^{1}$ Recall 3a4.
 ${ }^{2}$ Recall 3a5.
 ${ }^{3}$ Recall 3a1.

[^4]: ${ }^{1}$ So-called exponential tightness; see Sect. 4d.

[^5]: ${ }^{1}$ Hint: $\Lambda_{\mu}(t) \leq$ const $\cdot\left(1+|t|^{q}\right)$ for all t.

[^6]: ${ }^{1}$ In other words, closed in the bounded weak topology (bw-closed). In fact, every weakly closed set is bw-closed, but the converse fails; never mind.
 ${ }^{2}$ As a (closed) linear subspace.

[^7]: ${ }^{1}$ Hint: recall the proof of 4 b 2 .
 ${ }^{2}$ Hint: use (4b6]; all norms on \mathbb{R}^{d} are equivalent.
 ${ }^{3} \mathrm{Hint}: \Lambda_{\infty}$ is continuous.

[^8]: ${ }^{1}$ In other words: finite.
 ${ }^{2}$ Continuity of Λ_{∞} was used.

[^9]: ${ }^{1}$ Hint: 4d5
 ${ }^{2}$ Hint: recall the proof of Th. 4c10(b).

[^10]: ${ }^{1}$ Hint: guess the extremal function; prove your guess, taking into account that $\int_{0}^{1} \Lambda_{\mu}^{*}(f(x)) \mathrm{d} x \geq \Lambda_{\mu}^{*}\left(\int_{0}^{1} f(x) \mathrm{d} x\right)$.

