4 Large deviations in spaces of functions

4a	Some motivation	32
$4\mathbf{b}$	A joint compactification $\ldots \ldots \ldots \ldots \ldots$	32
4c	Gärtner-Ellis theorem	35
4d	Exponential tightness	40
$4\mathbf{e}$	Mogulskii's theorem	43

4a Some motivation

Sanov's theorem for a discrete distribution with d atoms was obtained in dimension (d-1); for a nonatomic distribution, infinite dimension is required.

On the other hand, the sum of n random variables is a symmetric (that is, permutation invariant) function of them; the same holds for the empirical distribution (sample frequencies). But we are also interested in more general, non-symmetric functions. For example, given i.i.d. random variables X_1, X_2, \ldots with the expectation 1, consider

$$\mathbb{P}\left(\exists n \ X_1 + \dots + X_n \leq -100\right).$$

(Think about the risk of ruin in gambling, insurance or finance.) Or, like this:

$$\mathbb{P}\left(\exists k, \ell : 1 \le k \le \ell \le n, X_k + \dots + X_\ell \le -100\right).$$

Or, for a large 2-dimensional array $n \times n$ of such i.i.d. random variables one may ask about existence of a $k \times k$ sub-array whose sum is ≤ -100 ; etc. Here, infinite dimension is involved even if each random variable takes only two values.

4b A joint compactification

When dealing with a sequence of models, for n = 1, 2, ..., and interested in the limit as $n \to \infty$, it may help to embed these models into a single compact space.

Recall the Banach space $L_p[0,1]$, for $p \in (1,\infty)$, of all equivalence classes of measurable functions $[0,1] \to \mathbb{R}$, with the norm $||f||_p = (\int_0^1 |f(x)|^p dx)^{1/p}$. Its dual space is $L_q[0,1]$ for $q = \frac{p}{p-1}$ (that is, $\frac{1}{p} + \frac{1}{q} = 1$); if $f \in L_p$ and $g \in L_q$ then $\langle f, g \rangle = \int_0^1 f(x)g(x) dx$ is well-defined, and $|\langle f, g \rangle| \le ||f||_p ||g||_q$

(Hölder). Every linear¹ functional ℓ on L_p is of the form $\langle \cdot, g \rangle$ for some $g \in L_q$.² The unit ball $B_p = \{f \in L_p : ||f||_p \leq 1\}$ in the norm topology is separable,³ but not compact.⁴ Here is a weaker, compact topology on B_p .

Given $f, f_1, f_2, \dots \in B_p$, all $g \in L_q$ such that $\langle f_n, g \rangle \to \langle f, g \rangle$ (as $n \to \infty$) are a linear⁵ subspace (think, why); if it is the whole L_q , one says that $f_n \to f$ in the weak topology.⁶ This topology is metrizable on B_p ;⁷ in particular, it corresponds to the norm

$$||f||_{\text{int}} = \sup_{a \in (0,1)} \left| \int_0^a f(x) \, \mathrm{d}x \right|.$$

Weak compactness of B_p is easy to prove. We take $g_1, g_2, \dots \in B_q$ dense in B_q . Given a sequence $(f_k)_k$ in B_p , we take a subsequence (denoted by $(f_k)_k$ again) such that $\langle f_k, g_1 \rangle$ converges; then, such that also $\langle f_k, g_2 \rangle$ converges; and so on. The diagonal construction ensures that $\lim_k \langle f_k, g_i \rangle$ exists for all i. We get a linear functional $\ell(g) = \lim_k \langle f_k, g \rangle$ on L_q ; it is $\ell(g) = \langle f, g \rangle$ for some f; and $f_k \to f$ weakly.

We turn to probability measures on L_p that are concentrated on finitedimensional subspaces, but the rate function that describes their large deviations is not. If puzzled, recall Sect. 1a: the binomial distributions are concentrated on rational numbers, but their rate function $\gamma(\cdot)$ is not.

Let μ be a probability measure on \mathbb{R} such that,⁸ for a given $q \in (1, \infty)$,

$$\Lambda_{\mu}(t) = \mathcal{O}(|t|^q) \quad \text{as } t \to \pm \infty \,,$$

and $\Lambda'_{\mu}(0) = 0$ (that is, expectation zero), and $\Lambda''_{\mu}(0) > 0$ (that is, not a single atom). We introduce a random element S_n of L_p , where $\frac{1}{p} + \frac{1}{q} = 1$,

$$S_n = nX_1 \mathbb{1}_{(0,\frac{1}{n})} + \dots + nX_n \mathbb{1}_{(\frac{n-1}{n},1)}$$

⁷But not on the whole L_p ; never mind.

¹I mean, algebraically linear and continuous (that is, bounded).

²Hint: first, $\ell(\mathbb{1}_A) = \int_A g$ by Radon-Nikodym. Second, take f such that $fg = |g|^q$, that is, $f = |g|^{q/p} \operatorname{sgn} g$; then, for every measurable A such that g is bounded on A we have $\ell(f \cdot \mathbb{1}_A) = \int_A fg = \int_A |g|^q$ and $||f \cdot \mathbb{1}_A||_p = (\int_A |g|^q)^{1/p}$, thus $||\ell|| \ge (\int_A |g|^q)^{1/q}$.

³Rational step functions are dense; rational piecewise linear functions are also dense.

⁴Try $f_n(x) = \sin nx$, or the Rademacher functions $f_n(x) = \frac{\cos 2^n \pi x}{|\cos 2^n \pi x|}$.

 $^{^5\}mathrm{I}$ mean, algebraically linear and closed.

⁶In this case the convergence is uniform on compact subsets of L_q , but (generally) not uniform on B_q .

⁸More generally, one may require $\forall t \ \Lambda_{\mu}(t) < \infty$ and use Orlicz spaces (more general than L_p spaces).

where X_1, \ldots, X_n are independent random variables, each distributed μ . Here is the corresponding cumulant generating function:

$$\Lambda_n(g) = \ln \mathbb{E} \exp\langle S_n, g \rangle = \Lambda_\mu \left(n \int_0^{1/n} g \right) + \dots + \Lambda_\mu \left(n \int_{\frac{n-1}{n}}^1 g \right) \quad \text{for } g \in L_q.$$

It is easy to guess that $\frac{1}{n}\Lambda_n(g) \to \int_0^1 \Lambda_\mu(g(x)) \, \mathrm{d}x$ as $n \to \infty$.

4b1 Lemma. $\Lambda'_{\mu}(t) = \mathcal{O}(|t|^{q-1})$ as $t \to \pm \infty$.

Proof. For s, t > 0, by convexity, $\Lambda_{\mu}(t+s) \geq \Lambda_{\mu}(t) + s\Lambda'_{\mu}(t)$; if t is large enough, then $s\Lambda'_{\mu}(t) \leq C(t+s)^q$ for all s > 0; and $\min_{s>0} \frac{1}{s}(t+s)^q = \frac{q^q}{(q-1)^{q-1}}t^{q-1}$. The case t < 0 is similar. \Box

4b2 Lemma. There exists C such that for all $g_1, g_2 \in L_q$,

$$\left|\int_{0}^{1} \Lambda_{\mu}(g_{1}(x)) \,\mathrm{d}x - \int_{0}^{1} \Lambda_{\mu}(g_{2}(x)) \,\mathrm{d}x\right| \leq C \|g_{1} - g_{2}\|_{q} (1 + \|g_{1}\|_{q} + \|g_{2}\|_{q})^{q-1}.$$

Proof. Using 4b1, we take C such that

$$\forall t_1, t_2 \ |\Lambda_{\mu}(t_1) - \Lambda_{\mu}(t_2)| \le C |t_1 - t_2| (\max(1, |t_1|, |t_2|))^{q-1};$$

then

$$\left| \int_{0}^{1} \Lambda_{\mu}(g_{1}(x)) \, \mathrm{d}x - \int_{0}^{1} \Lambda_{\mu}(g_{2}(x)) \, \mathrm{d}x \right| \leq \int_{0}^{1} |\Lambda_{\mu}(g_{1}(x)) - \Lambda_{\mu}(g_{2}(x))| \, \mathrm{d}x \leq \\ \leq C \langle |g_{1} - g_{2}|, \left(\max(1, |g_{1}|, |g_{2}|) \right)^{q-1} \rangle \leq C ||g_{1} - g_{2}||_{q} || \left(\max(1, |g_{1}|, |g_{2}|) \right)^{q-1} ||_{p}, \\ \text{and } || \left(\max(\dots) \right)^{q-1} ||_{p} = || \max(\dots) ||_{q}^{q-1}, \text{ and finally, } || \max(\dots) ||_{q} \leq ||1 + \\ |g_{1}| + |g_{2}||_{q} \leq ||1||_{q} + ||g_{1}||_{q} + ||g_{2}||_{q}. \qquad \Box$$

4b3 Proposition. For every $g \in L_q[0,1]$,

$$\frac{1}{n}\Lambda_n(g) \to \Lambda_\infty(g) = \int_0^1 \Lambda_\mu(g(x)) \,\mathrm{d}x \quad \text{as } n \to \infty \,,$$

and $\frac{1}{n}\Lambda_n(g) \leq \Lambda_\infty(g)$ for all n.

Proof. Introducing linear operators $A_n : L_q \to L_q$ by $A_n g = \left(n \int_0^{1/n} g\right) \mathbb{1}_{(0,\frac{1}{n})} + \cdots + \left(n \int_{\frac{n}{n}}^{1} g\right) \mathbb{1}_{(\frac{n-1}{n},1)}$ we have $||A_n|| \leq 1$ and $A_n g \to g$ (in the norm topology) for all $g \in L_q$ (indeed, such g are a subspace containing all continuous functions). We note that $\frac{1}{n} \Lambda_n(g) = \Lambda_\infty(A_n g)$; by 4b2, $\Lambda_\infty(A_n g) \to \Lambda_\infty(g)$. Also, $\frac{1}{n} \Lambda_n(g) \leq \Lambda_\infty(g)$, since $\Lambda_\mu(n \int_{k/n}^{(k+1)/n} g(x) \, \mathrm{d}x) \leq n \int_{k/n}^{(k+1)/n} \Lambda_\mu(g(x)) \, \mathrm{d}x$ by convexity of Λ_μ .

4b4 Example (Normal distribution, see 2a2). Let $\frac{\mu(dx)}{dx} = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$, then $\Lambda_{\mu}(t) = t^2/2$, and $\Lambda_{\infty}(g) = \int_0^1 \frac{1}{2}g^2(x) dx = \frac{1}{2}||g||_2^2$. Every $p \in (1, 2]$ may be used.

4b5 Example (Fair coin, see 2a3). Let $\mu(\{-1\}) = 1/2 = \mu(\{+1\})$, then $\Lambda_{\mu}(t) = \ln \cosh t$, and $\Lambda_{\infty}(g) = \int_0^1 \ln \cosh g(x) \, dx$. Every $p \in (1, \infty)$ may be used.

Note that $\frac{1}{t}\Lambda_{\mu}(t)$ converges to $\Lambda'_{\mu}(+\infty) \in (0, +\infty]$ as $t \to +\infty$, and to $\Lambda'_{\mu}(-\infty) \in [-\infty, 0)$ as $t \to -\infty$; the least closed interval of full measure μ is $[\Lambda'_{\mu}(-\infty), \Lambda'_{\mu}(+\infty)] \cap \mathbb{R}$. Also,

(4b6)
$$\lim_{t \to +\infty} \frac{1}{t} \Lambda_{\infty}(tg) = |\Lambda'_{\mu}(-\infty)| \int_{0}^{1} g^{-}(x) \, \mathrm{d}x + |\Lambda'_{\mu}(+\infty)| \int_{0}^{1} g^{+}(x) \, \mathrm{d}x \ge \\ \ge \min(|\Lambda'_{\mu}(-\infty)|, |\Lambda'_{\mu}(+\infty)|) ||g||_{1}.$$

For the (one-dimensional) distribution ν_n of $\langle S_n, g \rangle$ we have $\Lambda_{\nu_n}(t) = \ln \mathbb{E} \exp(t \langle S_n, g \rangle) = \Lambda_n(tg)$, thus,

(4b7)
$$\frac{1}{n}\Lambda_{\nu_n}(t) \to \Lambda_{\infty}(tg) = \int_0^1 \Lambda_{\mu}(tg(x)) \, \mathrm{d}x \quad \text{as } n \to \infty.$$

Much more can be said about ν_n , since it corresponds to a sum of n independent (but not identically distributed) random variables. On the other hand, (4b7) itself leads to LDP, according to "finite-dimensional" Sect. 4c below.

4c Gärtner-Ellis theorem

Let probability measures ν_1, ν_2, \ldots on \mathbb{R} be such that the limit

(4c1)
$$\lim_{n \to \infty} \frac{1}{n} \Lambda_{\nu_n}(t) = \Lambda(t) \in \mathbb{R}$$

exists for all $t \in \mathbb{R}$. (In particular, $\nu_n = \nu^{*n}$ satisfy just $\frac{1}{n}\Lambda_{\nu_n}(t) = \Lambda_{\nu}(t)$.)

Convexity of Λ_{ν_n} implies convexity of Λ , and therefore, existence of onesided derivatives $\Lambda'(t-) \leq \Lambda'(t+)$. However, these can differ (in spite of analyticity of Λ_{ν_n}); recall Example 2c10.

The Legendre transform

$$\Lambda^*(x) = \sup_{t \in \mathbb{R}} \left(tx - \Lambda(t) \right)$$

is a convex function $\mathbb{R} \to [0,\infty]$ (since $\Lambda(0) = 0$), and $\frac{1}{|x|}\Lambda^*(x) \to \infty$ as $x \to \pm \infty$ (since $\Lambda(\cdot) < \infty$).

$$\Lambda^*(x) = \begin{cases} \sup_{t \le 0} \left(tx - \Lambda(t) \right) > 0 & \text{for } x < \Lambda'(0-), \\ 0 & \text{for } \Lambda'(0-) \le x \le \Lambda'(0+), \\ \sup_{t \ge 0} \left(tx - \Lambda(t) \right) > 0 & \text{for } x > \Lambda'(0+). \end{cases}$$

Consider $\Lambda'(-\infty) \in [-\infty, +\infty)$ and $\Lambda'(+\infty) \in (-\infty, +\infty]$. For $x \in (\Lambda'(-\infty), \Lambda'(+\infty))$ the function $t \mapsto tx - \Lambda(t)$ is maximal at some t (maybe, non-unique); then clearly $\Lambda'(t-) \leq x \leq \Lambda'(t+)$ and $\Lambda^*(x) = tx - \Lambda(t)$. On this open interval Λ^* is finite and convex, therefore continuous. If $x \notin [\Lambda'(-\infty), \Lambda'(+\infty)]$ then $\Lambda^*(x) = +\infty$ (try $t \to -\infty, t \to +\infty$). But if $x \in \{\Lambda'(-\infty), \Lambda'(+\infty)\} \cap \mathbb{R}$, two cases are possible: either $\Lambda^*(x) < \infty$ (recall 2c7), or $\Lambda^*(x) = \infty$ (recall 2c8).

4c2 Lemma.

$$\nu_n[nx,\infty) \le \exp\left(-n\Lambda^*(x) + o(n)\right) \quad \text{for } x \ge \Lambda'(0+);$$

$$\nu_n(-\infty,nx] \le \exp\left(-n\Lambda^*(x) + o(n)\right) \quad \text{for } x \le \Lambda'(0-).$$

Proof. Let $x \ge \Lambda'(0+)$ (the other case is similar). For $t \ge 0$ we have

$$\nu_n[nx,\infty) \le \frac{\int e^{tx} \nu_n(dx)}{e^{tnx}} = \exp(\Lambda_{\nu_n}(t) - ntx);$$

$$\frac{1}{n} \ln \nu_n[nx,\infty) \le \frac{1}{n} \Lambda_{\nu_n}(t) - tx \to \Lambda(t) - tx;$$

$$\limsup_n \frac{1}{n} \ln \nu_n[nx,\infty) \le -\sup_{t\ge 0} (tx - \Lambda(t)) = -\Lambda^*(x).$$

For tilted measures $\nu_{n,t}$ we have $\Lambda_{\nu_{n,t}}(s) = \Lambda_{\nu_n}(t+s) - \Lambda_{\nu_n}(t)$, thus $\frac{1}{n}\Lambda_{\nu_{n,t}}(s) \to \Lambda_t(s) = \Lambda(t+s) - \Lambda(t)$. The corresponding Legendre transform is

$$\Lambda_t^*(x) = \Lambda^*(x) - tx + \Lambda(t) \,,$$

since $\sup_s (sx - \Lambda_t(s)) = \sup_s (sx - \Lambda(t+s) + \Lambda(t)) = \sup_s ((s-t)x - \Lambda(s) + \Lambda(t)) = \sup_s (sx - \Lambda(s)) - tx + \Lambda(t)$. Note that Λ_t^* vanishes on $[\Lambda_t'(0-), \Lambda_t'(0+)] = [\Lambda'(t-), \Lambda'(t+)]$ (only). By 4c2,

$$\nu_{n,t}[nx,\infty) \le \exp\left(-n\Lambda_t^*(x) + o(n)\right) \quad \text{for } x > \Lambda'(t+);$$

$$\nu_{n,t}(-\infty,nx] \le \exp\left(-n\Lambda_t^*(x) + o(n)\right) \quad \text{for } x < \Lambda'(t-).$$

Therefore

(4c3)
$$\nu_{n,t}(na, nb) \to 1$$
 whenever $(a, b) \supset [\Lambda'(t-), \Lambda'(t+)]$.

Taking into account that

$$\frac{\mathrm{d}\nu_n}{\mathrm{d}\nu_{n,t}}(x) = \exp\left(-tx + \Lambda_{\nu_n}(t)\right) \ge \exp\left(-n\max(ta,tb) + \Lambda_{\nu_n}(t)\right) \quad \text{for } x \in (na,nb)$$

we get

(4c4)
$$\nu_n(na, nb) \ge \exp\left(-n\max(ta, tb) + n\Lambda(t) + o(n)\right)$$

whenever $(a, b) \supset [\Lambda'(t-), \Lambda'(t+)].$

Now we assume that Λ is differentiable (that is, $\Lambda'(t-) = \Lambda'(t+)$ for all $t \in \mathbb{R}$).¹

4c5 Lemma. If $\Lambda'(0) \leq x < \Lambda'(+\infty)$, then for every $\varepsilon > 0$,

$$\nu_n(nx, n(x+\varepsilon)) \ge \exp(-n\Lambda^*(x) + o(n)).$$

Proof. We take the maximal² $t_0 \ge 0$ such that $\Lambda'(t_0) = x$. By (4c4), for every b > x and every t such that $x < \Lambda'(t) < b$ we have $\nu_n(nx, nb) \ge$ $\exp(-ntb+n\Lambda(t)+o(n))$; that is, $\liminf_n \frac{1}{n} \ln \nu_n(nx, nb) \ge -tb+\Lambda(t)$ whenever $x < \Lambda'(t) < b$; the latter holds whenever $t > t_0$ is close enough to t_0 , therefore it also holds for $t = t_0$: $\liminf_n \frac{1}{n} \ln \nu_n(nx, nb) \ge -t_0b + \Lambda(t_0) =$ $-t_0x + \Lambda(t_0) - t_0(b-x) = -\Lambda^*(x) - t_0(b-x)$ for all b > x. Finally, $\liminf_n \frac{1}{n} \ln \nu_n(nx, n(x+\varepsilon)) \ge -\Lambda^*(x) - t_0(b-x)$ for all $b \in (x, x+\varepsilon]$, therefore also for b = x.

In combination with (4c2) we get the following.

4c6 Proposition. If ν_n satisfy (4c1) with a differentiable Λ , then

$$\nu_n(nx, n(x+\varepsilon)) = \exp(-n\Lambda^*(x) + o(n))$$

for all $x \in [\Lambda'(0), \Lambda'(+\infty))$ and $\varepsilon > 0$.

And, of course,

$$\nu_n(n(x-\varepsilon),nx) = \exp(-n\Lambda^*(x) + o(n))$$

for all $x \in (\Lambda'(-\infty), \Lambda'(0)]$ and $\varepsilon > 0$.

¹Without this assumption Lemma 4c5 still holds for $a \notin \bigcup_t [\Lambda'(t-), \Lambda'(t+))$.

 $^{^{2}}$ Recall 2c10...

4c7 Example. Do not think that Λ determines uniquely $\lim_{n \to \infty} \frac{1}{n} \ln \nu_n(na, nb)$ in all cases.

Let ν_n be the atom (of probability 1) at 1/n. Then $\Lambda_n(t) = \frac{1}{n}t$; $\Lambda(t) = 0$ for all t; $\Lambda^*(x) = +\infty$ for all $x \neq 0$; $\Lambda^*(0) = 0$; and $\nu_n(0, \infty) = 1$ for all n. The atom at -1/n leads to the same Λ (and Λ^*), but here $\nu_n(0, \infty) = 0$ for all n.

We turn to a finite dimension. Let probability measures ν_1, ν_2, \ldots on \mathbb{R}^d be such that the limit

(4c8)
$$\lim_{n \to \infty} \frac{1}{n} \Lambda_{\nu_n}(t) = \Lambda(t) \in \mathbb{R}$$

exists for all $t \in \mathbb{R}^d$. As before, Λ is convex, and

$$\Lambda^*(x) = \sup_{t \in \mathbb{R}^d} (\langle t, x \rangle - \Lambda(t))$$

is a convex function $\mathbb{R}^d \to [0, \infty]$, and $\frac{1}{|x|} \Lambda^*(x) \to \infty$ as $|x| \to \infty$ (since Λ is locally bounded).

We consider the interior (possibly, empty) G of the set $\{x : \Lambda^*(x) < \infty\}$.¹

4c9 Exercise. (a) $x \in G$ if and only if $\liminf_{|t|\to\infty} \frac{\Lambda(t)-\langle t,x\rangle}{|t|} > 0$.

(b) G is convex.

Prove it.

4c10 Theorem. (a) For every nonempty closed set $F \subset \mathbb{R}^d$,

$$\limsup_{n} \frac{1}{n} \ln \nu_n(nF) \le -\min_{x \in F} \Lambda^*(x) \,.$$

(b) If Λ is differentiable and G is nonempty,² then for every open set $U \subset \mathbb{R}^d$,

$$\liminf_{n} \frac{1}{n} \ln \nu_n(nU) \ge -\inf_{x \in U} \Lambda^*(x) \,.$$

(The infimum over F is reached; think, why.)

4c11 Exercise (upper bound for a half-space).³

$$\nu_n\big(\{nx: \langle t, x \rangle - \Lambda(t) \ge c\}\big) \le \exp(-cn + o(n))$$

for all $t \in \mathbb{R}^d$ and $c \ge 0$.

Prove it.

³Recall 3a3.

¹But in Sect. 3 G was a set of t, not x.

²The claim still holds when $G = \emptyset$, but the proof is more complicated; see Dembo and Zeitouni, Exer. 2.3.20.

Now we assume that Λ is differentiable.

As before, for every $x \in G$ there exists $t \in \mathbb{R}^d$ (maybe, non-unique) such that $\nabla \Lambda(t) = x$ and $\Lambda^*(x) = \langle t, x \rangle - \Lambda(t)$.

The upper bound 4c11 applies to a half-space not containing the "expectation", since $\langle t, \nabla \Lambda(0) \rangle - \Lambda(t) \leq 0$ by convexity.

4c12 Exercise (half-space not containing the "expectation"). ¹ If $c > \langle t, \nabla \Lambda(0) \rangle$, then

$$\exists \varepsilon > 0 \ \nu_n(\{nx : \langle t, x \rangle \ge c\}) = \mathcal{O}(e^{-\varepsilon n}).$$

Prove it.

4c13 Exercise (exponential concentration near the "expectation"). ² If $U \subset \mathbb{R}^d$ is a neighborhood of the point $\nabla \Lambda(0)$, then

$$\exists \varepsilon > 0 \ 1 - \nu_n(nU) = \mathcal{O}(e^{-\varepsilon n}).$$

Prove it.

4c14 Exercise (lower bound). ³ If $G \neq \emptyset$ and $U \subset \mathbb{R}^d$ is open, then

$$\ln \nu_n(nU) \ge -n \inf_{x \in U \cap G} \Lambda^*(x) + o(n) \, .$$

Prove it.

Proof of Theorem 4c10(b). We have

$$\inf_{x\in U}\Lambda^*(x)=\inf_{x\in U\cap G}\Lambda^*(x)$$

since, first, $\Lambda^*(x) = \infty$ for $x \notin \overline{G}$, and second, for $x \in \partial G$ and $y \in G$, by convexity, $\Lambda^*(x + \varepsilon(y - x)) \leq \Lambda^*(x) + \varepsilon(\Lambda^*(y) - \Lambda^*(x))$ and $x + \varepsilon(y - x) \in G$. It remains to apply 4c14.

Proof of Theorem 4c10(a). If $\Lambda^*(x) > c$ then, by 4c11, x belongs to some open half-space $H = \{y : \langle t, y \rangle - \Lambda(t) > c\}$ such that $\nu_n(nH) \leq \exp(-cn + o(n))$. If $\Lambda^*(x) > c$ for all x of a compact set F, then $\nu_n(nF) \leq \exp(-cn + o(n))$, since F is covered by a finite number of such half-spaces (recall 3a6). However, we need it for a closed F, not just compact.

Similarly to the proof of 3a5, we apply 4c11 to $t = \pm e_1, \ldots, \pm e_d$ and obtain, for every R,

$$1 - \nu_n \left(n [-R, R]^d \right) \le \exp\left(-n(R - C) + o(n) \right)$$

 $^{^{1}}$ Recall 3a4.

 $^{^{2}}$ Recall 3a5.

³Recall 3a1.

where $C = \max(\Lambda(-e_1), \Lambda(e_1), \dots, \Lambda(-e_d), \Lambda(e_d))$. Thus, for every c there exists a compact $K \subset \mathbb{R}^d$ such that $1 - \nu_n(nK) \leq \exp(-cn + o(n))$.¹ Finally, $\nu_n(nF) \leq \nu_n(n(F \cap K)) + 1 - \nu_n(nK)$.

Here is a reason, why dimension d > 1 needs more caution than dimension 1. In one dimension, the function $\Lambda^* : \mathbb{R} \to [0, \infty]$ may be discontinuous (in the compact topology of $[0, \infty]$) at $\Lambda'(-\infty)$ or/and $\Lambda'(+\infty)$ (recall (2c7), but its restriction to $[\Lambda'(-\infty), \Lambda'(+\infty)] \cap \mathbb{R}$ is continuous, since Λ^* is convex and lower semicontinuous (as was noted before (3c2)). In higher dimensions, $\Lambda^*|_{\overline{G}}$ need not be continuous.

4c15 Example. There exist $t_n \in \mathbb{R}^2$ and $c_n \in \mathbb{R}$ such that the function $f : x \mapsto \sup_n (\langle t_n, x \rangle + c_n) \in [0, \infty]$ (evidently convex and lower semicontinuous) is finite on the disk $\{x \in \mathbb{R}^2 : |x| < 1\}$ but has a discontinuous restriction to its boundary.

We choose $\varphi_n \in (0, \pi/2), \ \varphi_n \downarrow 0$, introduce $\varphi_{n+o.5} = (\varphi_n + \varphi_{n+1})/2$, $x_n = (\cos \varphi_n, \sin \varphi_n) \in \mathbb{R}^2, \ x_{n+0.5} = (\cos \varphi_{n+0.5}, \sin \varphi_{n+0.5}) \in \mathbb{R}^2$, and define t_n, c_n by

$$\langle t_n, x_n \rangle + c_n = 0 = \langle t_n, x_{n+1} \rangle + c_n, \quad \langle t_n, x_{n+0.5} \rangle + c_n = 1.$$

In addition, we take $t_0 = 0$, $c_0 = 0$. We get $x_{n+0.5} \to x_{\infty} = (1,0)$, $f(x_{n+0.5}) = 1$ for all n, but $f(x_{\infty}) = 0$.

Using the "multiscale" approach as in 2c10 one can construct a probability measure μ on \mathbb{R}^2 such that Λ_{μ} behaves like f above.

4d Exponential tightness

We return to the random elements S_n of L_p , introduced in Sect. 4b.

4d1 Proposition. There exists $\varepsilon > 0$ such that for all R large enough,

$$\sup_{n} \frac{1}{n} \ln \mathbb{P}(\|S_n\|_p \ge Rn) \le -\varepsilon R^p.$$

Using the weak topology of L_p we have, for every C, a compact set $K \subset L_p$ such that $\mathbb{P}(S_n \notin nK) = \mathcal{O}(e^{-Cn})$. This is called *exponential tightness*.

Recall that $\Lambda_n(g) = \ln \mathbb{E} \exp\langle S_n, g \rangle$ for $g \in L_q$, $\frac{1}{p} + \frac{1}{q} = 1$; $\frac{1}{n}\Lambda_n(g) \to \Lambda_\infty(g) = \int_0^1 \Lambda_\mu(g(x)) \, \mathrm{d}x$ by 4b3; and $\frac{1}{n}\Lambda_n(g) \leq \Lambda_\infty(g)$. Also, $\Lambda_\mu(t) = \mathcal{O}(|t|^q)$

¹So-called exponential tightness; see Sect. 4d.

as $t \to \pm \infty$, which implies $\Lambda_{\infty}(g) = \mathcal{O}(\|g\|_q^q)$ as $\|g\|_q \to \infty$. We introduce Legendre transforms

$$\Lambda_n^*(f) = \sup_{g \in L_q} \left(\langle f, g \rangle - \Lambda_n(g) \right) \in [0, \infty];$$

$$\Lambda_\infty^*(f) = \sup_{g \in L_q} \left(\langle f, g \rangle - \Lambda_\infty(g) \right) \in [0, \infty].$$

4d2 Lemma.

$$\Lambda_{\infty}^{*}(f) = \int_{0}^{1} \Lambda_{\mu}^{*}(f(x)) \, \mathrm{d}x \quad \text{for all } f \in L_{p}.$$

Proof. First, $\Lambda_{\infty}^{*}(f) \leq \int_{0}^{1} \Lambda_{\mu}^{*}(f(x)) dx$, since $\langle f, g \rangle - \Lambda_{\infty}(g) = \int_{0}^{1} f(x)g(x) dx - \int_{0}^{1} \Lambda_{\mu}(g(x)) dx = \int (f(x)g(x) - \Lambda_{\mu}(g(x))) dx$, and the integrand does not exceed $\Lambda_{\mu}^{*}(f(x))$ irrespective of g.

In order to prove that $\Lambda_{\infty}^{*}(f) \geq \int_{0}^{1} \Lambda_{\mu}^{*}(f(x)) dx$ we use operators A_{n} introduced in the proof of 4b3: $A_{n}f = \sum_{k} f_{k} \mathbb{1}_{\left(\frac{k-1}{n}, \frac{k}{n}\right)}$ where $f_{k} = n \int_{\frac{k-1}{n}}^{\frac{k}{n}} f(x) dx$; and the same for g.

We have

$$\Lambda_{\infty}^{*}(f) \geq \sup_{g=A_{n}g} \left(\langle f, g \rangle - \Lambda_{\infty}(g) \right) =$$

$$= \sup_{g_{1},\dots,g_{n}} \left(\frac{1}{n} \sum_{k} f_{k}g_{k} - \frac{1}{n} \sum_{k} \Lambda_{\mu}(g_{k}) \right) = \frac{1}{n} \sup_{g_{1},\dots,g_{n}} \sum_{k} \left(f_{k}g_{k} - \Lambda_{\mu}(g_{k}) \right) =$$

$$= \frac{1}{n} \sum_{k} \sup_{t} \left(f_{k}t - \Lambda_{\mu}(t) \right) = \frac{1}{n} \sum_{k} \Lambda_{\mu}^{*}(f_{k}) = \int_{0}^{1} \Lambda_{\mu}^{*}(A_{n}f(x)) \, \mathrm{d}x \, \mathrm{d}x$$

Also, $A_n f \to f$ in L_p ; we take $n_1 < n_2 < \dots$ such that $A_{n_i} f \to f$ almost everywhere. The lower semicontinuity of Λ^*_{μ} implies $\Lambda^*_{\mu}(f(\cdot)) \leq \lim \inf_i \Lambda^*_{\mu}(A_{n_i} f(\cdot))$ a.e.; by Fatou's lemma, $\int_0^1 \Lambda^*_{\mu}(f(x)) dx \leq \lim \inf_i \int_0^1 \Lambda^*_{\mu}(A_{n_i} f(x)) dx \leq \Lambda^*_{\infty}(f)$. \Box

4d3 Exercise. (a) $\Lambda_n^*(f) = +\infty$ whenever $f \neq A_n f$; (b) $\frac{1}{n} \Lambda_n^*(nf) = \int_0^1 \Lambda_\mu^*(f(x)) dx = \Lambda_\infty^*(f)$ whenever $f = A_n f$; (c) $\frac{1}{n} \Lambda_n^*(nA_n f) \to \Lambda_\infty^*(f)$ for all f. Prove it.

4d4 Example (Normal distribution, see 2c6 and 4b4). $\Lambda^*_{\mu}(x) = \frac{1}{2}x^2$, and $\Lambda^*_{\infty}(f) = \int_0^1 \frac{1}{2}f^2(x) \, \mathrm{d}x = \frac{1}{2}||f||_2^2$.

¹Hint: $\Lambda_{\mu}(t) \leq \operatorname{const} \cdot (1+|t|^q)$ for all t.

4d5 Example (Fair coin, see 2c7 and 4b5). $\Lambda^*_{\mu}(x) = \gamma(x)$ is just the function of (1a1); $\Lambda^*_{\infty}(f) = \int_0^1 \gamma(f(x)) \, dx$; note that $\gamma(x) = +\infty$ for $x \notin [-1, 1]$.

4d6 Lemma. There exists $\varepsilon > 0$ such that for all x large enough,

$$\Lambda^*_{\mu}(x) \ge \varepsilon x^p, \ \Lambda^*_{\mu}(-x) \ge \varepsilon x^p, \ \ \mu[x,\infty) \le \exp\left(-\varepsilon x^p\right), \ \mu(-\infty,-x] \le \exp\left(-\varepsilon x^p\right).$$

Proof. We know that $\Lambda_{\mu}(t) \leq C|t|^q$ for $|t| \geq T$. Thus, for every $t \geq T$ we have $\Lambda^*_{\mu}(x) \geq tx - C|t|^q$ and $\mu[x, \infty) \leq \exp(C|t|^q - tx)$. Given $x \geq CqT^{q-1}$, we take $t \geq T$ such that $Cqt^{q-1} = x$. Then $tx - C|t|^q = \varepsilon x^p$, where $\varepsilon = \frac{1}{p(Cq)^{p-1}}$. For (-x) the proof is similar. \Box

It follows from 4d6 and 4d2 that

$$\inf_{\|f\|_p \ge R} \Lambda^*_{\infty}(f) \ge \varepsilon R^p \quad \text{for large } R \,.$$

(Hint: $\Lambda^*_{\mu}(x) \ge \varepsilon |x|^p$ - const for all x.) It may seem that Prop. 4d1 follows, similarly to Theorem 4c10(a). But no, in the infinite dimension we cannot cover $\{f : ||f|| \ge R\}$ by finitely many half-spaces (not containing 0).

4d7 Lemma. There exists $\varepsilon > 0$ such that

$$\int \exp\left(\varepsilon |x|^p\right) \mu(\mathrm{d}x) < \infty$$

Proof. Using the equality $\exp(\varepsilon |x|^p) = 1 + \varepsilon \int_0^{|x|^p} e^{\varepsilon u} du$ we get

$$\int \exp\left(\varepsilon |x|^p\right) \mu(\mathrm{d}x) = 1 + \varepsilon \iint_{0 < u < |x|^p} \mathrm{e}^{\varepsilon u} \,\mathrm{d}u \,\mu(\mathrm{d}x) = 1 + \varepsilon \int_0^\infty \mathrm{d}u \,\mathrm{e}^{\varepsilon u} \int_{|x|^p > u} \mu(\mathrm{d}x) \,;$$

Lemma 4d6 gives $\delta > 0$ such that $\int_{|x|^p > u} \mu(\mathrm{d}x) \leq 2\mathrm{e}^{-\delta u}$ for large u; it remains to take $\varepsilon < \delta$.

Proof of Prop. 4d1.

Lemma 4d7 gives ε such that $\mathbb{E} \exp(\varepsilon |X_1|^p) = M < \infty$. We have $\left\|\frac{S_n}{n}\right\|_p^p = \frac{1}{n} \left(|X_1|^p + \cdots + |X_n|^p\right)$, therefore

$$\mathbb{P}\left(\|S_n\|_p \ge Rn\right) = \mathbb{P}\left(\left\|\frac{S_n}{n}\right\|_p^p \ge R^p\right) = \mathbb{P}\left(|X_1|^p + \dots + |X_n|^p \ge nR^p\right) \le \\ \le \frac{\mathbb{E} \exp \varepsilon(|X_1|^p + \dots + |X_n|^p)}{\exp \varepsilon nR^p} = M^n \exp(-\varepsilon nR^p),$$

that is, $\frac{1}{n} \ln \mathbb{P}(\|S_n\|_p \ge Rn) \le -\varepsilon R^p + \ln M$; and of course, $\ln M \le \frac{\varepsilon}{2} R^p$ for large R.

4e Mogulskii's theorem

Recall the weak topology on the closed unit ball B_p of L_p ; it is compact. A set $F \subset L_p$ is called sequentially weakly closed,¹ if $F \cap RB_p$ is weakly closed for all $R \in (0, \infty)$. A set $U \subset L_p$ is called sequentially weakly open, if its complement is sequentially weakly closed.

4e1 Theorem. (a) For every nonempty sequentially weakly closed set $F \subset L_p$,

$$\limsup_{n} \frac{1}{n} \ln \mathbb{P} \left(S_n \in nF \right) \le - \min_{f \in F} \Lambda_{\infty}^*(f) \,.$$

(b) For every sequentially weakly open set $U \subset L_p$,

$$\liminf_{n} \frac{1}{n} \ln \mathbb{P}\left(S_n \in nU\right) \ge -\inf_{f \in U} \Lambda_{\infty}^*(f) \,.$$

4e2 Corollary. Let a nonempty set $A \subset L_p$ satisfy

$$\inf_{f \in A^{\circ}} \Lambda_{\infty}^{*}(f) = \min_{f \in \overline{A}} \Lambda_{\infty}^{*}(f) = a$$

where A° and \overline{A} are the interior and closure of A in the sequential weak topology. Then

$$\mathbb{P}(S_n \in nA) = \exp(-an + o(n))$$
 as $n \to \infty$.

We choose linearly independent $g_1, g_2, \dots \in B_q$ that span² L_q , and note that

$$(f_n \to f \text{ weakly}) \iff \forall k \langle f_n, g_k \rangle \xrightarrow[n \to \infty]{} \langle f, g_k \rangle$$

for all $f, f_1, f_2, \dots \in B_p$. We introduce linear operators $T_d: L_p \to \mathbb{R}^d$ by

$$T_d f = (\langle f, g_1 \rangle, \dots, \langle f, g_d \rangle);$$

they are weakly continuous, and

$$(f_n \to f \text{ weakly}) \iff \forall d \ T_d f_n \xrightarrow[n \to \infty]{} T_d f.$$

Denote by $\nu_{d,n}$ the distribution of T_dS_n . Similarly to (4b7), by 4b3,

$$\frac{1}{n}\Lambda_{\nu_{d,n}}(t_1,\ldots,t_d)\to\Lambda_{\infty}(t_1g_1+\cdots+t_dg_d)\quad\text{as }n\to\infty$$

¹In other words, closed in the bounded weak topology (bw-closed). In fact, every weakly closed set is bw-closed, but the converse fails; never mind.

 $^{^{2}}$ As a (closed) linear subspace.

for all d and $(t_1, \ldots, t_d) \in \mathbb{R}^d$, since $\Lambda_{\nu_{d,n}}(t_1, \ldots, t_d) = \ln \mathbb{E} \exp(t_1 \langle S_n, g_1 \rangle + \cdots + t_d \langle S_n, g_d \rangle) = \ln \mathbb{E} \exp(S_n, t_1 g_1 + \cdots + t_d g_d) = \Lambda_n(t_1 g_1 + \cdots + t_d g_d)$. Theorem 4c10 applies to $\nu_{d,n}$ and Λ_d^* , the Legendre transform of $\Lambda_d : (t_1, \ldots, t_d) \mapsto \Lambda_\infty(t_1 g_1 + \cdots + t_d g_d) = \int_0^1 \Lambda_\mu(t_1 g_1(x) + \cdots + t_d g_d(x)) \, \mathrm{d}x$.

4e3 Exercise. Λ_d is differentiable.

Prove it.¹

4e4 Exercise.

$$\liminf_{|t|\to\infty}\frac{\Lambda_d(t)}{|t|}>0\,.$$

Prove it. 2

By 4e4 and 4c9, G contains 0 (and so, $G \neq \emptyset$).

4e5 Exercise. (a) $\Lambda_d^*(T_d f)$ is the supremum of $\langle f, g \rangle - \Lambda_\infty(g)$ over all g from the finite-dimensional subspace spanned by g_1, \ldots, g_d ;

(b) $\Lambda_d^*(T_d f) \uparrow \Lambda_\infty^*(f)$ as $d \to \infty$. Prove it.³

4e6 Lemma.

$$\min_{f \in F} \Lambda_d^*(T_d f) \uparrow \min_{f \in F} \Lambda_\infty^*(f) \quad \text{as } d \to \infty$$

for every weakly closed $F \subset B_p$.

Proof. We denote $M = \min_{f \in F} \Lambda_{\infty}^{*}(f)$ and take $f_d \in F$ such that $\Lambda_d^{*}(T_d f_d) = \min_{f \in F} \Lambda_d^{*}(T_d f)$; clearly, this minimum does not exceed M. Assume the contrary (to the claim of the lemma); $\liminf_{d \to \infty} \Lambda_d^{*}(T_d f_d) = M - 4\varepsilon < M$. We take $d_i \to \infty$ such that $\forall i \ \Lambda_{d_i}^{*}(T_{d_i}f_{d_i}) \leq M - 3\varepsilon$. WLOG, $f_{d_i} \to f_{\infty}$ weakly (otherwise, choose a subsequence); and $\Lambda_{\infty}^{*}(f_{\infty}) \geq M$, since $f_{\infty} \in F$. Using 4e5(b) we take d such that $\Lambda_d^{*}(T_d f_{\infty}) \geq \Lambda_{\infty}^{*}(f_{\infty}) - \varepsilon \geq M - \varepsilon$. For all i large enough we have $\Lambda_d^{*}(T_d f_{d_i}) \geq \Lambda_d^{*}(T_d f_{\infty}) - \varepsilon$ by weak lower semicontinuity of $f \mapsto \Lambda_d^{*}(T_d f)$. Also, $d_i \geq d$. Hence, $\Lambda_{d_i}^{*}(T_d f_{d_i}) \geq \Lambda_d^{*}(T_d f$

Proof of Theorem 4e1(a). We denote $M = \min_{f \in F} \Lambda_{\infty}^*(f)$. WLOG, F is bounded (otherwise we turn to $F \cap RB_p$ with R such that $\sup_n \frac{1}{n} \ln \mathbb{P}(||S_n||_p \ge Rn) \le -M$; such R exists by Prop. 4d1); $F \subset RB_p$. By Theorem 4c10(a),

$$\limsup_{n} \frac{1}{n} \ln \mathbb{P} \left(S_n \in nF \right) \le - \min_{x \in T_d(F)} \Lambda_d^*(x) \,,$$

¹Hint: recall the proof of 4b2.

²Hint: use (4b6); all norms on \mathbb{R}^d are equivalent.

³Hint: Λ_{∞} is continuous.

since $\nu_{d,n}(nT_d(F)) = \mathbb{P}(T_dS_n \in nT_d(F)) \geq \mathbb{P}(S_n \in nF)$. Finally, $\min_{x \in T_d(F)} \Lambda_d^*(x) = \min_{f \in F} \Lambda_d^*(T_df) \to M$ by 4e6.

4e7 Lemma. Let $U \subset L_p$ be sequentially weakly open, and $f_0 \in U \cap B_p$. Then there exist d and $\varepsilon > 0$ such that

$$\forall f \in B_p \ \left(\left\| T_d f - T_d f_0 \right\| \le \varepsilon \implies f \in U \right).$$

Proof. Assume the contrary: $f_d \in B_p \setminus U$, $||T_d f_d - T_d f_0|| \leq \frac{1}{d}$. Taking into account that $||T_d f - T_d f_0||$ is increasing in d we have $||T_d f_n - T_d f_0|| \leq \frac{1}{n}$ whenever $n \geq d$; thus $T_d f_n \to T_d f_0$ for all d, that is, $f_n \to f_0$ weakly; a contradiction.

Proof of Theorem 4e1(b). Let $f_0 \in U$; we'll prove that $\liminf_n \frac{1}{n} \ln \mathbb{P}(S_n \in nU) \geq -\Lambda_{\infty}^*(f_0)$. We take R such that $f_0 \in RB_p$ and $\sup_n \frac{1}{n} \ln \mathbb{P}(||S_n||_p \geq Rn) \leq -\Lambda_{\infty}^*(f_0)$; such R exists by Prop. 4d1. Lemma 4e7 gives d and $\varepsilon > 0$ such that $\forall f \in RB_p$ $(||T_df - T_df_0|| \leq \varepsilon \implies f \in U)$. It is sufficient to prove that

$$\liminf_{n} \frac{1}{n} \ln \mathbb{P}\left(\left\| T_d \frac{S_n}{n} - T_d f_0 \right\| < \varepsilon \right) \ge - \inf_{x: \|x - T_d f_0\| < \varepsilon} \Lambda_d^*(x) ,$$

since $\inf_{x:\|x-T_df_0\|<\varepsilon} \Lambda_d^*(x) \leq \Lambda_d^*(T_df_0) \leq \Lambda_\infty^*(f_0)$ by 4e5. Theorem 4c10(b) gives the needed inequality, since $\nu_{d,n}(\{nx:\|x-T_df_0\|<\varepsilon\}) = \mathbb{P}(\|T_d\frac{S_n}{n} - T_df_0\|<\varepsilon\})$.

4e8 Example. Let X_1, X_2, \ldots be independent standard normal random variables, and a, b > 0. Consider events

$$E_n = \left\{ \max_{m=0,\dots,n} \sum_{k=1}^m (X_k - a) \ge bn \right\}.$$

We'll see that

$$\frac{1}{n}\ln\mathbb{P}(E_n) \to \begin{cases} -2ab & \text{for } b \le a, \\ -\frac{1}{2}(a+b)^2 & \text{for } b \ge a \end{cases}$$

as $n \to \infty$.

In terms of the random elements S_n of L_p ,

$$\frac{1}{n} \max_{m=0,\dots,n} \sum_{k=1}^{m} (X_k - a) = \max_{0 \le x \le 1} \int_0^x \left(\frac{1}{n} S_n(u) - a\right) du.$$

We introduce the set

$$A = \left\{ f \in L_p : \max_{0 \le x \le 1} \int_0^x (f(u) - a) \, \mathrm{d}u \ge b \right\},$$

then $E_n = \{S_n \in nA\}$. According to 4d4, $\Lambda^*_{\infty}(f) = \frac{1}{2} ||f||_2^2$.

4e9 Exercise. Prove that A satisfies the condition of Corollary 4e2, and find a there.

4e10 Exercise. Formulate and prove a counterpart of 4e9 for

$$\max_{0 \le i \le j \le n} \sum_{k=i}^{j} (X_k - a) \ge bn \,.$$

Multidimensional arrays of i.i.d. random variables may be treated similarly. Various geometric bodies may be used instead of the intervals [i, j].

4e11 Exercise. In the situation of 4e8, formulate and prove a statement about the conditional distribution (in the spirit of Prop. 3d2).

As was mentioned in Sect. 4b, the weak topology on B_p is metrizable and, in particular, corresponds to the norm

$$||f||_{\text{int}} = \sup_{a \in (0,1)} \left| \int_0^a f(x) \, \mathrm{d}x \right|.$$

On the whole L_p the situation is more complicated; a linear functional $\langle \cdot, g \rangle$ is bounded w.r.t. $\|\cdot\|_{\text{int}}$ if and only if g is (equivalent to) a function of bounded¹ variation. Nevertheless, we have the following fact.

4e12 Lemma. Λ_{∞}^* is lower semicontinuous w.r.t. $\|\cdot\|_{\text{int}}$.

Proof. It was seen (recall 4e5) that Λ_{∞}^* is the supremum of $\langle \cdot, g \rangle - \Lambda_{\infty}(g)$ when g runs over (finite) linear combinations of $g_1, g_2, \ldots;^2$ and the only requirement on these g_1, g_2, \ldots was that they span L_q (and are linearly independent). Thus, we may take $g_k = \mathbb{1}_{(0,x_k)}$ for a dense set $\{x_1, x_2, \ldots\} \subset [0, 1]$. Then each $\langle \cdot, g_k \rangle$ is continuous w.r.t. $\| \cdot \|_{\text{int.}}$

4e13 Proposition. For every $f \in L_p$ such that $\Lambda^*_{\infty}(f) < \infty$,

$$\limsup_{n} \left| \frac{1}{n} \ln \mathbb{P} \left(\left\| \frac{S_n}{n} - f \right\|_{\text{int}} \le \varepsilon \right) + \Lambda_{\infty}^*(f) \right| \xrightarrow[\varepsilon \to 0]{} 0.$$

Proof. We denote $F_{\varepsilon} = \{f_1 : ||f_1 - f||_{int} \leq \varepsilon\}$ and $U_{\varepsilon} = \{f_1 : ||f_1 - f||_{int} < \varepsilon\}$; F_{ε} is sequentially weakly closed, and U_{ε} is sequentially weakly open. In order to prove that

$$\limsup_{n} \left| \frac{1}{n} \ln \mathbb{P} \left(\frac{S_n}{n} \in F_{\varepsilon} \right) + \Lambda_{\infty}^*(f) \right| \xrightarrow[\varepsilon \to 0]{} 0,$$

¹In other words: finite.

²Continuity of Λ_{∞} was used.

it is sufficient to prove that

$$0 \leq \liminf_{\varepsilon} \inf_{n} \inf_{n} \left(\frac{1}{n} \ln \mathbb{P} \left(\frac{S_{n}}{n} \in U_{\varepsilon} \right) + \Lambda_{\infty}^{*}(f) \right)$$
$$\leq \limsup_{\varepsilon} \limsup_{n} \lim_{n} \sup_{n} \left(\frac{1}{n} \ln \mathbb{P} \left(\frac{S_{n}}{n} \in F_{\varepsilon} \right) + \Lambda_{\infty}^{*}(f) \right) \leq 0.$$

The second (middle) inequality is trivial. The first inequality follows from Th. 4e1(b), since $\inf_{f_1 \in U_{\varepsilon}} \Lambda_{\infty}^*(f_1) \to \Lambda_{\infty}^*(f)$ by 4e12. Similarly, the third inequality follows from Th. 4e1(a).

It means that

$$\frac{1}{n}\ln\mathbb{P}\left(\left\|\frac{S_n}{n} - f\right\|_{\text{int}} \le \varepsilon\right) \to -\Lambda_{\infty}^*(f)$$

when $\varepsilon \to 0$ and $n \ge N_{\varepsilon}$, that is, n grows fast enough when ε tends to 0. Otherwise, if n grows with ε but not fast enough, the situation may differ.

4e14 Exercise. (a) It may happen that

$$\min_{f_1 \in F_{\varepsilon}} \Lambda_{\infty}^*(f_1) < \inf_{f_1 \in U_{\varepsilon}} \Lambda_{\infty}^*(f_1) = +\infty.$$

Find an example.¹

(b) If $\Lambda^*_{\infty}(f) < \infty$, then

$$\min_{f_1 \in F_{\varepsilon}} \Lambda_{\infty}^*(f_1) = \inf_{f_1 \in U_{\varepsilon}} \Lambda_{\infty}^*(f_1)$$

and therefore Corollary 4e2 applies, giving

$$\lim_{n \to \infty} \frac{1}{n} \ln \mathbb{P}\left(\left\| \frac{S_n}{n} - f \right\|_{\text{int}} \le \varepsilon \right) \xrightarrow[\varepsilon \to 0]{} - \Lambda_{\infty}^*(f) \,.$$

Prove it.²

4e15 Exercise. A fair coin is tossed *n* times, giving $(\beta_1, \ldots, \beta_n) \in \{0, 1\}^n$. Consider

$$p_{n,\varepsilon} = \mathbb{P}\left(\forall k = 1, \dots, n \quad \left|\frac{\beta_1 + \dots + \beta_k}{n} - \frac{1}{2}\left(\frac{k}{n}\right)^2\right| \le \varepsilon\right).$$

Prove that

$$\limsup_{n \to \infty} \left| \sqrt[n]{p_{n,\varepsilon}} - \frac{\sqrt{e}}{2} \right| \to 0 \quad \text{as } \varepsilon \to 0 \,.$$

¹Hint: 4d5.

²Hint: recall the proof of Th. 4c10(b).

4e16 Exercise. A fair coin is tossed *n* times, giving $(\beta_1, \ldots, \beta_n) \in \{0, 1\}^n$. Given $c \in [0, 1]$, we consider

$$p_n = \mathbb{P}\left(\forall k = 1, \dots, n \quad \frac{\beta_1 + \dots + \beta_k}{n} \ge c\left(\frac{k}{n}\right)^2\right).$$

Prove that

$$\sqrt[n]{p_n} \to 1 \qquad \text{for } 0 \le c \le 0.5 ,$$

$$\sqrt[n]{p_n} \to \frac{1}{2c^c(1-c)^{1-c}} \qquad \text{for } 0.5 \le c \le 1$$

 $(0^0 = 1, \text{ as before}).^1$

Another example:

$$p_n = \mathbb{P}\left(\forall k = 1, \dots, n \quad \frac{\beta_1 + \dots + \beta_k}{n} \ge \frac{k}{n} - \frac{1}{2} \left(\frac{k}{n}\right)^2\right).$$

It appears that

$$\sqrt[n]{p_n} \to \frac{\mathrm{e}^{1/4}}{\sqrt{2}} \quad \text{as } n \to \infty \,.$$

The extremal function is

$$w(x) = \begin{cases} x - 0.5x^2 & \text{for } 0 \le x \le 0.5, \\ 0.5x + 0.125 & \text{for } 0.5 \le x \le 1. \end{cases}$$

In order to prove its extremality, the following lemma helps: $\Lambda_{\infty}^*((w \wedge v)') \leq \Lambda_{\infty}^*(w')$ for every *linear* function $v : [0,1] \to \mathbb{R}$ such that $v(0) \geq 0$ and $v'(\cdot) \geq 0.5$; here $w \wedge v$ is the pointwise minimum.

¹Hint: guess the extremal function; prove your guess, taking into account that $\int_0^1 \Lambda^*_{\mu}(f(x)) \, \mathrm{d}x \ge \Lambda^*_{\mu} \left(\int_0^1 f(x) \, \mathrm{d}x \right).$

Index

sequentially weakly, 43	$\Lambda^*_{\infty}, 41$
weak, 33	$\Lambda_n^*, 41$
,	$\Lambda_{\infty}, 34$ $\Lambda_n, 34$
$B_p, 33$	$\Lambda_t, 36$
G, 38	$\Lambda_t^*, 36$
$\langle f,g \rangle, 32$	$\nu_n, 35, 38$
$L_p, 32$	$\nu_{n,t}, 36$
$\Lambda, 35, 38$	$ f _{int}, 33$
$\Lambda^*, 35, 38$	$S_n, 33$