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4a Some motivation

Sanov’s theorem for a discrete distribution with d atoms was obtained in
dimension (d−1); for a nonatomic distribution, infinite dimension is required.

On the other hand, the sum of n random variables is a symmetric (that
is, permutation invariant) function of them; the same holds for the empirical
distribution (sample frequencies). But we are also interested in more gen-
eral, non-symmetric functions. For example, given i.i.d. random variables
X1, X2, . . . with the expectation 1, consider

P
(
∃n X1 + · · ·+Xn ≤ −100

)
.

(Think about the risk of ruin in gambling, insurance or finance.) Or, like
this:

P
(
∃k, ` : 1 ≤ k ≤ ` ≤ n, Xk + · · ·+X` ≤ −100

)
.

Or, for a large 2-dimensional array n× n of such i.i.d. random variables one
may ask about existence of a k × k sub-array whose sum is ≤ −100; etc.
Here, infinite dimension is involved even if each random variable takes only
two values.

4b A joint compactification

When dealing with a sequence of models, for n = 1, 2, . . . , and interested in
the limit as n→∞, it may help to embed these models into a single compact
space.

Recall the Banach space Lp[0, 1], for p ∈ (1,∞), of all equivalence classes

of measurable functions [0, 1]→ R, with the norm ‖f‖p =
(∫ 1

0
|f(x)|p dx

)
1/p.

Its dual space is Lq[0, 1] for q = p
p−1

(that is, 1
p

+ 1
q

= 1); if f ∈ Lp and

g ∈ Lq then 〈f, g〉 =
∫ 1

0
f(x)g(x) dx is well-defined, and |〈f, g〉| ≤ ‖f‖p‖g‖q
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(Hölder). Every linear1 functional ` on Lp is of the form 〈·, g〉 for some
g ∈ Lq.2 The unit ball Bp = {f ∈ Lp : ‖f‖p ≤ 1} in the norm topology is
separable,3 but not compact.4 Here is a weaker, compact topology on Bp.

Given f, f1, f2, · · · ∈ Bp, all g ∈ Lq such that 〈fn, g〉 → 〈f, g〉 (as n→∞)
are a linear5 subspace (think, why); if it is the whole Lq, one says that fn → f
in the weak topology.6 This topology is metrizable on Bp;

7 in particular, it
corresponds to the norm

‖f‖int = sup
a∈(0,1)

∣∣∣∣ ∫ a

0

f(x) dx

∣∣∣∣ .
Weak compactness of Bp is easy to prove. We take g1, g2, · · · ∈ Bq dense in
Bq. Given a sequence (fk)k in Bp, we take a subsequence (denoted by (fk)k
again) such that 〈fk, g1〉 converges; then, such that also 〈fk, g2〉 converges;
and so on. The diagonal construction ensures that limk〈fk, gi〉 exists for all
i. We get a linear functional `(g) = limk〈fk, g〉 on Lq; it is `(g) = 〈f, g〉 for
some f ; and fk → f weakly.

We turn to probability measures on Lp that are concentrated on finite-
dimensional subspaces, but the rate function that describes their large de-
viations is not. If puzzled, recall Sect. 1a: the binomial distributions are
concentrated on rational numbers, but their rate function γ(·) is not.

Let µ be a probability measure on R such that,8 for a given q ∈ (1,∞),

Λµ(t) = O(|t|q) as t→ ±∞ ,

and Λ′µ(0) = 0 (that is, expectation zero), and Λ′′µ(0) > 0 (that is, not a
single atom). We introduce a random element Sn of Lp, where 1

p
+ 1

q
= 1,

Sn = nX11l(0, 1
n

) + · · ·+ nXn1l(n−1
n
,1)

1I mean, algebraically linear and continuous (that is, bounded).
2Hint: first, `(1lA) =

∫
A
g by Radon-Nikodym. Second, take f such that fg = |g|q, that

is, f = |g|q/p sgn g; then, for every measurable A such that g is bounded on A we have
`(f · 1lA) =

∫
A
fg =

∫
A
|g|q and ‖f · 1lA‖p =

(∫
A
|g|q
)
1/p, thus ‖`‖ ≥

(∫
A
|g|q
)
1/q.

3Rational step functions are dense; rational piecewise linear functions are also dense.
4Try fn(x) = sinnx, or the Rademacher functions fn(x) = cos 2nπx

| cos 2nπx| .
5I mean, algebraically linear and closed.
6In this case the convergence is uniform on compact subsets of Lq, but (generally) not

uniform on Bq.
7But not on the whole Lp; never mind.
8More generally, one may require ∀t Λµ(t) < ∞ and use Orlicz spaces (more general

than Lp spaces).
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where X1, . . . , Xn are independent random variables, each distributed µ.
Here is the corresponding cumulant generating function:

Λn(g) = lnE exp〈Sn, g〉 = Λµ

(
n

∫ 1/n

0

g

)
+ · · ·+ Λµ

(
n

∫ 1

n−1
n

g

)
for g ∈ Lq .

It is easy to guess that 1
n
Λn(g)→

∫ 1

0
Λµ

(
g(x)

)
dx as n→∞.

4b1 Lemma. Λ′µ(t) = O
(
|t|q−1

)
as t→ ±∞.

Proof. For s, t > 0, by convexity, Λµ(t + s) ≥ Λµ(t) + sΛ′µ(t); if t is large
enough, then sΛ′µ(t) ≤ C(t + s)q for all s > 0; and mins>0

1
s
(t + s)q =

qq

(q−1)q−1 t
q−1. The case t < 0 is similar.

4b2 Lemma. There exists C such that for all g1, g2 ∈ Lq,∣∣∣∣ ∫ 1

0

Λµ

(
g1(x)

)
dx−

∫ 1

0

Λµ

(
g2(x)

)
dx

∣∣∣∣ ≤ C‖g1 − g2‖q
(
1 + ‖g1‖q + ‖g2‖q

)
q−1 .

Proof. Using 4b1, we take C such that

∀t1, t2 |Λµ(t1)− Λµ(t2)| ≤ C|t1 − t2|
(
max(1, |t1|, |t2|)

)
q−1 ;

then∣∣∣∣ ∫ 1

0

Λµ

(
g1(x)

)
dx−

∫ 1

0

Λµ

(
g2(x)

)
dx

∣∣∣∣ ≤ ∫ 1

0

|Λµ

(
g1(x)

)
− Λµ

(
g2(x)

)
| dx ≤

≤ C〈|g1−g2|,
(
max(1, |g1|, |g2|)

)
q−1〉 ≤ C‖g1−g2‖q‖

(
max(1, |g1|, |g2|)

)
q−1‖p ,

and ‖
(
max(. . . )

)
q−1‖p = ‖max(. . . )‖q−1

q , and finally, ‖max(. . . )‖q ≤ ‖1 +
|g1|+ |g2|‖q ≤ ‖1‖q + ‖g1‖q + ‖g2‖q.

4b3 Proposition. For every g ∈ Lq[0, 1],

1

n
Λn(g)→ Λ∞(g) =

∫ 1

0

Λµ

(
g(x)

)
dx as n→∞ ,

and 1
n
Λn(g) ≤ Λ∞(g) for all n.

Proof. Introducing linear operatorsAn : Lq → Lq byAng =
(
n
∫ 1/n

0
g
)
1l(0, 1

n
)+

· · · +
(
n
∫ 1

n−1
n
g
)
1l(n−1

n
,1) we have ‖An‖ ≤ 1 and Ang → g (in the norm topol-

ogy) for all g ∈ Lq (indeed, such g are a subspace containing all continuous
functions). We note that 1

n
Λn(g) = Λ∞(Ang); by 4b2, Λ∞(Ang) → Λ∞(g).

Also, 1
n
Λn(g) ≤ Λ∞(g), since Λµ

(
n
∫ (k+1)/n

k/n
g(x) dx

)
≤ n

∫ (k+1)/n

k/n
Λµ

(
g(x)

)
dx

by convexity of Λµ.



Tel Aviv University, 2015 Large and moderate deviations 35

4b4 Example (Normal distribution, see 2a2). Let µ(dx)
dx

= 1√
2π

e−x
2/2, then

Λµ(t) = t2/2, and Λ∞(g) =
∫ 1

0
1
2
g2(x) dx = 1

2
‖g‖2

2. Every p ∈ (1, 2] may be
used.

4b5 Example (Fair coin, see 2a3). Let µ({−1}) = 1/2 = µ({+1}), then

Λµ(t) = ln cosh t, and Λ∞(g) =
∫ 1

0
ln cosh g(x) dx. Every p ∈ (1,∞) may be

used.

Note that 1
t
Λµ(t) converges to Λ′µ(+∞) ∈ (0,+∞] as t → +∞, and to

Λ′µ(−∞) ∈ [−∞, 0) as t→ −∞; the least closed interval of full measure µ is
[Λ′µ(−∞),Λ′µ(+∞)] ∩ R. Also,

(4b6) lim
t→+∞

1

t
Λ∞(tg) = |Λ′µ(−∞)|

∫ 1

0

g−(x) dx+ |Λ′µ(+∞)|
∫ 1

0

g+(x) dx ≥

≥ min
(
|Λ′µ(−∞)|, |Λ′µ(+∞)|)‖g‖1 .

For the (one-dimensional) distribution νn of 〈Sn, g〉 we have Λνn(t) =
lnE exp

(
t〈Sn, g〉

)
= Λn(tg), thus,

(4b7)
1

n
Λνn(t)→ Λ∞(tg) =

∫ 1

0

Λµ

(
tg(x)

)
dx as n→∞ .

Much more can be said about νn, since it corresponds to a sum of n indepen-
dent (but not identically distributed) random variables. On the other hand,
(4b7) itself leads to LDP, according to “finite-dimensional” Sect. 4c below.

4c Gärtner-Ellis theorem

Let probability measures ν1, ν2, . . . on R be such that the limit

(4c1) lim
n→∞

1

n
Λνn(t) = Λ(t) ∈ R

exists for all t ∈ R. (In particular, νn = ν∗n satisfy just 1
n
Λνn(t) = Λν(t).)

Convexity of Λνn implies convexity of Λ, and therefore, existence of one-
sided derivatives Λ′(t−) ≤ Λ′(t+). However, these can differ (in spite of
analyticity of Λνn); recall Example 2c10.

The Legendre transform

Λ∗(x) = sup
t∈R

(
tx− Λ(t)

)
is a convex function R → [0,∞] (since Λ(0) = 0), and 1

|x|Λ
∗(x) → ∞ as

x→ ±∞ (since Λ(·) <∞).
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Note that supt≥0

(
tx − Λ(t)

)
= 0 ⇐⇒ x ≤ Λ′(0+), and supt≤0

(
tx −

Λ(t)
)

= 0 ⇐⇒ x ≥ Λ′(0−); thus,

Λ∗(x) =


supt≤0

(
tx− Λ(t)

)
> 0 for x < Λ′(0−),

0 for Λ′(0−) ≤ x ≤ Λ′(0+),

supt≥0

(
tx− Λ(t)

)
> 0 for x > Λ′(0+).

Consider Λ′(−∞) ∈ [−∞,+∞) and Λ′(+∞) ∈ (−∞,+∞]. For x ∈(
Λ′(−∞),Λ′(+∞)

)
the function t 7→ tx−Λ(t) is maximal at some t (maybe,

non-unique); then clearly Λ′(t−) ≤ x ≤ Λ′(t+) and Λ∗(x) = tx − Λ(t).
On this open interval Λ∗ is finite and convex, therefore continuous. If x /∈
[Λ′(−∞),Λ′(+∞)] then Λ∗(x) = +∞ (try t → −∞, t → +∞). But if
x ∈ {Λ′(−∞),Λ′(+∞)}∩R, two cases are possible: either Λ∗(x) <∞ (recall
2c7), or Λ∗(x) =∞ (recall 2c8).

4c2 Lemma.

νn[nx,∞) ≤ exp
(
−nΛ∗(x) + o(n)

)
for x ≥ Λ′(0+) ;

νn(−∞, nx] ≤ exp
(
−nΛ∗(x) + o(n)

)
for x ≤ Λ′(0−) .

Proof. Let x ≥ Λ′(0+) (the other case is similar). For t ≥ 0 we have

νn[nx,∞) ≤
∫

etx νn(dx)

etnx
= exp

(
Λνn(t)− ntx

)
;

1

n
ln νn[nx,∞) ≤ 1

n
Λνn(t)− tx→ Λ(t)− tx ;

lim sup
n

1

n
ln νn[nx,∞) ≤ − sup

t≥0

(
tx− Λ(t)

)
= −Λ∗(x) .

For tilted measures νn,t we have Λνn,t(s) = Λνn(t + s) − Λνn(t), thus
1
n
Λνn,t(s)→ Λt(s) = Λ(t+ s)−Λ(t). The corresponding Legendre transform

is
Λ∗t (x) = Λ∗(x)− tx+ Λ(t) ,

since sups
(
sx − Λt(s)

)
= sups

(
sx − Λ(t + s) + Λ(t)

)
= sups

(
(s − t)x −

Λ(s) + Λ(t)
)

= sups
(
sx − Λ(s)

)
− tx + Λ(t). Note that Λ∗t vanishes on

[Λ′t(0−),Λ′t(0+)] = [Λ′(t−),Λ′(t+)] (only). By 4c2,

νn,t[nx,∞) ≤ exp
(
−nΛ∗t (x) + o(n)

)
for x > Λ′(t+) ;

νn,t(−∞, nx] ≤ exp
(
−nΛ∗t (x) + o(n)

)
for x < Λ′(t−) .
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Therefore

(4c3) νn,t(na, nb)→ 1 whenever (a, b) ⊃ [Λ′(t−),Λ′(t+)] .

Taking into account that

dνn
dνn,t

(x) = exp
(
−tx+Λνn(t)

)
≥ exp

(
−nmax(ta, tb)+Λνn(t)

)
for x ∈ (na, nb)

we get

(4c4) νn(na, nb) ≥ exp
(
−nmax(ta, tb) + nΛ(t) + o(n)

)
whenever (a, b) ⊃ [Λ′(t−),Λ′(t+)].

Now we assume that Λ is differentiable (that is, Λ′(t−) = Λ′(t+) for all
t ∈ R).1

4c5 Lemma. If Λ′(0) ≤ x < Λ′(+∞), then for every ε > 0,

νn
(
nx, n(x+ ε)

)
≥ exp

(
−nΛ∗(x) + o(n)

)
.

Proof. We take the maximal2 t0 ≥ 0 such that Λ′(t0) = x. By (4c4), for
every b > x and every t such that x < Λ′(t) < b we have νn(nx, nb) ≥
exp
(
−ntb+nΛ(t)+o(n)

)
; that is, lim infn

1
n

ln νn(nx, nb) ≥ −tb+Λ(t) when-
ever x < Λ′(t) < b; the latter holds whenever t > t0 is close enough to t0,
therefore it also holds for t = t0: lim infn

1
n

ln νn(nx, nb) ≥ −t0b + Λ(t0) =
−t0x + Λ(t0) − t0(b − x) = −Λ∗(x) − t0(b − x) for all b > x. Finally,
lim infn

1
n

ln νn
(
nx, n(x + ε)

)
≥ −Λ∗(x) − t0(b − x) for all b ∈ (x, x + ε],

therefore also for b = x.

In combination with (4c2) we get the following.

4c6 Proposition. If νn satisfy (4c1) with a differentiable Λ, then

νn
(
nx, n(x+ ε)

)
= exp

(
−nΛ∗(x) + o(n)

)
for all x ∈ [Λ′(0),Λ′(+∞)

)
and ε > 0.

And, of course,

νn
(
n(x− ε), nx

)
= exp

(
−nΛ∗(x) + o(n)

)
for all x ∈ (Λ′(−∞),Λ′(0)] and ε > 0.

1Without this assumption Lemma 4c5 still holds for a /∈ ∪t[Λ′(t−),Λ′(t+)
)
.

2Recall 2c10. . .
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4c7 Example. Do not think that Λ determines uniquely limn
1
n

ln νn(na, nb)
in all cases.
Let νn be the atom (of probability 1) at 1/n. Then Λn(t) = 1

n
t; Λ(t) = 0 for

all t; Λ∗(x) = +∞ for all x 6= 0; Λ∗(0) = 0; and νn(0,∞) = 1 for all n.
The atom at −1/n leads to the same Λ (and Λ∗), but here νn(0,∞) = 0 for
all n.

We turn to a finite dimension. Let probability measures ν1, ν2, . . . on Rd

be such that the limit

(4c8) lim
n→∞

1

n
Λνn(t) = Λ(t) ∈ R

exists for all t ∈ Rd. As before, Λ is convex, and

Λ∗(x) = sup
t∈Rd

(
〈t, x〉 − Λ(t)

)
is a convex function Rd → [0,∞], and 1

|x|Λ
∗(x)→∞ as |x| → ∞ (since Λ is

locally bounded).
We consider the interior (possibly, empty) G of the set {x : Λ∗(x) <∞}.1

4c9 Exercise. (a) x ∈ G if and only if lim inf |t|→∞
Λ(t)−〈t,x〉
|t| > 0.

(b) G is convex.
Prove it.

4c10 Theorem. (a) For every nonempty closed set F ⊂ Rd,

lim sup
n

1

n
ln νn(nF ) ≤ −min

x∈F
Λ∗(x) .

(b) If Λ is differentiable and G is nonempty,2 then for every open set U ⊂ Rd,

lim inf
n

1

n
ln νn(nU) ≥ − inf

x∈U
Λ∗(x) .

(The infimum over F is reached; think, why.)

4c11 Exercise (upper bound for a half-space). 3

νn
(
{nx : 〈t, x〉 − Λ(t) ≥ c}

)
≤ exp

(
−cn+ o(n)

)
for all t ∈ Rd and c ≥ 0.

Prove it.
1But in Sect. 3 G was a set of t, not x.
2The claim still holds when G = ∅, but the proof is more complicated; see Dembo and

Zeitouni, Exer. 2.3.20.
3Recall 3a3.
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Now we assume that Λ is differentiable.
As before, for every x ∈ G there exists t ∈ Rd (maybe, non-unique) such

that ∇Λ(t) = x and Λ∗(x) = 〈t, x〉 − Λ(t).
The upper bound 4c11 applies to a half-space not containing the “expec-

tation”, since 〈t,∇Λ(0)〉 − Λ(t) ≤ 0 by convexity.

4c12 Exercise (half-space not containing the “expectation”). 1 If c > 〈t,∇Λ(0)〉,
then

∃ε > 0 νn({nx : 〈t, x〉 ≥ c}) = O(e−εn) .

Prove it.

4c13 Exercise (exponential concentration near the “expectation”). 2

If U ⊂ Rd is a neighborhood of the point ∇Λ(0), then

∃ε > 0 1− νn(nU) = O(e−εn) .

Prove it.

4c14 Exercise (lower bound). 3 If G 6= ∅ and U ⊂ Rd is open, then

ln νn(nU) ≥ −n inf
x∈U∩G

Λ∗(x) + o(n) .

Prove it.

Proof of Theorem 4c10(b). We have

inf
x∈U

Λ∗(x) = inf
x∈U∩G

Λ∗(x)

since, first, Λ∗(x) = ∞ for x /∈ G, and second, for x ∈ ∂G and y ∈ G, by
convexity, Λ∗

(
x+ε(y−x)

)
≤ Λ∗(x)+ε

(
Λ∗(y)−Λ∗(x)

)
and x+ε(y−x) ∈ G.

It remains to apply 4c14.

Proof of Theorem 4c10(a). If Λ∗(x) > c then, by 4c11, x belongs to some
open half-space H = {y : 〈t, y〉 − Λ(t) > c} such that νn(nH) ≤ exp

(
−cn +

o(n)
)
. If Λ∗(x) > c for all x of a compact set F , then νn(nF ) ≤ exp

(
−cn +

o(n)
)
, since F is covered by a finite number of such half-spaces (recall 3a6).

However, we need it for a closed F , not just compact.
Similarly to the proof of 3a5, we apply 4c11 to t = ±e1, . . . ,±ed and

obtain, for every R,

1− νn
(
n[−R,R]d

)
≤ exp

(
−n(R− C) + o(n)

)
1Recall 3a4.
2Recall 3a5.
3Recall 3a1.
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where C = max
(
Λ(−e1),Λ(e1), . . . ,Λ(−ed),Λ(ed)

)
. Thus, for every c there

exists a compact K ⊂ Rd such that 1−νn(nK) ≤ exp
(
−cn+o(n)

)
.1 Finally,

νn(nF ) ≤ νn
(
n(F ∩K)

)
+ 1− νn(nK).

Here is a reason, why dimension d > 1 needs more caution than dimension
1. In one dimension, the function Λ∗ : R→ [0,∞] may be discontinuous (in
the compact topology of [0,∞]) at Λ′(−∞) or/and Λ′(+∞) (recall (2c7),
but its restriction to [Λ′(−∞),Λ′(+∞)]∩R is continuous, since Λ∗ is convex
and lower semicontinuous (as was noted before (3c2)). In higher dimensions,
Λ∗|G need not be continuous.

4c15 Example. There exist tn ∈ R2 and cn ∈ R such that the function f :
x 7→ supn

(
〈tn, x〉+ cn

)
∈ [0,∞] (evidently convex and lower semicontinuous)

is finite on the disk {x ∈ R2 : |x| < 1} but has a discontinuous restriction to
its boundary.

We choose ϕn ∈ (0, π/2), ϕn ↓ 0, introduce ϕn+o.5 = (ϕn + ϕn+1)/2,
xn = (cosϕn, sinϕn) ∈ R2, xn+0.5 = (cosϕn+0.5, sinϕn+0.5) ∈ R2, and define
tn, cn by

〈tn, xn〉+ cn = 0 = 〈tn, xn+1〉+ cn , 〈tn, xn+0.5〉+ cn = 1 .

In addition, we take t0 = 0, c0 = 0. We get xn+0.5 → x∞ = (1, 0), f(xn+0.5) =
1 for all n, but f(x∞) = 0.

Using the “multiscale” approach as in 2c10 one can construct a probability
measure µ on R2 such that Λµ behaves like f above.

4d Exponential tightness

We return to the random elements Sn of Lp, introduced in Sect. 4b.

4d1 Proposition. There exists ε > 0 such that for all R large enough,

sup
n

1

n
lnP

(
‖Sn‖p ≥ Rn

)
≤ −εRp .

Using the weak topology of Lp we have, for every C, a compact setK ⊂ Lp
such that P

(
Sn /∈ nK

)
= O(e−Cn). This is called exponential tightness.

Recall that Λn(g) = lnE exp〈Sn, g〉 for g ∈ Lq,
1
p

+ 1
q

= 1; 1
n
Λn(g) →

Λ∞(g) =
∫ 1

0
Λµ

(
g(x)

)
dx by 4b3; and 1

n
Λn(g) ≤ Λ∞(g). Also, Λµ(t) = O(|t|q)

1So-called exponential tightness; see Sect. 4d.
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as t → ±∞, which implies1 Λ∞(g) = O
(
‖g‖qq

)
as ‖g‖q → ∞. We introduce

Legendre transforms

Λ∗n(f) = sup
g∈Lq

(
〈f, g〉 − Λn(g)

)
∈ [0,∞] ;

Λ∗∞(f) = sup
g∈Lq

(
〈f, g〉 − Λ∞(g)

)
∈ [0,∞] .

4d2 Lemma.

Λ∗∞(f) =

∫ 1

0

Λ∗µ
(
f(x)

)
dx for all f ∈ Lp .

Proof. First, Λ∗∞(f) ≤
∫ 1

0
Λ∗µ
(
f(x)

)
dx, since 〈f, g〉−Λ∞(g) =

∫ 1

0
f(x)g(x) dx−∫ 1

0
Λµ(g(x)) dx =

∫ (
f(x)g(x)−Λµ(g(x))

)
dx, and the integrand does not ex-

ceed Λ∗µ
(
f(x)

)
irrespective of g.

In order to prove that Λ∗∞(f) ≥
∫ 1

0
Λ∗µ
(
f(x)

)
dx we use operators An intro-

duced in the proof of 4b3: Anf =
∑

k fk1l( k−1
n
, k
n

) where fk = n
∫ k

n
k−1
n

f(x) dx;

and the same for g.
We have

Λ∗∞(f) ≥ sup
g=Ang

(
〈f, g〉 − Λ∞(g)

)
=

= sup
g1,...,gn

( 1

n

∑
k

fkgk −
1

n

∑
k

Λµ(gk)
)

=
1

n
sup

g1,...,gn

∑
k

(
fkgk − Λµ(gk)

)
=

=
1

n

∑
k

sup
t

(
fkt− Λµ(t)

)
=

1

n

∑
k

Λ∗µ(fk) =

∫ 1

0

Λ∗µ
(
Anf(x)

)
dx .

Also, Anf → f in Lp; we take n1 < n2 < . . . such that Ani
f → f

almost everywhere. The lower semicontinuity of Λ∗µ implies Λ∗µ(f(·)) ≤
lim infi Λ

∗
µ(Ani

f(·)) a.e.; by Fatou’s lemma,
∫ 1

0
Λ∗µ(f(x)) dx ≤

lim infi
∫ 1

0
Λ∗µ
(
Ani

f(x)
)

dx ≤ Λ∗∞(f).

4d3 Exercise. (a) Λ∗n(f) = +∞ whenever f 6= Anf ;

(b) 1
n
Λ∗n(nf) =

∫ 1

0
Λ∗µ
(
f(x)

)
dx = Λ∗∞(f) whenever f = Anf ;

(c) 1
n
Λ∗n(nAnf)→ Λ∗∞(f) for all f .

Prove it.

4d4 Example (Normal distribution, see 2c6 and 4b4). Λ∗µ(x) = 1
2
x2, and

Λ∗∞(f) =
∫ 1

0
1
2
f 2(x) dx = 1

2
‖f‖2

2.

1Hint: Λµ(t) ≤ const · (1 + |t|q) for all t.



Tel Aviv University, 2015 Large and moderate deviations 42

4d5 Example (Fair coin, see 2c7 and 4b5). Λ∗µ(x) = γ(x) is just the function

of (1a1); Λ∗∞(f) =
∫ 1

0
γ(f(x)) dx; note that γ(x) = +∞ for x /∈ [−1, 1].

4d6 Lemma. There exists ε > 0 such that for all x large enough,

Λ∗µ(x) ≥ εxp, Λ∗µ(−x) ≥ εxp, µ[x,∞) ≤ exp
(
−εxp

)
, µ(−∞,−x] ≤ exp

(
−εxp

)
.

Proof. We know that Λµ(t) ≤ C|t|q for |t| ≥ T . Thus, for every t ≥ T we
have Λ∗µ(x) ≥ tx−C|t|q and µ[x,∞) ≤ exp

(
C|t|q − tx

)
. Given x ≥ CqT q−1,

we take t ≥ T such that Cqtq−1 = x. Then tx − C|t|q = εxp, where ε =
1

p(Cq)p−1 . For (−x) the proof is similar.

It follows from 4d6 and 4d2 that

inf
‖f‖p≥R

Λ∗∞(f) ≥ εRp for large R .

(Hint: Λ∗µ(x) ≥ ε|x|p − const for all x.) It may seem that Prop. 4d1 follows,
similarly to Theorem 4c10(a). But no, in the infinite dimension we cannot
cover {f : ‖f‖ ≥ R} by finitely many half-spaces (not containing 0).

4d7 Lemma. There exists ε > 0 such that∫
exp
(
ε|x|p

)
µ(dx) <∞ .

Proof. Using the equality exp(ε|x|p) = 1 + ε
∫ |x|p

0
eεu du we get∫

exp
(
ε|x|p

)
µ(dx) = 1+ε

∫∫
0<u<|x|p

eεu duµ(dx) = 1+ε

∫ ∞
0

du eεu
∫

|x|p>u

µ(dx) ;

Lemma 4d6 gives δ > 0 such that
∫
|x|p>u µ(dx) ≤ 2e−δu for large u; it remains

to take ε < δ.

Proof of Prop. 4d1.
Lemma 4d7 gives ε such that E exp

(
ε|X1|p

)
= M < ∞. We have

∥∥Sn

n

∥∥p
p

=
1
n

(
|X1|p + · · ·+ |Xn|p

)
, therefore

P
(
‖Sn‖p ≥ Rn

)
= P

(∥∥∥Sn
n

∥∥∥p
p
≥ Rp

)
= P

(
|X1|p + · · ·+ |Xn|p ≥ nRp

)
≤

≤ E exp ε(|X1|p + · · ·+ |Xn|p)
exp εnRp

= Mn exp(−εnRp) ,

that is, 1
n

lnP
(
‖Sn‖p ≥ Rn

)
≤ −εRp + lnM ; and of course, lnM ≤ ε

2
Rp for

large R.
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4e Mogulskii’s theorem

Recall the weak topology on the closed unit ball Bp of Lp; it is compact. A
set F ⊂ Lp is called sequentially weakly closed,1 if F ∩RBp is weakly closed
for all R ∈ (0,∞). A set U ⊂ Lp is called sequentially weakly open, if its
complement is sequentially weakly closed.

4e1 Theorem. (a) For every nonempty sequentially weakly closed set F ⊂
Lp,

lim sup
n

1

n
lnP

(
Sn ∈ nF

)
≤ −min

f∈F
Λ∗∞(f) .

(b) For every sequentially weakly open set U ⊂ Lp,

lim inf
n

1

n
lnP

(
Sn ∈ nU

)
≥ − inf

f∈U
Λ∗∞(f) .

4e2 Corollary. Let a nonempty set A ⊂ Lp satisfy

inf
f∈A◦

Λ∗∞(f) = min
f∈A

Λ∗∞(f) = a

where A◦ and A are the interior and closure of A in the sequential weak
topology. Then

P
(
Sn ∈ nA

)
= exp

(
−an+ o(n)

)
as n→∞ .

We choose linearly independent g1, g2, · · · ∈ Bq that span2 Lq, and note
that

(fn → f weakly) ⇐⇒ ∀k 〈fn, gk〉 −−−→
n→∞

〈f, gk〉

for all f, f1, f2, · · · ∈ Bp. We introduce linear operators Td : Lp → Rd by

Tdf =
(
〈f, g1〉, . . . , 〈f, gd〉

)
;

they are weakly continuous, and

(fn → f weakly) ⇐⇒ ∀d Tdfn −−−→
n→∞

Tdf .

Denote by νd,n the distribution of TdSn. Similarly to (4b7), by 4b3,

1

n
Λνd,n(t1, . . . , td)→ Λ∞(t1g1 + · · ·+ tdgd) as n→∞

1In other words, closed in the bounded weak topology (bw-closed). In fact, every weakly
closed set is bw-closed, but the converse fails; never mind.

2As a (closed) linear subspace.
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for all d and (t1, . . . , td) ∈ Rd, since Λνd,n(t1, . . . , td) = lnE exp
(
t1〈Sn, g1〉 +

· · ·+td〈Sn, gd〉
)

= lnE exp〈Sn, t1g1 +· · ·+tdgd〉 = Λn(t1g1 +· · ·+tdgd). Theo-
rem 4c10 applies to νd,n and Λ∗d, the Legendre transform of Λd : (t1, . . . , td) 7→
Λ∞(t1g1 + · · ·+ tdgd) =

∫ 1

0
Λµ

(
t1g1(x) + · · ·+ tdgd(x)

)
dx.

4e3 Exercise. Λd is differentiable.
Prove it.1

4e4 Exercise.

lim inf
|t|→∞

Λd(t)

|t|
> 0 .

Prove it.2

By 4e4 and 4c9, G contains 0 (and so, G 6= ∅).

4e5 Exercise. (a) Λ∗d(Tdf) is the supremum of 〈f, g〉−Λ∞(g) over all g from
the finite-dimensional subspace spanned by g1, . . . , gd;

(b) Λ∗d(Tdf) ↑ Λ∗∞(f) as d→∞.
Prove it.3

4e6 Lemma.
min
f∈F

Λ∗d(Tdf) ↑ min
f∈F

Λ∗∞(f) as d→∞

for every weakly closed F ⊂ Bp.

Proof. We denote M = minf∈F Λ∗∞(f) and take fd ∈ F such that
Λ∗d(Tdfd) = minf∈F Λ∗d(Tdf); clearly, this minimum does not exceed M .
Assume the contrary (to the claim of the lemma); lim infd→∞ Λ∗d(Tdfd) =
M − 4ε < M . We take di →∞ such that ∀i Λ∗di(Tdifdi) ≤M − 3ε. WLOG,
fdi → f∞ weakly (otherwise, choose a subsequence); and Λ∗∞(f∞) ≥M , since
f∞ ∈ F . Using 4e5(b) we take d such that Λ∗d(Tdf∞) ≥ Λ∗∞(f∞)−ε ≥M−ε.
For all i large enough we have Λ∗d(Tdfdi) ≥ Λ∗d(Tdf∞)−ε by weak lower semi-
continuity of f 7→ Λ∗d(Tdf). Also, di ≥ d. Hence, Λ∗di(Tdifdi) ≥ Λ∗d(Tdfdi) ≥
Λ∗d(Tdf∞)− ε ≥M − 2ε; a contradiction.

Proof of Theorem 4e1(a). We denote M = minf∈F Λ∗∞(f). WLOG, F is
bounded (otherwise we turn to F∩RBp withR such that supn

1
n

lnP
(
‖Sn‖p ≥

Rn
)
≤ −M ; such R exists by Prop. 4d1); F ⊂ RBp. By Theorem 4c10(a),

lim sup
n

1

n
lnP

(
Sn ∈ nF

)
≤ − min

x∈Td(F )
Λ∗d(x) ,

1Hint: recall the proof of 4b2.
2Hint: use (4b6); all norms on Rd are equivalent.
3Hint: Λ∞ is continuous.
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since νd,n
(
nTd(F )

)
= P

(
TdSn ∈ nTd(F )

)
≥ P

(
Sn ∈ nF

)
. Finally,

minx∈Td(F ) Λ∗d(x) = minf∈F Λ∗d(Tdf)→M by 4e6.

4e7 Lemma. Let U ⊂ Lp be sequentially weakly open, and f0 ∈ U ∩ Bp.
Then there exist d and ε > 0 such that

∀f ∈ Bp

(
‖Tdf − Tdf0‖ ≤ ε =⇒ f ∈ U

)
.

Proof. Assume the contrary: fd ∈ Bp \ U , ‖Tdfd − Tdf0‖ ≤ 1
d
. Taking into

account that ‖Tdf − Tdf0‖ is increasing in d we have ‖Tdfn − Tdf0‖ ≤ 1
n

whenever n ≥ d; thus Tdfn → Tdf0 for all d, that is, fn → f0 weakly; a
contradiction.

Proof of Theorem 4e1(b). Let f0 ∈ U ; we’ll prove that lim infn
1
n

lnP
(
Sn ∈

nU
)
≥ −Λ∗∞(f0). We take R such that f0 ∈ RBp and supn

1
n

lnP
(
‖Sn‖p ≥

Rn
)
≤ −Λ∗∞(f0); such R exists by Prop. 4d1. Lemma 4e7 gives d and ε > 0

such that ∀f ∈ RBp

(
‖Tdf − Tdf0‖ ≤ ε =⇒ f ∈ U

)
. It is sufficient to

prove that

lim inf
n

1

n
lnP

(∥∥∥TdSn
n
− Tdf0

∥∥∥ < ε
)
≥ − inf

x:‖x−Tdf0‖<ε
Λ∗d(x) ,

since infx:‖x−Tdf0‖<ε Λ∗d(x) ≤ Λ∗d(Tdf0) ≤ Λ∗∞(f0) by 4e5. Theorem 4c10(b)
gives the needed inequality, since νd,n

(
{nx : ‖x− Tdf0‖ < ε}

)
= P

(
‖Td Sn

n
−

Tdf0‖ < ε
)
.

4e8 Example. Let X1, X2, . . . be independent standard normal random
variables, and a, b > 0. Consider events

En =
{

max
m=0,...,n

m∑
k=1

(Xk − a) ≥ bn
}
.

We’ll see that

1

n
lnP

(
En
)
→

{
−2ab for b ≤ a,

−1
2
(a+ b)2 for b ≥ a

as n→∞.
In terms of the random elements Sn of Lp,

1

n
max

m=0,...,n

m∑
k=1

(Xk − a) = max
0≤x≤1

∫ x

0

( 1

n
Sn(u)− a

)
du .

We introduce the set

A =
{
f ∈ Lp : max

0≤x≤1

∫ x

0

(
f(u)− a

)
du ≥ b

}
,

then En = {Sn ∈ nA}. According to 4d4, Λ∗∞(f) = 1
2
‖f‖2

2.
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4e9 Exercise. Prove that A satisfies the condition of Corollary 4e2, and
find a there.

4e10 Exercise. Formulate and prove a counterpart of 4e9 for

max
0≤i≤j≤n

j∑
k=i

(Xk − a) ≥ bn .

Multidimensional arrays of i.i.d. random variables may be treated simi-
larly. Various geometric bodies may be used instead of the intervals [i, j].

4e11 Exercise. In the situation of 4e8, formulate and prove a statement
about the conditional distribution (in the spirit of Prop. 3d2).

As was mentioned in Sect. 4b, the weak topology on Bp is metrizable and,
in particular, corresponds to the norm

‖f‖int = sup
a∈(0,1)

∣∣∣∣ ∫ a

0

f(x) dx

∣∣∣∣ .
On the whole Lp the situation is more complicated; a linear functional 〈·, g〉 is
bounded w.r.t. ‖·‖int if and only if g is (equivalent to) a function of bounded1

variation. Nevertheless, we have the following fact.

4e12 Lemma. Λ∗∞ is lower semicontinuous w.r.t. ‖ · ‖int.

Proof. It was seen (recall 4e5) that Λ∗∞ is the supremum of 〈·, g〉 − Λ∞(g)
when g runs over (finite) linear combinations of g1, g2, . . . ;

2 and the only
requirement on these g1, g2, . . . was that they span Lq (and are linearly inde-
pendent). Thus, we may take gk = 1l(0,xk) for a dense set {x1, x2, . . . } ⊂ [0, 1].
Then each 〈·, gk〉 is continuous w.r.t. ‖ · ‖int.

4e13 Proposition. For every f ∈ Lp such that Λ∗∞(f) <∞,

lim sup
n

∣∣∣ 1
n

lnP
(∥∥∥Sn

n
− f

∥∥∥
int
≤ ε
)

+ Λ∗∞(f)
∣∣∣ −−→
ε→0

0 .

Proof. We denote Fε = {f1 : ‖f1−f‖int ≤ ε} and Uε = {f1 : ‖f1−f‖int < ε};
Fε is sequentially weakly closed, and Uε is sequentially weakly open. In order
to prove that

lim sup
n

∣∣∣ 1
n

lnP
(Sn
n
∈ Fε

)
+ Λ∗∞(f)

∣∣∣ −−→
ε→0

0 ,

1In other words: finite.
2Continuity of Λ∞ was used.
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it is sufficient to prove that

0 ≤ lim inf
ε

lim inf
n

(
1

n
lnP

(Sn
n
∈ Uε

)
+ Λ∗∞(f)

)
≤ lim sup

ε
lim sup

n

(
1

n
lnP

(Sn
n
∈ Fε

)
+ Λ∗∞(f)

)
≤ 0 .

The second (middle) inequality is trivial. The first inequality follows from
Th. 4e1(b), since inff1∈Uε Λ∗∞(f1) → Λ∗∞(f) by 4e12. Similarly, the third
inequality follows from Th. 4e1(a).

It means that

1

n
lnP

(∥∥∥Sn
n
− f

∥∥∥
int
≤ ε
)
→ −Λ∗∞(f)

when ε → 0 and n ≥ Nε, that is, n grows fast enough when ε tends to 0.
Otherwise, if n grows with ε but not fast enough, the situation may differ.

4e14 Exercise. (a) It may happen that

min
f1∈Fε

Λ∗∞(f1) < inf
f1∈Uε

Λ∗∞(f1) = +∞ .

Find an example.1

(b) If Λ∗∞(f) <∞, then

min
f1∈Fε

Λ∗∞(f1) = inf
f1∈Uε

Λ∗∞(f1)

and therefore Corollary 4e2 applies, giving

lim
n→∞

1

n
lnP

(∥∥∥Sn
n
− f

∥∥∥
int
≤ ε
)
−−→
ε→0

−Λ∗∞(f) .

Prove it.2

4e15 Exercise. A fair coin is tossed n times, giving (β1, . . . , βn) ∈ {0, 1}n.
Consider

pn,ε = P
(
∀k = 1, . . . , n

∣∣∣β1 + · · ·+ βk
n

−1

2

(k
n

)2∣∣∣ ≤ ε
)
.

b b b

b b

b b b

b

b

b

b

b

1

0.5

Prove that

lim sup
n→∞

∣∣∣∣ n
√
pn,ε −

√
e

2

∣∣∣∣→ 0 as ε→ 0 .

1Hint: 4d5.
2Hint: recall the proof of Th. 4c10(b).
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4e16 Exercise. A fair coin is tossed n times, giving (β1, . . . , βn) ∈ {0, 1}n.
Given c ∈ [0, 1], we consider

pn = P
(
∀k = 1, . . . , n

β1 + · · ·+ βk
n

≥ c
(k
n

)2)
.

b

b

b b b

b

b b

b

b

b

b

b

1

c

Prove that

n
√
pn → 1 for 0 ≤ c ≤ 0.5 ,

n
√
pn →

1

2cc(1− c)1−c for 0.5 ≤ c ≤ 1

(00 = 1, as before).1

Another example:

pn = P
(
∀k = 1, . . . , n

β1 + · · ·+ βk
n

≥ k

n
−1

2

(k
n

)2)
.

b

b

b

b

b b

b b

b

b b

b

b

1

0.5

It appears that

n
√
pn →

e1/4

√
2

as n→∞ .

The extremal function is

w(x) =

{
x− 0.5x2 for 0 ≤ x ≤ 0.5,

0.5x+ 0.125 for 0.5 ≤ x ≤ 1.

In order to prove its extremality, the following lemma helps: Λ∗∞
(
(w∧ v)′

)
≤

Λ∗∞(w′) for every linear function v : [0, 1] → R such that v(0) ≥ 0 and
v′(·) ≥ 0.5; here w ∧ v is the pointwise minimum.

1Hint: guess the extremal function; prove your guess, taking into account that∫ 1

0
Λ∗µ(f(x)) dx ≥ Λ∗µ

(∫ 1

0
f(x) dx

)
.



Tel Aviv University, 2015 Large and moderate deviations 49

Index

sequentially weakly, 43

weak, 33

Bp, 33

G, 38
〈f, g〉, 32
Lp, 32
Λ, 35, 38
Λ∗, 35, 38

Λ∗∞, 41
Λ∗n, 41
Λ∞, 34
Λn, 34
Λt, 36
Λ∗t , 36
νn, 35, 38
νn,t, 36
||f ||int, 33
Sn, 33


	Large deviations in spaces of functions
	Some motivation
	A joint compactification
	Gärtner-Ellis theorem
	Exponential tightness
	Mogulskii's theorem

	Index

