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A general theorem is formulated; a simple case is treated in detail; basic
physical notions are tentatively introduced for this case.

1a Ideal systems of statistical physics

In classical mechanics, the state of a particle may be described by the coordi-
nate x ∈ R3 and the momentum1 p ∈ R3. These states form the phase space
R3×R3, endowed with the Lebesgue measure. More general state spaces are
used; each one is endowed with a measure.2 The measure of the whole phase
space may be finite or infinite.

Spin systems do not fit into classical mechanics, but still, classical statis-
tical physics treats also classical spins. For a spin, the phase space is a finite
set endowed with the counting measure.

For our purposes, a phase space consists of a set Ω and a σ-finite (positive)
measure µ on Ω (on a given σ-field); µ(Ω) ∈ (0,∞].3

Given two systems described by (Ω1, µ1) and (Ω2, µ2), the combined sys-
tem is described by the product space (Ω1 × Ω2, µ1 × µ2).

In classical mechanics, the energy is a smooth function (Hamilton func-
tion, or Hamiltonian) on the phase space.4

For our purposes, a Hamiltonian is a measurable function h : Ω→ R.

1In fact, p = mẋ, but we do not need it.
2In fact, endowed with a symplectic form and therefore a measure. For now, we do not

need the symplectic form.
3If you are not acquainted with measure theory, you may take just an interval (bounded

or unbounded) with Lebesgue measure; it is all the same for the general theory.
4Together with the symplectic form it generates the dynamics. For now we do not need

the dynamics.
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For two noninteracting systems with Hamiltonians h1 : Ω1 → R, h2 :
Ω2 → R, the Hamiltonian of the combined system is h1 ⊕ h2 : Ω1 ×Ω2 → R,
(h1 ⊕ h2)(ω1, ω2) = h1(ω1) + h2(ω2).

In statistical physics, an ideal system consists, by definition, of many
noninteracting particles.1

In order to describe ideal systems we define

Ωn = Ω× · · · × Ω︸ ︷︷ ︸
n

; h(n) : Ωn → R ,

h(n)(ω1, . . . , ωn) =
1

n

(
h(ω1) + · · ·+ h(ωn)

)
.

For simplicity, all the particles are assumed to have the same one-particle
Hamiltonian h. The Hamiltonian of the system is nh(n). Note the linearity:

(ch)(n) = ch(n) and (f + g)(n) = f (n) + g(n) .

Physically, functions of the form f (n) are macroscopic observables.2

All non-pathological Hamiltonians of statistical physics satisfy one of the
following two conditions:

µ(Ω) <∞ and ∀λ ∈ (−∞,+∞)

∫
Ω

exp(λh) dµ <∞ ;(1a1)

µ(Ω) =∞ and ∀λ ∈ (−∞, 0)

∫
Ω

exp(λh) dµ <∞ .(1a2)

1a3 Exercise. Prove that (Ωn, h(n)) satisfies (1a1) if and only if (Ω, h) does;
and the same for (1a2).

1b Concentration of conditional measure

1b1 Definition. Given measurable sets A,B ⊂ Ω such that 0 < µ(A) <∞,
we define the conditional probability

P
(
B
∣∣A) =

µ(A ∩B)

µ(A)
.

1“The importance of these systems lies first in their simplicity. . . . ideal systems do
not exist in nature. There is even a fundamental inconsistency in taking this concept
too seriously.” R. Balescu, “Equilibrium and nonequilibrium statistical mechanics”, 1975,
Sect. 5.1 “Definition of ideal systems”.

2This is the simplest form of a macroscopic observable.
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The same holds for A,B ⊂ Ωn.
By P

(
g(n) ∈ J

∣∣f (n) ∈ I
)

we mean P
(
B
∣∣A) where A = {ω ∈ Ωn :

f (n)(ω) ∈ I} and B = {ω ∈ Ωn : g(n)(ω) ∈ J}.
Recall that ess sup f is the least x such that f(·) ≤ x almost everywhere;

ess inf f is defined similarly; −∞ ≤ ess inf f ≤ ess sup f ≤ +∞. The equality
ess inf f = ess sup f means that f = const almost everywhere (I’ll often omit
this “almost everywhere”).

1b2 Definition. Let f, g : Ω → R be measurable, f 6= const, and ϕ :
(ess inf f, ess sup f)→ R continuous. We write

[g|f ] = ϕ

if the following conditional probability is well-defined for large n and con-
verges to 1:

P
(
g(n) ∈ (c, d)

∣∣f (n) ∈ [a, b]
)
→ 1 as n→∞

whenever [a, b] ⊂ (ess inf f, ess sup f) and (c, d) ⊂ R satisfy ϕ
(
[a, b]

)
⊂ (c, d).

Roughly, [g|f ] = ϕ means that conditionally, given f (n), we have g(n) ≈
ϕ
(
f (n)

)
for large n, with high probability.

1b3 Exercise. If [g|f ] = ϕ1 and [g|f ] = ϕ2 then ϕ1 = ϕ2.
Prove it.

1b4 Theorem. Let measurable f, g : Ω→ R be such that for some ε > 0 the
two functions f ± εg satisfy (1a1) or (1a2), and f 6= const. Then [g|f ] = ϕ
for some continuous ϕ : (ess inf f, ess sup f)→ R.

We’ll prove it, but much later.

1c A simple example

Let Ω be R2 and µ be the two-dimensional standard normal distribution,

µ = γ2 , γ2(A) =

∫
A

1

2π
e−|ω|

2/2 dω .

We restrict ourselves to linear Hamiltonians,

f(ω) = 〈f, ω〉 , f ∈ R2 .

They satisfy (1a1) (think, why).
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For now we choose this example only for its mathematical simplicity.
Later (in Sect. 3a) we’ll see that it can approximate spin systems at high
temperatures.

Our µ being a probability measure, µ-measurable functions may be treated
as random variables. Well-known properties of the normal distribution en-
sure that (ω1 + · · ·+ωn)/n is distributed like ω1/

√
n, therefore, concentrated

near the origin. Moreover, its conditional density on the line

f (n)(ω) =

〈
f,
ω1 + · · ·+ ωn

n

〉
= a

is concentrated near the closest to the origin point of this line, Sf,a =
af/‖f‖2. At this point, the value of another linear function g is g(Sf,a) =

a 〈f,g〉‖f‖2 . Thus we guess that [g|f ] =
(
a 7→ a 〈f,g〉‖f‖2

)
, or simply,

(1c1) [g|f ] =
〈f, g〉
‖f‖2

.

1c2 Exercise. Prove (1c1) without using Theorem 1b4.

Conditionally, given f (n) ≈ a, we have1 g(n) ≈ [g|f ]a = 〈f,g〉
‖f‖2a = 〈g, Sf,a〉.

In that sense Sf,a is a macroscopic state of the physical system; it determines
the values of all macroscopic observables.

Physically, Sf,a is the equilibrium state of the system with Hamiltonian f
and the energy per particle a (that is, total energy na). Other points of the
line f(·) = a are non-equilibrium states (for the same f and a).

1d Relaxation to equilibrium

Is it feasible, to get a physical system in a non-equilibrium state? Yes,
easily. We take a system in the equilibrium state Sf,a and suddenly change
its Hamiltonian from f to g (which means physically, a mechanical influence).
At first, the state remains Sf,a and the energy jumps from a = 〈f, Sf,a〉 to
b = 〈g, Sf,a〉. Then the non-equilibrium state changes gradually towards Sg,b

(the energy being constant) and after a time it becomes practically equal to
Sg,b; an equilibrium again. This process is called relaxation.

Unfortunately, it is very difficult to give a (microscopical) model of relax-
ation that is both rigorous mathematically and realistic physically. For now
we just postulate that the system relaxes from Sf,a to Sg,b.

In terms of relaxation it is easy to understand what is wrong in the
following naive argument. If f (n) ≈ a then g(n) ≈ b where b = [g|f ]a.

1For large n, with high probability, as before. . .
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Similarly, if g(n) ≈ b then h(n) ≈ c where c = [h|g]b. Thus, if f (n) ≈ a then
h(n) ≈ c, and therefore [h|g][g|f ] = [h|f ] (wrong! ).

Relaxation is irreversible in the following sense: if ak+1 = 〈hk+1, Shk,ak〉
for k = 0, . . . , n − 1 then Shn,an 6= Sh0,a0 unless h0 = h1 = · · · = hn. Proof:
‖Shk+1,ak+1

‖ < ‖Shk,ak‖ unless hk+1 = hk.

1e Heat transfer; equal temperatures

The same space (R2, γ2)n may be treated as (R1, γ1)n×(R1, γ1)n; a combined
system, of two subsystems, each containing n one-dimensional particles. We
have (check it) h(n) = f (n) ⊕ g(n) whenever f, g ∈ R, h = f ⊕ g ∈ R2. Thus,
h(n) describes two noninteracting systems with Hamiltonians nf (n) and ng(n).

An equilibrium state Sh,a of the combined system determines the values
of all macroscopic observables of the combined system, and in particular, of
each subsystem separately:

Sh,a = (x, y) ; 〈f ⊕ 0, Sh,a〉 = 〈f, x〉 ; 〈0⊕ g, Sh,a〉 = 〈g, y〉 ;

the first subsystem is in the macroscopic state x, the second — y. In dimen-
sion one 〈f, x〉 is just fx. The energy decomposes:

〈h, Sh,a〉︸ ︷︷ ︸
a

= 〈f, x〉︸ ︷︷ ︸
b

+ 〈g, y〉︸ ︷︷ ︸
c

; x = Sf,b , y = Sg,c

(check it); we assume f 6= 0, g 6= 0.
Other decompositions, a = b′ + c′, of the same a, correspond to nonequi-

librium states (of the combined system) with the same energy.
Thus, relaxation of the combined system means redistribution of the given

energy between the two subsystems.
A paradox: energy exchange between noninteracting subsystems!1 In

fact, they are only approximately noninteracting. An interaction term in
the Hamiltonian is relatively small, and the relaxation time is large (on the
microscopic scale).

The equilibrium decomposition a = b+c minimizes x2 +y2 =
(
b
f

)
2 +
(
c
g

)
2;

differentiation gives b
f2 = c

g2
. Physically it means equal temperatures. We

see that the temperature of the first subsystem should be some function2 of
b/f 2 = x/f .

1Recall footnote 1 on page 2.
2In fact, the temperature is − 1

kB

f2

b , where kB = 1.38 · 10−23 J/K is the so-called
Boltzmann constant. In this model zero energy corresponds to infinite temperature, and
negative energy — to finite positive temperature.
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1f Mechanical energy and thermal energy

The one-dimensional model (R1, γ1)n is especially simple: no relaxation, all
states are equilibrium states, just because for given f and a there exists only
one x satisfying 〈f, x〉 = a.

A mechanical influence on the system (recall Sect. 1d) is described by
switching its Hamiltonian from f to g without changing the state x. The
energy jumps from a = 〈f, x〉 to b = 〈g, x〉. No relaxation: Sf,a = x = Sg,b.

A thermal influence on the system (as in Sect. 1e) is described by changing
its energy from a to b without changing the Hamiltonian f ; the state changes
from x to y; a = 〈f, x〉, b = 〈f, y〉; x = Sf,a, y = Sf,b.

1

On the plane (f, x) a mechanical influence changes only the first coordi-
nate, a thermal influence — only the second. The energy, being a function
(f, x) 7→ 〈f, x〉 = fx on the plane, changes in both cases; it is energy ex-
change between the system and its environment. In the former case it is
exchange of mechanical energy, in the latter case — thermal energy.

Consider a loop of four changes:

(f1, x1) 7→ (f2, x1) 7→ (f2, x2) 7→ (f1, x2) 7→ (f1, x1)
total energy f1x1 f2x1 f2x2 f1x2 f1x1

increase of
total energy x1∆f f2∆x −x2∆f −f1∆x
increase of
mech. energy x1∆f 0 −x2∆f 0
increase of

therm. energy 0 f2∆x 0 −f1∆x

The net result: the system receives from the environment mechanical energy
x1∆f − x2∆f = −∆f∆x and thermal energy f2∆x− f1∆x = ∆f∆x.

An important implication: we cannot split the energy of a system into
mechanical part and thermal part. Rather, we can split energy exchange into
mechanical (work) and thermal (heat flow).

An even more important implication: an engine can transform repeatedly
heat flow into work, or work into heat flow.

1g Processes and cycles: quasistatic, adiabatic, isother-
mal

We return to the space (R2, γ2)n, be it one system of two-dimensional par-
ticles or two systems of one-dimensional particles. Relaxation is irreversible
(recall Sect. 1d), but the irreversibility can be made arbitrarily small. For
example, consider hk = (cos εk, sin εk) ∈ R2 and a0 = 1. We have Sh0,a0 =

1Such influence is implemented via relaxation of a larger system.
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x0 = (1, 0) and a1 = 〈h1, x0〉 = cos ε; Sh1,a1 = x1 = cos ε · (cos ε, sin ε),
the orthogonal projection of x0 to the direction of h1. Similarly, x2 is the
projection of x1 to the direction of h2, and so on;

xk = cosk ε · (cos εk, sin εk) ; ‖xk‖ = cosk ε .

For a fixed ε, xk → 0 as k →∞. However, consider the limit as k →∞, εk →
0, εkk → t. We have cosk εk =

(
1 + O

(
1
k2

))
k → 1, thus xk → (cos t, sin t),

‖xk‖ → 1. In the limit, the point moves along the unit circle, and will return
to the initial point.

If we influence the system (mechanically or/and thermally) very slowly,
then the system remains all the time in a nearly equilibrium state. In other
words: if relaxation is fast enough (on our macroscopic time scale) we may
ignore it, assuming that the state of the system is continuously changing in
time, but remains an equilibrium state at all times.

Mathematically we may define a quasistatic process as a pair of functions,
t 7→ ht and t 7→ at, from [0, 1] (or some [0, tmax]) to R2; the functions will be
assumed piecewise smooth. We define one more function t 7→ xt ∈ R2 by xt =
Sht,at = atht/‖ht‖2, the equilibrium state corresponding to the Hamiltonian
ht and the energy (per particle) at. Thus, at = 〈ht, xt〉. Finally, we split the
energy received by the system,1

a1 − a0 = 〈h1, x1〉 − 〈h0, x0〉 =

∫ 1

0

(
〈h′t, xt〉+ 〈ht, x′t〉

)
dt

into the mechanical part defined by∫ 1

0

〈h′t, xt〉 dt ,

and the thermal part defined by∫ 1

0

〈ht, x′t〉 dt .

The reason should be clear from Sect. 1f. Infinitesimally, a mechanical influ-
ence corresponds to the transition from (h, x) to (h+dh, x) (with subsequent
relaxation not changing energy), while a thermal influence — from (h, x) to
(h, x+ dx). And do not forget that ht and xt stay collinear.

1g1 Exercise. Check that

〈h′t, xt〉 = (sgn at)‖xt‖
d

dt
‖ht‖ ,

〈ht, x′t〉 = (sgn at)‖ht‖
d

dt
‖xt‖ .

1Of course, z′ denotes here the time derivative of z.
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A quasistatic process is called a (thermodynamic) cycle, if h0 = h1 and
a0 = a1. For a quasistatic cycle, the total energy received by the system
vanishes.

A quasistatic process is called adiabatic,1 if

〈ht, x′t〉 = 0 for all t .

This is the case when the system is perfectly insulated thermally. An equiv-
alent condition: ‖xt‖ = const. We see that some function of xt is preserved
by all adiabatic processes. Later we’ll see that this is a property of thermo-
dynamic entropy, closely related to probabilistic entropy. Thus, entropy is
some function2 of ‖x‖.

All said holds also for (R1, γ1)n, in which case, for a quasistatic cycle,
both mechanical and thermal energy is (up to a sign) just the area inside the
closed curve on the (f, x) plane, provided that the curve does not intersect
itself. The area may be used for (R2, γ2)n, in which case we consider the pair
(‖ht‖, ‖xt‖) as a point on a plane (and do not forget sgn at).

For (R1, γ1)n the temperature is a function of a/‖h‖2, recall Sect. 1e. It
is easy to see that the same holds for (R2, γ2)n. Thus, a quasistatic process
is called isothermal, if

at
‖ht‖2

= const .

Equivalently, xt = const·ht. This typically occurs when a system is in contact
with an outside thermal reservoir (heat bath), and the change occurs slowly
enough to allow the system to continually adjust to the temperature of the
reservoir through heat exchange.3

1g2 Exercise. For an isothermal quasistatic cycle, the mechanical energy
received by the system vanishes; the same holds for the thermal energy.

Check it.4

1Also “isocaloric”. The term “adiabatic” is used differently outside thermodynamics.
2In fact, the thermodynamic entropy per particle is − 1

2kB‖x‖
2.

3This phrase is copied from Wikipedia.
4The result holds far beyond our special case. Probably you derive it by integrating

differential relations specific to this case. Maybe you find them strange, if you compare
them with something like a gas in a cylinder with a piston. If puzzled, try a vertical
cylinder with a heavy piston. . .
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