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4a Gas thermometer

An equilibrium macrostate xh,u of a pair of non-interacting systems (recall
Sect. 3a) is

xh,u = grad Λ(−βh) = grad Λ1(−βh1)⊕ grad Λ2(−βh2)

for β such that u = 〈h, grad Λ(−βh)〉. That is,

h = h1 ⊕ h2 ,

xh,u = xh1,u1 ⊕ xh2,u2 ,
xh1,u1 = grad Λ1(−β1h1) ,

xh2,u2 = grad Λ2(−β2h2) ,
β1 = β2 .

In equilibrium the two systems have the same β. (See also Sect. 1e.) We
may guess that the temperature is a function of β. The same function for all
systems. However, which function? What do we really mean by temperature?

Historically, first thermometers were based on thermal expansion of air
and other substances.1 Accordingly, physics defines temperature via “gas
thermometer” — a portion of ideal gas.2 It appears that PV (the pressure
times the volume) is proportional to 1/β, which is why the temperature is
defined to be proportional to 1/β. We’ll prove that PV β = const, but first

1Philo the Jew of Alexandria (20 BCE – 50 CE); Drebbel, Fludd, Galileo, Sanctorius
(16–17th centuries). See “Thermometer” in Wikipedia.

2“It is well known that the determination of a temperature scale in classical ther-
modynamics is connected (through the concept of the gas thermometer) to the laws of
ideal gases.” R. Balescu, “Equilibrium and nonequilibrium statistical mechanics”, 1975,
Sect. 4.4, page 125.
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we have to realize what do we really mean by the pressure (of the gas, not
an arbitrary system).

As was said in 3a4, the ideal gas may be treated as a combination of the
coordinate subsystem and three one-dimensional momentum subsystems. For
now we consider the coordinate subsystem only: Ω is a domain in R3 (‘con-
tainer’), µ is the Lebesgue measure (three-dimensional) on Ω, and h : Ω→ R
(‘potential energy’). Mathematically this is just our general framework, since
there is nothing special in a domain in R3 treated as a measure space. How-
ever, sometimes we’ll recall that now µ(Ω) is the volume of the container,
etc.

Roughly, the pressure determines the amount of mechanical energy (work)
needed in order to displace the gas out of a small part of the container.

4a1 Exercise. For every isothermal quasistatic process (as defined in Sect. 3a)
the mechanical part (work) of the received energy is∫ 1

0

〈h′t, xt〉 dt = − 1

β

(
Λ(−βh1)− Λ(−βh0)

)
,

and the thermal part (heat) is∫ 1

0

〈ht, x′t〉 dt =
1

β

(
S(x1)− S(x0)

)
.

Prove it.

By the way, the energy ut = 〈ht, xt〉 is 1
β

(
S(xt)− Λ(−βht)

)
.

Assume that µ(Ω) = V < ∞ (a finite-volume container), β > 0, and
choose A ⊂ Ω, µ(A) = ∆V . We consider the change of

Λ(−βU1lA) = ln

∫
e−βU1lA dµ = ln

(
1 · (V −∆V ) + e−βU ·∆V

)
when the potential U runs from 0 to ∞:

lim
U→0+

Λ(−βU1lA) = lnV ; lim
U→+∞

Λ(−βU1lA) = ln(V −∆V ) .

Imagine an isothermal process that starts at h0 = U01lA with a small U0 and
finishes at h1 = U11lA with a high U1. By 4a1, the work is close to

− 1

β
(ln(V −∆V )− lnV ) .
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This is the work per particle, needed in order to displace the gas out of the
part ∆V of the volume V . For small ∆V the work is close to n 1

β
∆V
V

, which
means the pressure

(4a2) P =
n

βV
.

The momentum subsystems do not invalidate this formula; their states do
not change in the isothermal process, and no heat is transferred between the
four subsystems. (Think how to turn this into a formal argument.)

The pressure is usually associated with elastic collisions of gas molecules
with the walls of the container.1 The higher the temperature, the faster the
molecules and the higher the pressure. However, in our approach motion
of particles is never mentioned, and still, the pressure is well-defined and
depends on the temperature. A paradox?

It is instructive to observe dependence of − 1
β

(
Λ(−βU1lA) − lnV

)
on U

(and β):

− 1

β

(
Λ(−βU1lA)− lnV

)
≈

{
U ∆V

V
for U � 1/β,

1
β

∆V
V

for U � 1/β.

Roughly, U has to cross 1/β in order to displace the gas out of A. This is
why the work is proportional to 1/β.

An adiabatic process leads to the same result (4a2), which is easy to
guess: for small ∆V the work is small, thus, the heating is also small. The
detailed calculation follows, first, for the coordinate subsystem only.

The energy:

u = 〈h, ν〉 =

∫
he−βh dµ∫
e−βh dµ

;

for h = U1lA we have

u =
Ue−βU∆V

e−βU∆V + V −∆V
→ 0

as U → 0+, but also as U → +∞.
The entropy S = βu+Λ(−βh) is constant in an adiabatic process. Start-

ing at h0 = U01lA with a small U0 we have S0 = β0u0+Λ(−β0U01lA) ≈ 0+lnV .
Finishes at h1 = U11lA with a high U1 we have S1 = β1u1 + Λ(−β1U11lA) ≈
0 + ln(V −∆V ); a contradiction!

Well, the contradiction appears if β1 is assumed to be positive. In fact, β
converges to zero, and the temperature — to infinity. The reason is simple: in

1See “Kinetic theory” in Wikipedia.
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the absence of kinetic energy the system cannot absorb the incoming energy
without infinite heating.

We must include the three one-dimensional momenta. The entropy of
the coordinate subsystem decreases from lnV to ln(V −∆V ), therefore the
entropy of each momentum system must increase by 1

3
ln V

V−∆V
. By 3a5 and

3c4 the entropy of a momentum system is 1
2

lnx + const where x = 1/(2β);
that is, the entropy is −1

2
ln β + const. Thus, −1

2
(ln β1 − ln β0) = 1

3
ln V

V−∆V
;

β1

β0

=
(V −∆V

V

)2/3

;

a fact well-known in physics. Interestingly, ‘3’ in ‘2/3’ is the dimension of the
momentum space, while ‘2’ appears because the kinetic energy is quadratic
in the momentum.

The energy of the coordinate subsystem returns to its original value. For
each momentum subsystem the energy is 1/(2β) by 3a5. Thus, the work is

1

2β1

− 1

2β0

=
1

2β0

(( V

V −∆V

)2/3

− 1

)
.

For small ∆V the work per particle is close to 1
3β0

∆V
V

, the whole work to

n 1
β0

∆V
V

as before (in the isothermal case), and we get the pressure (4a2)
again.

So, the temperature is inversely proportional to β. In physics the tem-
perature T , defined via the ideal gas law

PV = nkBT ,

is

T =
1

kBβ
.

4b Differentials of energy and entropy

Given h ∈ K we have a strictly convex, infinitely differentiable function
λ 7→ Λ(λh) defined on R if µ(Ω) < ∞, otherwise on (−∞, 0). Its derivative
is the energy (assuming β = −λ, as before):

u = 〈h, grad Λ(λh)〉 =
d

dλ
Λ(λh) .

Its Fenchel-Legendre transform is the rate function (recall 3d3): if x =
grad Λ(λh) and u = 〈h, x〉 then

sup
λ1

(
λ1u− Λ(λ1h)

)
= λu− Λ(λh) = Λ∗(x) = −S(x) .
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Treating them all as functions of β,

Λ(β) = Λ(−βh) , u(β) = 〈h, grad Λ(−βh)〉 , S(β) = S
(
grad Λ(−βh)

)
,

we have

u(β) = −Λ′(β) ,

S(β) = βu(β) + Λ(β) = min
β1

(
β1u(β) + Λ(β1)

)
,

S(β) = Λ(β)− βΛ′(β) .

4b1 Remark. These relations are in fact a special case (for dimL1 = 1) of
more general relations between two spaces L1 ⊂ L2 satisfying L1 ∩K2 6= ∅.
However, we do not need it.

4b2 Example. One-dimensional momentum, see 3a5:

β ∈ (0,∞) ,

Λ(β) = −1

2
ln β + const ,

u(β) =
1

2β
,

S(β) = −1

2
ln β + const .

4b3 Example. Spin 1/2, see 3a3 and 3c4. We take h(ω) = hω for ω ∈
{−1, 1}, assuming that some h > 0 is given. Then

β ∈ (−∞,∞) ,

Λ(β) = ln(e−βh + eβh) ,

u(β) = −h tanh βh ,

S(β) = −1− x
2

ln
1− x

2
− 1 + x

2
ln

1 + x

2
where x = − tanh βh .

Generally, u′(β) = −Λ′′(β) and S ′(β) = Λ′(β) −
(
Λ′(β) + βΛ′′(β)

)
=

−βΛ′′(β), thus,
S ′(β) = βu′(β) ,

which is often written as

(4b4) β =
dS

du

or

(4b5) kBT =
du

dS
,
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treating u and S as two functionally related variables.
Compare it with 3d5.
Equilibrium between two subsystems maximizes the total entropy S1 +S2

(that is, minimizes the rate function) given the total energy u1 +u2. Clearly,
the corresponding differential condition is

dS1

du1

=
dS2

du2

, that is, β1 = β2 ;

temperatures are equal in equilibrium.

4c Negative temperature, really?

If µ(Ω) = ∞ then β ∈ (0,∞), thus T ∈ (0,∞); the temperature is always
positive. In particular, this is the case for the ideal gas (see 4b2). However,
if µ(Ω) < ∞ then β ∈ (−∞,∞), thus the temperature, if still defined by
kBT = 1/β, can be positive, infinite and negative. In particular, this is the
case for spin systems (see 4b3). What could it mean?

Imagine two subsystems with the total energy u = u1 + u2, total entropy
S1 + S2 and different temperatures (thus, out of equilibrium):

dS1

du1

= β1 < β2 =
dS2

du2

.

Recall that generally the energy u(β) = −Λ′(β) decreases in β (be β positive
or negative), and moreover, u′(β) < 0. Imagine a move from (β1, β2) to
(β1 + dβ1, β2 + dβ2) such that du = u′1(β1)dβ1 + u′2(β2)dβ2 = 0. Then dS =
S ′1(β1)dβ1 + S ′2(β2)dβ2 = β1u

′
1(β1)dβ1 + β2u

′
2(β2)dβ2 = (β2 − β1)u′2(β2)dβ2.

If dβ1 > 0 and dβ2 < 0 then dS > 0; if dβ1 < 0 and dβ2 > 0 then dS < 0.
Thus, in the process of relaxation β1 increases and β2 decreases; u1 decreases
and u2 increases; the energy flows from the system with smaller β to the
system with higher β.

If β1 > 0, β2 > 0 then the energy flows from the system with higher
temperature to the system with lower temperature. (Yes, rather!) If β1 < 0,
β2 > 0 then the energy flows from the system with negative temperature to
the system with positive temperature. In this sense negative temperatures
are not colder than the absolute zero temperature. Just the opposite: they
are hotter than infinite temperature!

Needless to say, a negative temperature cannot be measured by a gas ther-
mometer. Thus, the definition kBT = 1/β for negative β is just a groundless
extrapolation. (However, see the end of Sect. 4d.)

A spin system can have a negative temperature as long as it is isolated
from its positive-temperature environment. It never is completely isolated,
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but it can be approximately isolated for a short time. The same holds for two-
state systems that physically are not spins but mathematically are isomorphic
to spins. Especially, in a laser: the two states of an atom are the ground
state and the relevant excited state. Pumping this system to a negative
temperature (“population inversion”: most atoms are excited) is necessary
for the laser to work.1

4d Heat engine, heat pump

Quasistatic process, defined in Sect. 3a, is called a cycle if h1 = h0 and
β1 = β0. It follows that x1 = x0 (recall that x = grad Λ(−βh)), u1 = u0

(recall that u = 〈h, x〉) and therefore∫ 1

0

〈h′t, xt〉 dt︸ ︷︷ ︸
work

+

∫ 1

0

〈ht, x′t〉 dt︸ ︷︷ ︸
heat

= 0 .

The case work < 0, heat > 0 corresponds to a heat engine. The case work >
0, heat < 0 corresponds to a heat pump. A heat engine converts heat to
work. A heat pump converts work to heat.

For an adiabatic cycle heat = 0 trivially, and therefore also work = 0.
For an isothermal process, by 3d5,

S(x1)− S(x0) = β · heat ,

therefore for an isothermal cycle heat = 0 and work = 0. It means that energy
conversion is impossible2 when only a single heat reservoir is available.

Imagine now that two heat reservoirs are available, hot and cold, of tem-
peratures

1

βcold

= kBTcold < kBThot =
1

βhot

.

Reservoirs are so large that their temperatures may be treated as constant.3

We compose a cycle, well-known as Carnot cycle, out of four processes: one
isothermal at Tcold, one isothermal at Thot, and two adiabatic. On the plane
of entropy and temperature we get a rectangle (compare it with Sect. 1f):

(S1, Tcold) 7→ (S1, Thot) 7→ (S2, Thot) 7→ (S2, Tcold) 7→ (S1, Tcold)
type adiabatic isothermal adiabatic isothermal

heat 0 S2−S1

βhot
0 S1−S2

βcold

1How to pump it? See “Population inversion” in Wikipedia.
2For quasistatic processes. Dissipation of mechanical energy (say, friction) is possible

and quite usual, but not quasistatic.
3See also Sect. 4e.
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Thus,

heat = (S2 − S1)
( 1

βhot

− 1

βcold

)
= (S2 − S1)kB(Thot − Tcold)

and work = −heat, of course.
Case 1 (usual): 0 < Tcold < Thot.
If S2 > S1 we have a heat engine; if S2 < S1 we have a heat pump.
Consider first a heat engine; converted energy = |heat| = |work|. The

heat received from the hot reservoir (spent) is

spent heat =
S2 − S1

βhot

= (S2 − S1)kBThot ;

the heat sent to the cold reservoir (lost) is

lost heat =
S2 − S1

βcold

= (S2 − S1)kBTcold .

Introducing

efficiency =
converted energy

spent heat

we have

efficiency =
Thot − Tcold

Thot

=
βcold − βhot

βcold

.

An important implication: it is possible to establish the scale of temperature
without the gas thermometer (or anything like that). An even more impor-
tant implication: it is very ineffective to use a small difference in temperature
(say, ocean water on different depths).

Consider now a heat pump: S2 < S1. Mechanical energy (S1−S2)kB(Thot−
Tcold) is spent; the heat (S1−S2)kBThot is pumped into the hot reservoir; and
the heat (S1 − S2)kBTcold is pumped from the cold reservoir.

Case 2 (unusual): Tcold < Thot < 0.
If S2 > S1 we have a heat engine and a heat pump simultaneously in this

wonderland! The cycle releases mechanical energy (S2 − S1)kB(Thot − Tcold),
pumps the heat (S2−S1)kB|Thot| into the hot reservoir, and pumps the heat
(S2 − S1)kB|Tcold| out of the cold reservoir. The case S2 < S1 leads to the
opposite.

Case 3 (strange): Tcold < 0 < Thot.
If S2 > S1, the cycle receives heat from both reservoirs, (S2 − S1)kBThot

from the hot one and (S2 − S1)kB|Tcold| from the cold one, and releases
mechanical energy (S2−S1)kB(Thot−Tcold) = (S2−S1)kB(Thot + |Tcold|). The
case S2 < S1 leads to the opposite.

However, can an adiabatic process cross the border β =∞, or not?
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4d1 Example. (Ω, µ) = (R, γ1) as in Sect. 1f (see also 3a2); x = −βh, u =
hx = −βh2, S = −1

2
x2 = −1

2
β2h2. An adiabatic process at S = const 6= 0

cannot cross β =∞.

4d2 Example. (Ω, µ) = (R, γ1) again; xt must be constant in any adiabatic
process. Let xt = −1 and ht = 2t − 1 for all t ∈ [0, 1]. Then βt = 1/ht =
1/(2t− 1) is infinite at t = 0.5. Does it make any sense physically?

We know that this system is a high-temperature approximation to a spin
system (recall 3a3). Thus, we turn to spin 1/2 (see 3a3, 3c4, 4b3). Again,
xt must be constant in any adiabatic process; but now xt = − tanh βtht ∈
(−1, 1). We choose some β0 ∈ (0,∞), let x0 = − tanh β0, xt = x0 for all t,
ht = 2t−1 again, and βt = β0/ht = β0/(2t−1). It is quite feasible: magnetic
field changes its sign, while spins do not change. The temperature crosses 0,
and βt crosses infinity. Why not, really?

We reconsider the definition of quasistatic process given in Sect. 3a, as
follows. Functions t 7→ ht and t 7→ βtht are assumed to be piecewise smooth,
but t 7→ βt may go to infinity at finitely many points; at every such point we
assume that ht = 0 but d

dt
ht 6= 0, and βtht has a nonzero limit.

Now “Case 3” is possible.
Strangely enough, in this situation negative temperatures are treated as

colder than zero. “Never say never”. . .

4e Finite reservoirs

In Sect. 4d the temperature of a reservoir was constant. Now we treat a
reservoir as another system that fits into our general framework. The original
system will be called “small”.

An isothermal process in the small system is now replaced with an adi-
abatic process in the combined system: the small system plus a reservoir
(either cold or hot).

We restrict ourselves to positive temperatures and a heat engine.
The small system receives from the hot reservoir some heat and some

entropy. Then it sends this entropy to the cold reservoir, with a part of the
heat. And so on. In the end, both reservoirs are of the same, intermedi-
ate temperature; their total entropy is unchanged; and their total energy is
decreased by the converted energy.

4e1 Exercise. Let the hot reservoir be an ideal gas in a finite-volume con-
tainer, with no potential, initially at a temperature Thot, and the cold reser-
voir — also an ideal gas, of the same number of particles and the same
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container volume, also with no potential, initially at a temperature Tcold.
Show that

converted energy =
3

2
kB

(√
Thot −

√
Tcold

)
2n ,

efficiency =

√
Thot −

√
Tcold√

Thot

.

4f Hints to exercises

4a1: recall 3d5 and the formula for S(x) given after (3c3).

4e1: the intermediate temperature is
√
ThotTcold, since the entropy is linear

in the logarithm of the temperature.
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