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8 Stickiness as a nonclassical noise

8a The sticky factorization

It was shown in 7c that the discrete-time sticky flow has a scaling limit, described by random

maps
£ — Gs, N Ab
gs’t = fa(sat)7b(57t):c(svt); c——

and for any r < s < t,

&rs and &4 are independent,

st 0 &rs = & p almost surely

(recall 7c). Moreover, &, ty, €ty sy - - -, &ty b, are independent whenever ¢; < --- < ¢,. The
distribution of &, is a probability measure p;_, on G3. The three-dimensional random

process PN (a(O, t),b(0,1), c(0, t))

is continuous (almost surely); in fact, it satisfies the same Holder condition as the usual
Brownian motion. Of course, the same holds for a(s,t), b(s, ), c(s,t) for any fized s. (Note
that I did not claim continuity in s.)

Consider the sub-o-field F;; generated by &, , for all (u,v) C (s,t); that is, by all a(u, v),
b(u,v) and c(u,v).! Let r < s < t. Clearly, F, ; and F;, are independent. Also, &.; = &;;0&
is measurable w.r.t. the sub-o-field generated by F, ; and F; ;. The same holds for §,,. Thus,

fr,t:]:'r,s@fsata

which means that we have a factorization (as defined in 5c¢); it may be called the sticky
factorization.

The process af(-, ) in itself generates another factorization, just the Brownian factoriza-
tion. We have a canonical morphism (recall 5d) from the sticky factorization to the Brownian
factorization (according to the canonical homomorphism of semigroups, G5 — G1).

The two-dimensional process (a(-,-),b(:,-)) also generates a factorization, but it is the
same Brownian factorization, generated by a(-,-) alone (think, why). In contrast, the process
c(+,-) does not fit into the Brownian factorization (recall 7c). The sticky factorization is not
equal to its Brownian sub-factorization. The canonical morphism is not an isomorphism.
However, it does not mean that the two factorizations are nonisomorphic. Or does it?

8al Exercise. Every morphism from a Brownian factorization to a Brownian factorization
is an isomorphism.

Prove it.

Hint. Recall (4d3); roughly, dB*(t) = ¢(t) dB(t), ¢(t) = £1, thus dB(t) = ¢(t) dB*(t);
however, is it a proof?

! Any continuous (or Borel) function of the sample path on (s,t) is an F, ;-measurable random variable
(recall 7c, 6b); nothing is missing from F; ;.
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8a2 Exercise. The sticky factorization is not isomorphic to the Brownian factorization.
Prove it.
Hint: assume the contrary, and use 8al.

Maybe, the sticky factorization is isomorphic to the two-dimensional Brownian factor-
ization? Or maybe, to a combination of (necessarily independent) Brownian and Poisson
factorizations? The key to answer such questions is given by so-called decomposable pro-
cesses.

8b Decomposable processes in general

8b1l Definition. Let (F;;);<: be a factorization of a probability space (2, F, P). A family
(Xs,t)s<t of random variables X;; : Q — R is called a decomposable process, if

X, is measurable w.r.t. F;;
Xr,s + Xs,t = Xr,t

whenever r < s < t. If in addition
EX?, <oo, EX,;=0
for all s < t, we call (X;;)s<; an L3-decomposable process.

We are already acquainted with that notion; see 5¢b—bc7, see also 4c, 4d, 4e. Es-
pecially, all L3-decomposable processes over the Brownian factorization are of the form

Xt = [ ¢(u) dB(u), ¢ € Lo(R).
For every L3-decomposable process (over any factorization),
X rell* = 11X |17 + 1 Xl
E(Xr,t‘]:r,s) = Xr,s;
X’r,t :E(Xr,t|‘7:'r,s) +]E(Xr,t

fs,t)

whenever 7 < s < t (think, why).
We introduce the first chaos (for an arbitrary factorization):

H,(s,t) = {X,,: X is a Ly-decomposable process} .
8b2 Exercise. X € H,(s,t) if and only if
X=E(X|Fu) +E(X|Fu) forallue(st).

Prove it.
Hint (the ‘if’ part): for s < u < v < t, the random variable

Xup=E(X|Fop) +E(X|Fup) — X =
:]E(X|F5ﬂv) _IE(X‘:F&U) :E(X‘:F“’t) _]E(X|fv7t)

is both F; ,-measurable and F, ;-measurable, therefore, F, ,-measurable (treat it as a func-
tion on €, X Q. X Q).
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8b3 Exercise. Each H(s,?) is a (closed linear) subspace of Ly(£2), and
H(r,t) = Hy(r,s) ® Hi(s,t) forr <s<t.
Prove it.

8b4 Definition. A factorization (F;;) is continuous, if for every X € Ly(€2), the map
(s,t) » E(X | Fop)
is continuous from {(s,t) € R? : s < t} to Ly(Q).

8b5 Exercise. The Brownian factorization is continuous.
Prove it.
Hint: recall (3c7).

8b6 Exercise. Let (F;;);<: be a continuous factorization. Then for every X € Ly(2) such
that EX = 0, the orthogonal projection of X to H;(0,1) is equal to

2n

lim Z E ( X ‘ f(k_l)z—n,kQ—n )
k=1

n—oo

(the limit exists in Ly(€2)).
Prove it.
Hint. For each n we have the orthogonal projection to the subspace

{Y:VkY =E(Y|Fopon) +E(Y | Fran1)
(recall 8b2).

8b7 Exercise. The following condition is sufficient for a factorization (F;;)s<: to be con-
tinuous:

E(X|Fopepe) — E(X|F,) foralls<t.

e—0+

Prove it.

Hint (for s = 0, t = 00). We have: U.soLa(F:. ) is dense in Ly(Fp ). Assume that
NesoLo(F-ooe) # La(F-cop). Take X € NesoLo(F_o0e) orthogonal to Lo(F_oop). Then X
is orthogonal to Y'Z for all Y € Lo(F_nop), Z € Lo(Fe 00)-

8c Decomposable processes over the sticky factorization

Clearly, [ ¢(t)da(0,1) is a decomposable process (over the sticky factorization) for any ¢ €
Ly(R). The question is, what about other decomposable processes. In other words: does the
first sticky chaos Hi(s,t) contain something in addition to the first Brownian chaos?

The approach of 4c-4d does not work here, since we have nothing like (3c7) for the sticky
case. Also the approach of 4f does not help, since we cannot write something multiplicative,
like exp(iAs); the obstacle is noncommutativity of the semigroup Gs.
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8cl Exercise. The sticky factorization is continuous.
Prove it.
Hint: use 8b7.

A general form of an element of H;(0,1) is given by 8b6, where X runs over L,(2). We
may take a dense set of such X, thus getting a set dense in H;(0, 1). In particular, we may
take

X = Qp(fto,tu s ’gtn—lytn)

for arbitrary n, arbitrary t; < --- < t, and arbitrary bounded continuous ¢ : R* — R.
Moreover, we may take

X = g01(§t0,t1) et Qon(gtn_l,tn) ;

these are not dense, but their linear combinations are dense. We get

E ( X ‘ ‘7:750,751 ) = const - ¥1 (é-to,h)

(think, why). The projection of X to Hy (o, ?1) is a linear combination of n terms E ¢y (&, , ¢, )-
So, what we really need, is to calculate the limit 8b6 for such a case:

(8¢c2) X =¢&,), EX=0, P(-1<X<1)=1.
Denoting for convenience s = (k —1)27", ¢ = 27" t = 1 — k27", we consider

E ( 90(60,1) | fs,s—}—s) = E( (p(gs—}—s,l o gs,s—l—s o 60,3) | fs,s—l—s) =
= // @(fag,bg,q», © faz,b2,02 © fal,b1,61) dMS(ala bla Cl)d:ut(a& b?n C3) = a(a27 b2a 02)

(let us denote it «), where pug is the joint distribution of a(0, s), b(0, s), ¢(0, s); and as, bs, co
stand for a(s,s +¢),b(s,s+¢), c(s, s+ ¢). Clearly,

fGS,bS;CS o fa2,52,62 o fa1,b1,81 = fag,bg,c;; o faz,bz,o o fal,bl,cl un]ess b3 < Co .

We get

|a(a2,b2, 02) - OZ(GQ, bz, 0)| < 2P (bg < Co ‘ 02) = 2(2@(0—2> - 1) <2 2 @

Vi Vit

(recall 6¢10); here @ is the cumulative distribution function of the normal distribution N(0, 1).
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Given ag, by, the conditional distribution of ¢, is the same as of (ag+be — 7)™, n ~ Exp(1)
(recall 7c). Thus,

8 ((ag + by —m)T)?
E(‘a(%,bmcz)_a(a2,52,0)|2|a2,b2) SE(;(( 2 2t ) ) a2,b2> =
a2+b2 8(&2+b2—U)2 8
= -~ - - 7 _ud < — b 3
/0 T t = 37rt(a2+ 2)"

and
8
(8C3) ]E|a(a2, bz, CQ) - O!(ag, b2,0)|2 S %E (az + b2)3 =

S (Ve)? /000 u® d(2®(u) — 1) = const - 3/2 /¢

" 3nt

(with an absolute constant).
Does it mean that E ( ¢(&o,1) | Fis+e ), being a function of a(s, s +¢),b(s, s +¢), c(s, s +
g), is close to a function of a(s,s + €) and b(s,s + ¢) only? Yes, it does. Note that
E(a(0,1) | Fyste) =a(s,s+e) is of norm /& (in L»(£2)). A norm O(¢**) is much smaller.
For each £ =1,...,2" we have two random variables

Xy, = a(az,bs, 2) =E (X | Fp_1)2-n po—n )
Yk; == a(a2, b2: 0) ;

(8¢3) gives

| X1 — Yil|* < const - 2 :
- 1—k2—n
Introduce
P Y, ifl1—£k27"> 274
"o otherwise,
then i
IX, — Z|12 < const - 274" if 1 — k27" > 274
L || Xk |2 otherwise.

Both X}, and Z; are F(;_1)2-» yo-n-measurable, thus X; — 7, ..., Xon — Zy» are independent,
and

2™ 2" 2m
Var (Z(X,c - Zk)> = Var(Xy — Z) < ) |1 X — Zil* <

k=1 k=1 k=1
< const - 274" . 2" 4 Z | Xe|?;
k:1—k2-n>2-n/4

when n — oo, the first term tends to 0 evidently; the second term also tends to 0, since
IE(X|Fi51) | = 0for 6 — 0 (due to continuity of the sticky factorization).
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Let FBrowh he the sub-o-field generated by a(s,t) for all s < t. Taking into account that
Zy are FP""_measurable (think, why), we get

on
dist (ZXk,Lg(fBrown)> —0 forn— o0,
k=1

which means that o

nllg}o Z E ( X | Flk—1)2-7 k2-n ) € Ly (fBrown)
k=1

for every X of the form (8c2). Therefore, for every X € Lo(f2), its projection to the first
(sticky) chaos is in fact a function of the Brownian motion (0, -); thus, it belongs to the
first Brownian chaos, and is of the form [ ¢(t) da(0,t). So,

(8c4) Hy(s,t) C Ly(FP°")  Hi(s,t) = H™"(s,1).

Decomposable processes do not generate the whole o-field. The sticky factorization is not
isomorphic to the Brownian factorization. Moreover, it is not generated by a process with
independent increments (of any dimension).

8d The noise made by a Poisson snake

...it is strongly suggested that the
reader draw some pictures.
Jon Warren.?

8d1 Exercise. Construct a natural one-parameter group of automorphisms (o );er of the
probability space of the sticky flow, thus turning the sticky factorization into a noise. Show
that

a(s,t)oa, =a(s—r,t —7r), b(s,t)oa, =b(s—r,t—r), c(s,t)oa,=c(s—rt—r).

Hint. Similarly to 5el, use (5d1). In contrast to 5el, do not use stochastic integrals, use &;;
instead.

So, we have ‘the sticky noise’. Surely, it is not isomorphic to the white noise, since
corresponding factorizations are nonisomorphic.

8d2 Exercise. Describe all morphisms from the sticky noise to the white noise. How many
morphisms exist?

We want to visualize the sticky noise, making it as explicit as possible. To this end,
we return for a while to discrete time, namely, to figures (7d1), (7d2). However, instead of

2Jonathan Warren, “The noise made by a Poisson snake”, unpublished manuscript, Univ. de Pierre et
Marie Curie, Paris, November 1998. (See page 1.)
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&..(z) we plot only &.(0).

In discrete time, such a geometric configuration, consisting of a polygonal line and horizontal
lines (let us call them ‘chords’, even though sometimes they finish not on the polygonal line),
is just another form of a word in the alphabet {—, +,*}.* In order to speak about scaling
limit, however, we have to specify our ‘observables’. These are a(s,t) and a(s,t) — c(s,t)
shown below.

(8d4) “-I:a(s,t)—c(s,t)

s t s t

You see, a(s,t) is just the increment of the polygonal line (irrespective of chords). However,
a(s,t) —c(s,t) is the increment of a line that starts on the polygonal line, switches to a chord
at the first opportunity (if any), maybe returns to the polygonal line (if the chord terminates
on it), maybe switches again, and so on.

We want to describe the probability distribution on the set of such geometric configu-
rations (over a given time interval). No problem with the polygonal line; that is just the
simplest random walk. Given a polygonal line, what is the probability distribution of the
random set of chords?

The set of all possible chords is easy to describe; each chord starts at a point of the polygonal
line, remains (strictly) below it, and finishes when it cannot continue, either hitting the
polygonal line, or at the end of the time interval. (Sometimes chords continue one another.)

=

A surprise: the probability distribution on sets of chords is very easy to describe! Namely,
each chord belongs to the random set with probability /¢, independently of others (think,
why).

The number of all possible chords is also very easy to describe; it is just the number of
positive increments (steps upwards) of the polygonal line.

For small €, typically, the number of positive increments is (relatively) close to (t—s)/(2¢),
where (s,t) is our time interval. Accordingly, the random set of chords typically contains

31 do not formulate exact requirements to the geometric configuration; do it yourself. No need to specify
the origin on the vertical axis.
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nearly (t — s)/(24/¢) chords. In the scaling limit, we should get an infinite random set
of chords (in a bounded domain). Do not panic! The number of chords of length > ¢ is
O(%) (think, why); here (s,t) is our time interval, and (z,y) is the corresponding
(spatial) interval visited by the random walk.

Therefore, the random set of chords contains typically O(W) chords longer than 4.

In the scaling limit, the random set should contain finitely many ‘non-short’ chords, and
infinitely many ‘short’ chords.

In the scaling limit, the polygonal line turns into a Brownian path, and the set of all
possible chords — into the set of all chords of the Brownian path. However, what is the
relevant measure on the set of all Brownian chords?

A surprise (once again): the measure on chords has a simple description suitable for the
scaling limit.

Consider a vertical segment with endpoints (¢, z) and (¢,y), < y, and all chords intersecting
the segment. In discrete time, the number of such chords is close (for small €) to (y —z)/+/e,
provided that ming, g B:(-) < 2 < y < max(,4 B,(-), where B, is the random walk (its graph
is the polygonal line), and s is the left endpoint of our time interval. Let us give the measure
V€ (rather than 1) to every chord. (Note that /¢ is just the probability of the chord to
belong to the random set.) Then the measure of the set of chords intersecting the vertical
segment tends (for ¢ — 0) to

Length ([x,y] N [r[ni?B(-), rfla]xB(-)> .
s,t s,t
The set of all chords (in continuous time) is somewhat complicated because of small chords.
However, the set of non-small chords, of length > 4, is simple.

I F+ |, .
iR |

There exists a finite set of vertical segments such that each (non-small) chord intersects
exactly one segment (except maybe for a finite number of chords), and every point of each
segment belongs to a chord. Topologically, it is a tree, but we do not need topology, we need
only measure. Treated as a measure space, the set of chords is isomorphic to the (disjoint)
union of these vertical segments, with the sum of Lebesgue measures on the segments.

For every 0 > 0, the set of all chords of length > § is a measure space, with a finite
measure. Thus, the set of all chords is a measure space, with a o-finite measure.*

4“5 _finite” means that the space is the union of a sequence of sets of finite measure. Lebesgue measure

on R is o-finite, too.
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Note that starting points of all chords are special; such a point ¢ satisfies

Je >0 [Hg;]B(-) = B(t).
A given (non-random) ¢ satisfies it with probability 0. Therefore (by Fubini theorem), the set
of ‘starting points’ is of Lebesgue measure 0. Another clash between discrete and continuous!
In discrete time, nearly a half of points are ‘starting points’.

In discrete time, each chord belongs to the random set with probability y/e. The inter-
section of a vertical segment with the random set contains a random number of points, and
the number is distributed binomially, Binom(%, \/5)5 In the scaling limit, it should turn
into the Poisson distribution, P(y — x).

We return to the idea of a Poisson process over a given measure space. It was already
said (in 7d) that the construction of the Poisson process, given in 2b, works over any measure
space (with a finite or o-finite measure). Well, we apply it to the measure space of chords.
We get a random set of chords. The set is countable, infinite. For any ¢ > 0, it contains
only a finite number of chords of length > §.

i V

No need to restrict ourselves to a finite time interval. We may consider the whole Brownian
path (for t € (—o0,4+00)), and its chords (now they are really chords, they start and finish
on the Brownian path). Still, the set of all chords is a o-finite measure space, and the
corresponding Poisson process selects a random countable subset. The set of selected chords
of length > ¢ is now infinite, but locally finite. Note also that lengths of selected chords are
not bounded from above.

Intuitively we feel that the Poisson random set of Brownian chords is the scaling limit
of (8d3). What about a proof? Recall our ‘observables’ ¢(s,t) shown on figure (8d4). No
need to trace a path switching back and forth between the polygonal line and its chords.
According to 7d4, in order to know a(s,t) — ¢(s, t), it suffices to know chords that start after
s and do not finish before ¢. If such chords exist, the lowest of them gives us a(s,t) — c(s, t);
otherwise c(s,t) = 0. Using this fact, it is easy to prove convergence in distribution (for
e — 0) for the two-dimensional random variable (a(s,t), c(s,t)) for any single interval (s, t).
In order to prove the scaling limit, joint distributions should be also checked (but I do not
explain it further).

® Approximately, of course, and assuming that [z, y] C [min(, 4 B, max(, 4 B].
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8d5 Exercise. Examine the relation between the scaling limit and the result of J. Warren
presented in 7c.

Finally, let us interprete our geometric configuration, consisting of a Brownian path and
a (countable) set of its chords, as the history of an object changing in time. The state of
the object at an instant ¢ is the section of the configuration by the vertical line situated at
t. The section contains one point B(t) of the Brownian path, and a sequence (Xk (t))kzl,g’_",
B(t) > Xi(t) > Xa(t) > ..., Xig(t) = —oo for k£ — oco. Imagine that the ray (—oo, B(t)]
is a snake, the point B(t) is the head of the snake, and each Xy (t) is a spot on the snake.
The snake is changing in time, but only near its head. Infinitesimally, it either lengthens
(increases) or shortens (decreases). When it shortens, it can lose a spot. When it lengthens,
it can gain a spot. Otherwise, spots remain unchanged.

Strangely enough, spots are discrete in space but not discrete in time! At every time
instant, every bounded part of the snake carries a finite set of spots. However, the set
of spots never remains unchanged during a time interval! Short-living spots appear and
disappear all the time, without a break. They are the additional (non-white) part of ‘the
noise made by a Poisson snake’.

8¢ Time reversal

8el Exercise. White noise is time-symmetric in the following sense. There exists an auto-
morphism [ of the corresponding probability space such that

</cp(t) dB(t)) of = /gp(—t) dB(#) for all g € L(R).

Prove it. Find B(t) o 8. What about the other sign, — [ ¢(—t) dB(t) ?
Hint. Use (5d1) once again. (You may also recall 5el and 8d1.)

8e2 Definition. Let ((Q, F, P), (Fsu)s<t, ()ier) be a noise. Its time reversal is the noise
((Q, F,P), (F_t_s)s<ts (a,t)teR). A noise isomorphic to its time reversal will be called time-
symmetric.

8e3 Exercise. Check that 8e2 is a correct definition, namely, the new object is indeed a
noise.

8e4 Exercise. The white noise is time-symmetric.
Prove it.
Hint: use 8el.

8e5 Exercise. Generalize 8¢l and 8e4 to an arbitrary process with stationary independent
increments.

The sticky noise, is it time-symmetric? We may try the argument of 8eb; after all, we have
stationary independent increments in the semigroup G3. However, G3 is non-commutative,
and the argument fails (think, why). The random geometric configuration (‘snake’) of 8d is
time-symmetric. However, the o-field F;; describes chords (‘spots on the snake’) whose left
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endpoints belong to (s,t). Right endpoints matter for the time reversed noise. The snake
makes two different noises. Roughly speaking, appearance of a spot is an event of the ‘left
oriented’ noise, while disappearance of a spot is an event of the ‘right oriented’ noise. Are
the two noises isomorphic?

8f Predictable and unpredictable

This example also illustrates that the
time-reversal of a predictable noise
need not be predictable. ..

Jon Warren.

The Brownian motion is continuous; the Poisson process is discontinuous; however, both
noises (white and Poisson) are continuous. The Brownian motion as a function R x >
(t,w) — B(t,w) € R is such that B(-,w) is continuous for almost all w. The Poisson process
[1(¢,w) does not have such a property. However, the two functions R 3 t — B(t,-) € Ly(Q2)
and R > t — II(¢,-) € Ly(R2) both are continuous.” Never confuse these two kinds of
continuity. (Here is the most elementary example: (0,1) x (0,1) 3 (z,y) — f(z,y) = (if z <
y then 1 else 0).) Continuity in ¢ for almost all w is called sample continuity.

If a factorization (F;;)s<; is continuous (recall 8b4), then for every X € L,(2), the map
[0,00) 2t = X(t) = E(X|Fo) € Ly(Q) is continuous, but it does not mean that the
process X (+) is sample continuous. Here is an example, for the Poisson case: X = II(1) — 1;
E(X|Fou) =E(I(1) —I(t) | Fou ) +E(I(t) | Fop) —1=E(I(1) = II(2)) + II(t) — 1 =
1 —t+1I(t) — 1, that is,

H(t
X, =I(t)—t fortelo,1]. ’\\ \

Another example (still for the Poisson case): let X : Q — [0,00) be the time of the first
jump of II(-) (after time 0); then X ~ Exp(1), E(X) = 1. Clearly, for each given ¢ we have
(X >t) «— (II(¢t) = 0) a.s

6

8f1 Exercise.

t+1 ifII(t) =0, t+1 if X >t
X(t):]E(X\fo,t)={ (*) —{

X ifmoe>1 | X ifX <t

Prove it.
Hint: Markov property (“no memory”).

In any case, the process X; = E(X | .7-'0,t) is a martingale, that is, E ( X; ‘ .7-'0,5) =X,
for 0 <s<t.

6 Jonathan Warren, “The noise made by a Poisson snake”, unpublished manuscript, Univ. de Pierre et
Marie Curie, Parls November 1998. (See the last phrase.)

"I1B(s) = B(®)ll = /Is — tf; IT(s) = TL(®)]| = v/Is —#] + |s — #*.
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Discontinuity of the martingale of 8f1 means that the random time X arrives suddenly;
the expected waiting time E ( X —t | .7-'0,75) does not tend to 0 when £t — X —.

Can you construct such an example for the Brownian case? Try it, and you’ll feel that
nothing comes suddenly in the Brownian world.

812 Definition. (a) A filtration is a one-parameter family (F;)icr of sub-o-fields 7, C F
(on a probability space (Q, F, P)) such that F, C F; whenever s < ¢.8

(b) The filtration of a factorization (Fs;)s<t is (Fou)te[o,00)-"

(c) The filtration of a noise is the filtration of its factorization.

8f3 Definition. (a) A filtration (F;)scp0,00) is predictable, if for every X € Ly(2), the mar-
tingale X(t) =E (X | F,) is sample continuous."
(b) A noise is predictable, if its filtration is predictable.

8f4 Proposition. P (sup, |X(t)] > ¢) < 5| X||*> whenever ¢ > 0, X(t) = E(X | Fo,),
X € Ly(Q).1!

8f5 Exercise. The set of all X € Ly({2) such that the martingale X (¢t) = E(X |F) is
sample continuous, is a (closed linear) subspace of Lo (£2).

Prove it.

Hint. If || X — X||? < 27% then Y, P (max, | X;(t) — X(t)| > 27%/*) < oo; use the first
Borel-Cantelli lemma.

8f6 Exercise. Let ¢ : R — R be a bounded continuous function, and X = ¢(B(1)). Then
the martingale X () = E ( X ‘ F;) is sample continuous.

Prove it. What about a discontinuous ¢ ?

Hint: X (t) = ¢:(B(t)), where ¢ : R — R,

ei(x) = /w(y) d@(\’%_—_xt) :

8f7 Exercise. Let ¢ : R* — R be a bounded continuous function, 0 < t; < --- < t, < 1, and
X =¢(B(t1),...,B(ty)). Then the martingale X (t) = E( X | %) is sample continuous.
Prove it.
Hint. X (tx) = ¢k (B(tl), . .,B(tk)), and X (1) = ]E(X(tk) |.7:0,t) for t € (tg_1,tx]; use
816.

8f8 Exercise. The Brownian filtration is predictable.
Prove it.
Hint: combine 8f7 and 8f5.

8More generally, ¢ may run over a given subset of R, say, [0, ), or Z, Z etc.

9A150 (F-co,t)tcr may be used.

100r rather, the restriction of the martingale to (say) rational numbers ¢ is locally uniformly continuous
in ¢ for almost all w. See also Footnote 9 on page 8 (Sect. 1).

1 QOr rather, ¢ runs over a countable subset. . .
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The argument of 8f7 is general enough, it may be used in the noncommutative semigroup
G5 as well, for the sticky Brownian flow, provided that 8f6 remains true. Does it? Instead

of pi(z) = [ ¢(y) dq)(\%_—ft), we have now

(8f9) Spt(fal,bl,cl) = /Sp(faz,bz,cz o fal,b1,61) d/'bl—t(a% b2= 02) .

Is it continuous in a1, by, c; and ¢7

8f10 Exercise. For every bounded continuous function ¢ : G3 — R and every ¢ € [0, 1], the
function ¢; : G3 — R defined by (819) is continuous.
Prove it.

Hint. If f o0 y0 .00 = faipr,en (in the sense that agk)
1 71 ™+l

— aq, bgk) — bl, Cgk) — Cl), then

fazpaes © fagk)ybgk),cgk) — fagposcs © farpr,er fOr pi_p-almost all fo, p, cp; recall 7bl(h) and the
distribution of b,.

8f11 Exercise. If t, — ¢ then ||y, — pe|| — 0, that is,

/fd,utk—/fd,ut
Prove it.

Hint. First, do it for measures on the two-dimensional semigroup G5. Then, replace ¢
with (a +b—n)", n ~ Exp(1).

— 0.
k—o00

sup
f:G3—>[—1,—|—1]

8f12 Exercise. For every bounded continuous function ¢ : G5 — R, the function G3x[0, 1] >
(farprerst) = @t(farpr,e0 ), defined by (8£9), is continuous.

Prove it.

Hint: combine 8f10 and 8f11.

So, the sticky filtration is predictable. That is a wonder; unlike the Poisson process, the
Poisson snake is predictable. You see, spots are discrete in space but not in time. Appearance
of a long-living spot cannot be detected in real time. ..

As was said in 8e, the Poisson snake makes two different noises, each being the time rever-
sal of the other. Appearance of a spot is an event of the ‘left oriented’ noise; disappearance
of a spot is an event of the ‘right oriented’ noise.

Note an important asymmetry: when a spot appears, we do not know, how long will it
survive. When a spot disappears, we know its age! True, we did not notice its appearance;
however, we know the (past) Brownian path, which allows us to trace back the spot (the
chord) retroactively.

For any given s < ¢ consider such an event A;;: “the random set of chords contains a
chord!'? that starts at some instant tg, and finishes at some tgnisn Such that s < tgart <
tstart + 1 < thnisn < t7. We have

As,t € F syt -

12 At least one.
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8f13 Exercise.
|P (Asfs,t \ Agy | j:s,t) ||LOO(Q) = O(\/E) fore =0+ .
Prove it. What about O(e) ? What about ||P (Ag e \ Asy | Fot) Iz ?
Hint:
g

............

8f14 Exercise. The random variable X = inf{t € (0,00) : A_;o}'? is integrable, and the
martingale' (X;), X, = E (X | F_,0) is (sample) discontinuous.

Prove it.

Hint. First, ]P’(X > T +x2) <P (X > xl) -IF’(X > xg). Second, use 8f13.

So, the noise of stickiness is predictable, but its time reversal is not, which was discovered
by Jon Warren (1998).

8z Are you careful enough?

8g1 Exercise. For every bounded continuous function ¢ : G5 — R and every ¢ € [0, 1], the
function ¢, : G5 — R defined by

@t(fambz,cz) = /‘P(faz,bz,cz © fal,blycl) d:ut(a'la b1, cl)

is continuous.
Prove it.
Hint: similar to 8f10; the atom of ¢; at 0 does not invalidate the argument.

8g2 Exercise. For every bounded continuous function ¢ : G3 — R, the function G3x [0, 1]
(faz,b2,02, t) — Ot fas,ba,co) (Where ¢y is the same as in 8gl), is continuous.

Prove it.

Hint: similar to 8f12.

8g3 Exercise. Let ¢ : G5 — R be a bounded continuous function, and X = ¢(&_19) =
@(fa(=1,0),(=1,0),e(~1,0))- Then the martingale'® (X;), X, = E ( X ‘ F_tp),t €[0,1], is sample
continuous.

Prove it.

Hint: recall 8f6, and 8g2.

8g4 Exercise. It follows from 8g3 that the time reversal of the sticky noise is continuous;
but 8f states the opposite. Find the error! (Or else, mathematics is inconsistent. . . )

13That is, X (w) = inf{t € (0,00) : w € A_; 0}
14 Adapted to the filtration (F_¢,0).
15 Adapted to the filtration (F_¢,0).



