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3 One-dimensional transformations of distributions

3a Linear transformations

Let two random variables X, Y : Ω → R be related by the equality

Y = aX + b (that is, ∀ω Y (ω) = aX(ω) + b)

with some (nonrandom) parameters a, b ∈ R.
Let p ∈ (0, 1), x ∈ R, and y = ax+ b. If a > 0 then

( x is a p-quantile of X ) ⇐⇒ ( y is a p-quantile of Y ) .(3a1)

1

1

x

p

quantile line

(

y = 1 +
1

2
x

)

1 1.5

1

y

p

Proof. (X < x) ⇐⇒ (aX + b < ax+ b), therefore P
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If a < 0 then

( x is a p-quantile of X ) ⇐⇒ ( y is a (1 − p)-quantile of Y ) .(3a2)
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Proof. (X < x) ⇐⇒ (aX + b > ax + b), therefore P
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.

In terms of cumulative distribution functions,

FY (y) = FX(x)

FY (y) = 1 − FX(x−)

(y = ax+ b, a > 0) ,

(y = ax+ b, a < 0) .
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Or, more symmetrically (assuming y = ax+ b)

FY (y±) = FX(x±)

FY (y±) = 1 − FX(x∓)

when a > 0 ,

when a < 0 ;
(3a4)

do not forget that F (u+) = F (u).
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In terms of quantile functions,

Y ∗(p±) = aX∗(p±) + b

Y ∗(p±) = aX∗((1 − p)∓) + b

when a > 0 ,

when a < 0 ;
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it follows easily from (3a1), (3a2) and the fact that FX(x−) ≤ p ≤ FX(x+) ⇐⇒ X(p−) ≤
x ≤ X(p+) (recall (2e8)).

If X has a density fX , then Y also has a density fY , and

(3a6) |a|fY (y) = fX(x) (y = ax+ b, a 6= 0) .

Proof. 35 The case a > 0: P
(

u < Y < v
)

= P
(

u < aX + b < v
)

= P
(

u−b
a

< X <
v−b
a

)

=
∫ (v−b)/a

(u−b)/a
fX(x) dx; a change of variable y = ax + b, x = (y − b)/a, dx = 1

a
dy gives

P
(

u < Y < v
)

=
∫ v

u
fX(y−b

a
) 1

a
dy; so, the function fY defined by fY (y) = 1

a
fX(y−b

a
) is a

density of Y .

3a7 Exercise. Prove it for the other case, a < 0.

Hint: the sign is changed twice; first, dx = 1
a
dy = − 1

|a|
dy; second,

∫ (v−b)/a

(u−b)/a
= −

∫ (u−b)/a

(v−b)/a
.

3a8 Exercise. Assuming smoothness, derive (3a6) by differentiating equalities

FY (y) = FX(x)

FY (y) = 1 − FX(x)

when a > 0 ,

when a < 0 ;
(y = ax+ b)(3a9)

these are (3a3) for the case of continuous FX , FY .

Is density a substitute for probabilities of points? True, fX(·) is a function
of a point, not a set function (in contrast to PX(·)). However,

P
(

Y = y
)

= P
(

X = x
)

,

|a|fY (y) = fX(x) ;
(y = ax+ b, a 6= 0)

the coefficient |a| is an essential distinction between P
(

X = x
)

and fX(x). Intuitively,

fY (y) |dy| = dp = fX(x) |dx| ; dy = a dx .

35We’ll prove only that there is some density of Y satisfying |a|fY (y) = fX(x). Both densities may be
changed arbitrarily on a set of zero measure.
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A density is not a probability; rather, it is the quotient of (infinitesimal) measures, namely,
(probability)/(Lebesgue measure). Here are two examples, discrete and continuous, for Y =
1
2
X:

probabilities:
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densities:
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1

1

y

(3a10)

Note that a density can exceed 1; moreover, it can be unbounded (recall 2c3).

3a11 Exercise. Prove that

( x is an atom for X ) ⇐⇒ ( y is an atom for Y ) ,

( x belongs to the support of X ) ⇐⇒ ( y belongs to the support of Y )

assuming y = ax+ b, a 6= 0.

3b Monotone transformations

As you know, a function is called monotone, if it either increases or decreases (that is, either
increases everywhere, or decreases everywhere). Note that a monotone function need not
be continuous, and a continuous function need not be monotone. Note also the distinction
between ‘monotone’ and ‘strictly monotone’.

Let two random variables X, Y : Ω → R be related by the equality

Y = ϕ(X) , that is, ∀ω ∈ Ω Y (ω) = ϕ(X(ω)) ,

which may be written also as Y = ϕ ◦X.
If ϕ : R → R is increasing and invertible (that is, strictly increasing, continuous, and

ϕ(−∞) = −∞, ϕ(+∞) = +∞), then all said in 3a for the case a > 0 remains true (of
course, after replacing ax+ b by ϕ(x)), except for densities. These require smoothness of ϕ,
giving

(3b1) |ϕ′(x)|fY (y) = fX(x) when y = ϕ(x) .

In the same sense the case of a decreasing invertible ϕ generalizes 3a for a < 0.

3b2 Exercise. Prove (3b1) in two ways, by variable change in an integral, and by differen-
tiating a distribution function.

Similar statements hold for a monotone invertible ϕ : (a, b) → (c, d), provided that
P

(

a < X < b
)

= 1.
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In general, an increasing ϕmay have discontinuities (jumps) and constant intervals (flats).
Still,

Y = ϕ(X) =⇒ Y ∗ = ϕ(X∗) for all increasing ϕ

in the sense that ϕ(X∗) is a quantile function of Y (since it is an increasing function dis-
tributed like Y ). Other relations may be violated.

3b3 Exercise. Consider the monotone transformation

Y = sgnX =











−1 when X < 0,

0 when X = 0,

+1 when X > 0

of an arbitrary X. Show that Y ∗ = ϕ(X∗). Find FY in terms of FX . What can you say
about atoms, supports, and densities?

3b4 Exercise. Draw a picture similar to (3a10) for Y = X2. What happens near the origin?

3c Non-monotone transformations

A simple example: X ∼ U(−1,+1) and Y = X2. The function ϕ(x) = x2 is not monotone.
Because of that, Y ∗ has nothing in common with ϕ(X∗). Say, X∗

(

1
2

)

= Me(X) = 0, however,
ϕ(0) = 0 is less than Y ∗

(

1
2

)

= Me(Y ) (and any other Y ∗(p)).
Here, a single y ∈ (0, 1) corresponds to two values of x, namely, x1 = −√

y, x2 = +
√
y.

Both contribute to the density of Y :

fY (y) =
fX(x1)

|ϕ′(x1)|
+
fX(x2)

|ϕ′(x2)|
.

Similarly, if a smooth ϕ has n intervals of monotonicity, then fY is a sum of n terms.
The bizarre distribution of Example 2b8 results from a simple discrete distribution by a

non-monotone transformation Y = sinX. Atoms of Y correspond to atoms of X, but FY

strongly increases on [−1, 1] in contrast to the step function FX , and Y ∗ is continuous, in
contrast to the step function X∗.

3d Borel functions

If ϕ is an arbitrary function and X is a random variable, then Y = ϕ(X) is a function Ω → R

but, in general, not a random variable, since the set {ω ∈ Ω : Y (ω) ≤ y} need not belong to
the σ-field F of events (recall 2a3).

3d1 Definition. A function ϕ : R → R is Borel measurable, or a Borel function, if36

∀y ∈ R {x ∈ R : ϕ(x) ≤ y} ∈ B .
36Recall that B stands for the σ-field of all Borel subsets of R.
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Sometimes we use the probability space (Ω,F , P ) = (R,B, P ) (choosing a probability
measure P on (R,B)); in such a case random variables Ω → R are just Borel functions
R → R (irrespective of P ). Indeed, 3d1 is a special case of 2a3 for (Ω,F) = (R,B).

3d2 Exercise. If ϕ : R → R is a Borel function and B ⊂ R a Borel set, then the set
ϕ−1(B) = {x ∈ R : ϕ(x) ∈ B} is also a Borel set. Prove it. (Hint: use 2d1.)

It means that the next definition is equivalent to 3d1.

3d3 Definition. A function ϕ : R → R is a Borel function, if for every Borel set B ⊂ R its
inverse image ϕ−1(B) = {x ∈ R : ϕ(x) ∈ B} is also a Borel set.

3d4 Exercise. If X : Ω → R is a random variable and ϕ : R → R a Borel function, then
Y : Ω → R defined by ∀ω Y (ω) = ϕ

(

X(ω)
)

is also a random variable. Prove it. (Hint:
combine 2a3, 3d1 and 2d1.)

3d5 Exercise. Every continuous function ϕ : R → R is a Borel function. Prove it. (Hint:
the set (−∞, y] is closed, therefore its inverse image is also closed. Use 1f10.)

3d6 Exercise. Every monotone function ϕ : R → R is a Borel function. Prove it. (Hint:
the set (−∞, y] is a ray, therefore its inverse image is also a ray.) Generalize it for piecewise
monotone functions. Does 3d6 follow from 3d5? Does 3d5 follow from 3d6?

3d7 Exercise. If ϕ, ψ : R → R are Borel functions, then the function ξ : R → R defined by
∀x ξ(x) = ψ

(

ϕ(x)
)

is also a Borel function. Prove it. (Hint: use 3d3.)

3d8 Exercise. If ϕ : R → R is a Borel function, then x 7→ ϕ2(x) (it means
(

ϕ(x)
)

2, of
course) is a Borel function, and x 7→ ϕ(x2) is a Borel function. Prove it. What about
1/ϕ(x), sinϕ(x),

√

ϕ(x) ?

3d9 Proposition. If ϕ, ψ : R → R are Borel functions, then ϕ+ψ (that is, x 7→ ϕ(x)+ψ(x))
is also a Borel function. The same for aϕ+ bψ (a, b ∈ R), for ϕψ, and for ϕ/ψ provided that
∀x ψ(x) 6= 0.

There is a simple and natural proof; it uses Borel maps R
2 → R such as (x, y) 7→ x+ y;

we’ll return to the point later (in 5a).

3d10 Exercise. Let ϕ1, ϕ2, · · · : R → R be Borel functions, ϕ : R → R, and ϕn(x) ↑ ϕ(x)
for every x ∈ R. Then ϕ is a Borel function.37 Prove it. (Hint: {x : ϕ(x) ≤ y} =

⋂

n{x :
ϕn(x) ≤ y}.) What about a decreasing sequence?

3d11 Exercise. Let ϕ1, ϕ2, · · · : R → R be Borel functions, ϕ : R → R, and ϕn(x) → ϕ(x)
for every x ∈ R. Then ϕ is a Borel function.38 Prove it.
(Hint: ϕ(x) = limn→∞ sup{ϕn(x), ϕn+1(x), . . . }; apply 3d10 twice.)

37Note that convergence need not be uniform.
38Note that convergence need not be uniform.
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3d12 Exercise. Calculate the function

ϕ(x) = lim
n→∞

lim
k→∞

cos2k(πn!x) .

Is ϕ a Borel function?

3d13 Exercise. Prove that the random variable Y of Example 2b6 is well-defined, that is,
the function Y : (0, 1) → R defined there is indeed a Borel function. (Hint: use 3d11.) The
same for Example 2b7.

It is quite difficult, to construct an example of a non-Borel function.39 Having a single,
explicitly defined function, you may be pretty sure that it is a Borel function (unless its
definition is terribly complicated, or uses uncountably many arbitrary choices).

Now we may treat bizarre random variables of Examples 2b6, 2b7 in two ways. One way:
Y is a random variable defined on the probability space (0, 1) (with Lebesgue measure);
X(ω) = ω, while Y is a bizarre Borel function (0, 1) → R. The other way: X, Y are random
variables defined on an arbitrary probability space; X ∼ U(0, 1), while Y = ϕ(X) where
ϕ : (0, 1) → R is a bizarre Borel function.

3d14 Exercise. Let X, Y be identically distributed random variables40 (possibly, on differ-
ent probability spaces), and ϕ : R → R a Borel function. Then random variables ϕ(X), ϕ(Y )
are identically distributed. Prove it. (Hint: find the distribution Pϕ(X) in terms of PX .)

3d15 Exercise. Let X be a random variable and ϕ : R → R a Borel function. Then the
three random variables

ϕ(X) , ϕ(X∗) ,
(

ϕ(X)
)

∗

are identically distributed. Prove it. (Hint: use 2e8 and 3d14.) What about
(

ϕ(X∗)
)

∗ ?
What about a monotone ϕ ?

39Existence follows from the (non-evident) fact that the set of all Borel functions is of cardinality contin-
uum, while the set of all functions is of a higher cardinality.

40Recall 2d7.
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