Probability theory

3 One-dimensional transformations of distributions

3a Linear transformations

Let two random variables $X, Y : \Omega \to \mathbb{R}$ be related by the equality

$$Y = aX + b$$
 (that is, $\forall \omega \ Y(\omega) = aX(\omega) + b$)

with some (nonrandom) parameters $a, b \in \mathbb{R}$.

Let $p \in (0, 1)$, $x \in \mathbb{R}$, and y = ax + b. If a > 0 then

 $\begin{array}{ll} \textit{Proof.} \ (X < x) & \iff & (aX + b < ax + b), \text{ therefore } \mathbb{P}\left(X < x\right) = \mathbb{P}\left(aX + b < ax + b\right) = \\ \mathbb{P}\left(Y < y\right). \text{ Similarly, } \mathbb{P}\left(X \le x\right) = \mathbb{P}\left(Y \le y\right). \text{ So, } \mathbb{P}\left(X < x\right) \le p \le \mathbb{P}\left(X \le x\right) \text{ if and} \\ \text{only if } \mathbb{P}\left(Y < y\right) \le p \le \mathbb{P}\left(Y \le y\right). \end{array}$

If a < 0 then

 $\begin{array}{l} \textit{Proof.} \ (X < x) & \iff \quad (aX + b > ax + b), \text{ therefore } \mathbb{P}\left(X < x\right) = \mathbb{P}\left(aX + b > ax + b\right) \\ ax + b &) = \mathbb{P}\left(Y > y\right) = 1 - \mathbb{P}\left(Y \le y\right). \text{ Similarly, } \mathbb{P}\left(X \le x\right) = 1 - \mathbb{P}\left(Y < y\right). \text{ So,} \\ \mathbb{P}\left(X < x\right) \le p \le \mathbb{P}\left(X \le x\right) \text{ if and only if } 1 - \mathbb{P}\left(Y \le y\right) \le p \le 1 - \mathbb{P}\left(Y < y\right), \text{ which} \\ \text{means } \mathbb{P}\left(Y < y\right) \le 1 - p \le \mathbb{P}\left(Y \le y\right). \end{array}$

 \boldsymbol{n}

 \boldsymbol{n}

In terms of cumulative distribution functions,

(3a3)
$$\begin{array}{c} F_Y(y) = F_X(x) \\ F_Y(y) = 1 - F_X(x-) \end{array} \quad (y = ax + b, \ a < 0) \ , \begin{array}{c} 1 & f_Y(y) = F_X(x) \\ p & 1 & f_Y(y) = 1 - F_X(x-) \end{array} \quad (y = ax + b, \ a < 0) \ . \begin{array}{c} 1 & f_Y(y) = f_X(x) \\ 1 & f_Y(y) = f_X(x-) \end{array} \quad (y = ax + b, \ a < 0) \ . \begin{array}{c} 1 & f_Y(y) = f_X(x) \\ 1 & f_Y(y) = f_X(x-) \end{array} \quad (y = ax + b, \ a < 0) \ . \begin{array}{c} 1 & f_Y(y) = f_X(x) \\ 1 & f_Y(y) = f_X(x-) \end{array} \quad (y = ax + b, \ a < 0) \ . \begin{array}{c} 1 & f_Y(y) = f_X(x) \\ 1 & f_Y(y) = f_X(x-) \end{array} \quad (y = ax + b, \ a < 0) \ . \begin{array}{c} 1 & f_Y(y) = f_X(x) \\ 1 & f_Y(y) = f_X(x-) \end{array} \quad (y = ax + b, \ a < 0) \ . \begin{array}{c} 1 & f_Y(y) = f_Y(y) \\ 1 & f_Y(y) = f_Y(y) \\ 0 & f_Y(y) = f_Y(y) \end{array}$$

Or, more symmetrically (assuming y = ax + b)

(3a4)
$$F_Y(y\pm) = F_X(x\pm) \qquad \text{when } a > 0,$$
$$F_Y(y\pm) = 1 - F_X(x\mp) \qquad \text{when } a < 0;$$

do not forget that F(u+) = F(u).

Probability theory

In terms of quantile functions,

(3a5)
$$Y^{*}(p\pm) = aX^{*}(p\pm) + b$$
$$Y^{*}(p\pm) = aX^{*}((1-p)\mp) + b$$

it follows easily from (3a1), (3a2) and the fact that $F_X(x-) \le p \le F_X(x+) \iff X(p-) \le x \le X(p+)$ (recall (2e8)).

If X has a density f_X , then Y also has a density f_Y , and

(3a6)
$$|a|f_Y(y) = f_X(x) \qquad (y = ax + b, a \neq 0)$$

Proof. ³⁵ The case a > 0: $\mathbb{P}\left(u < Y < v\right) = \mathbb{P}\left(u < aX + b < v\right) = \mathbb{P}\left(\frac{u-b}{a} < X < \frac{v-b}{a}\right) = \int_{(u-b)/a}^{(v-b)/a} f_X(x) \, dx$; a change of variable y = ax + b, x = (y-b)/a, $dx = \frac{1}{a}dy$ gives $\mathbb{P}\left(u < Y < v\right) = \int_u^v f_X(\frac{y-b}{a})\frac{1}{a}dy$; so, the function f_Y defined by $f_Y(y) = \frac{1}{a}f_X(\frac{y-b}{a})$ is a density of Y.

3a7 Exercise. Prove it for the other case, a < 0.

Hint: the sign is changed twice; first, $dx = \frac{1}{a} dy = -\frac{1}{|a|} dy$; second, $\int_{(u-b)/a}^{(v-b)/a} = -\int_{(v-b)/a}^{(u-b)/a} dy$.

3a8 Exercise. Assuming smoothness, derive (3a6) by differentiating equalities

(3a9)
$$F_Y(y) = F_X(x) \quad \text{when } a > 0, F_Y(y) = 1 - F_X(x) \quad \text{when } a < 0; \qquad (y = ax + b)$$

these are (3a3) for the case of continuous F_X, F_Y .

IS DENSITY A SUBSTITUTE FOR PROBABILITIES OF POINTS? True, $f_X(\cdot)$ is a function of a point, not a set function (in contrast to $P_X(\cdot)$). However,

$$\mathbb{P}(Y = y) = \mathbb{P}(X = x), \quad (y = ax + b, a \neq 0) \\
|a|f_Y(y) = f_X(x); \quad (y = ax + b, a \neq 0)$$

the coefficient |a| is an essential distinction between $\mathbb{P}(X = x)$ and $f_X(x)$. Intuitively,

$$f_Y(y) |dy| = dp = f_X(x) |dx|; \qquad dy = a \, dx.$$

³⁵We'll prove only that there is *some* density of Y satisfying $|a|f_Y(y) = f_X(x)$. Both densities may be changed arbitrarily on a set of zero measure.

A density is not a probability; rather, it is the quotient of (infinitesimal) measures, namely, (probability)/(Lebesgue measure). Here are two examples, discrete and continuous, for $Y = \frac{1}{2}X$:

Note that a density can exceed 1; moreover, it can be unbounded (recall 2c3).

3a11 Exercise. Prove that

 $(x \text{ is an atom for } X) \iff (y \text{ is an atom for } Y),$ $(x \text{ belongs to the support of } X) \iff (y \text{ belongs to the support of } Y)$

assuming $y = ax + b, a \neq 0$.

3b Monotone transformations

As you know, a function is called monotone, if it either increases or decreases (that is, either increases everywhere, or decreases everywhere). Note that a monotone function need not be continuous, and a continuous function need not be monotone. Note also the distinction between 'monotone' and 'strictly monotone'.

Let two random variables $X, Y : \Omega \to \mathbb{R}$ be related by the equality

$$Y = \varphi(X)$$
, that is, $\forall \omega \in \Omega \ Y(\omega) = \varphi(X(\omega))$,

which may be written also as $Y = \varphi \circ X$.

If $\varphi : \mathbb{R} \to \mathbb{R}$ is increasing and invertible (that is, strictly increasing, continuous, and $\varphi(-\infty) = -\infty$, $\varphi(+\infty) = +\infty$), then all said in 3a for the case a > 0 remains true (of course, after replacing ax + b by $\varphi(x)$), except for densities. These require smoothness of φ , giving

(3b1)
$$|\varphi'(x)|f_Y(y) = f_X(x) \quad \text{when } y = \varphi(x) \,.$$

In the same sense the case of a decreasing invertible φ generalizes 3a for a < 0.

3b2 Exercise. Prove (3b1) in two ways, by variable change in an integral, and by differentiating a distribution function.

Similar statements hold for a monotone invertible $\varphi : (a, b) \to (c, d)$, provided that $\mathbb{P}(a < X < b) = 1$.

Tel Aviv University, 2006

Probability theory

In general, an increasing φ may have discontinuities (jumps) and constant intervals (flats). Still,

$$Y = \varphi(X) \implies Y^* = \varphi(X^*)$$
 for all increasing φ

in the sense that $\varphi(X^*)$ is a quantile function of Y (since it is an increasing function distributed like Y). Other relations may be violated.

3b3 Exercise. Consider the monotone transformation

$$Y = \operatorname{sgn} X = \begin{cases} -1 & \text{when } X < 0, \\ 0 & \text{when } X = 0, \\ +1 & \text{when } X > 0 \end{cases}$$

of an arbitrary X. Show that $Y^* = \varphi(X^*)$. Find F_Y in terms of F_X . What can you say about atoms, supports, and densities?

3b4 Exercise. Draw a picture similar to (3a10) for $Y = X^2$. What happens near the origin?

3c Non-monotone transformations

A simple example: $X \sim U(-1, +1)$ and $Y = X^2$. The function $\varphi(x) = x^2$ is not monotone. Because of that, Y^* has nothing in common with $\varphi(X^*)$. Say, $X^*(\frac{1}{2}) = Me(X) = 0$, however, $\varphi(0) = 0$ is less than $Y^*(\frac{1}{2}) = Me(Y)$ (and any other $Y^*(p)$).

Here, a single $y \in (0, 1)$ corresponds to two values of x, namely, $x_1 = -\sqrt{y}$, $x_2 = +\sqrt{y}$. Both contribute to the density of Y:

$$f_Y(y) = \frac{f_X(x_1)}{|\varphi'(x_1)|} + \frac{f_X(x_2)}{|\varphi'(x_2)|}.$$

Similarly, if a smooth φ has n intervals of monotonicity, then f_Y is a sum of n terms.

The bizarre distribution of Example 2b8 results from a simple discrete distribution by a non-monotone transformation $Y = \sin X$. Atoms of Y correspond to atoms of X, but F_Y strongly increases on [-1, 1] in contrast to the step function F_X , and Y^* is continuous, in contrast to the step function X^* .

3d Borel functions

If φ is an *arbitrary* function and X is a random variable, then $Y = \varphi(X)$ is a function $\Omega \to \mathbb{R}$ but, in general, not a random variable, since the set $\{\omega \in \Omega : Y(\omega) \leq y\}$ need not belong to the σ -field \mathcal{F} of events (recall 2a3).

3d1 Definition. A function $\varphi : \mathbb{R} \to \mathbb{R}$ is *Borel measurable*, or a *Borel function*, if³⁶

$$\forall y \in \mathbb{R} \quad \{x \in \mathbb{R} : \varphi(x) \le y\} \in \mathcal{B}.$$

³⁶Recall that \mathcal{B} stands for the σ -field of all Borel subsets of \mathbb{R} .

Sometimes we use the probability space $(\Omega, \mathcal{F}, P) = (\mathbb{R}, \mathcal{B}, P)$ (choosing a probability measure P on $(\mathbb{R}, \mathcal{B})$); in such a case random variables $\Omega \to \mathbb{R}$ are just Borel functions $\mathbb{R} \to \mathbb{R}$ (irrespective of P). Indeed, 3d1 is a special case of 2a3 for $(\Omega, \mathcal{F}) = (\mathbb{R}, \mathcal{B})$.

3d2 Exercise. If $\varphi : \mathbb{R} \to \mathbb{R}$ is a Borel function and $B \subset \mathbb{R}$ a Borel set, then the set $\varphi^{-1}(B) = \{x \in \mathbb{R} : \varphi(x) \in B\}$ is also a Borel set. Prove it. (Hint: use 2d1.)

It means that the next definition is equivalent to 3d1.

3d3 Definition. A function $\varphi : \mathbb{R} \to \mathbb{R}$ is a Borel function, if for every Borel set $B \subset \mathbb{R}$ its inverse image $\varphi^{-1}(B) = \{x \in \mathbb{R} : \varphi(x) \in B\}$ is also a Borel set.

3d4 Exercise. If $X : \Omega \to \mathbb{R}$ is a random variable and $\varphi : \mathbb{R} \to \mathbb{R}$ a Borel function, then $Y : \Omega \to \mathbb{R}$ defined by $\forall \omega \ Y(\omega) = \varphi(X(\omega))$ is also a random variable. Prove it. (Hint: combine 2a3, 3d1 and 2d1.)

3d5 Exercise. Every continuous function $\varphi : \mathbb{R} \to \mathbb{R}$ is a Borel function. Prove it. (Hint: the set $(-\infty, y]$ is closed, therefore its inverse image is also closed. Use 1f10.)

3d6 Exercise. Every monotone function $\varphi : \mathbb{R} \to \mathbb{R}$ is a Borel function. Prove it. (Hint: the set $(-\infty, y]$ is a ray, therefore its inverse image is also a ray.) Generalize it for piecewise monotone functions. Does 3d6 follow from 3d5? Does 3d5 follow from 3d6?

3d7 Exercise. If $\varphi, \psi : \mathbb{R} \to \mathbb{R}$ are Borel functions, then the function $\xi : \mathbb{R} \to \mathbb{R}$ defined by $\forall x \ \xi(x) = \psi(\varphi(x))$ is also a Borel function. Prove it. (Hint: use 3d3.)

3d8 Exercise. If $\varphi : \mathbb{R} \to \mathbb{R}$ is a Borel function, then $x \mapsto \varphi^2(x)$ (it means $(\varphi(x))^2$, of course) is a Borel function, and $x \mapsto \varphi(x^2)$ is a Borel function. Prove it. What about $1/\varphi(x)$, $\sin \varphi(x)$, $\sqrt{\varphi(x)}$?

3d9 Proposition. If $\varphi, \psi : \mathbb{R} \to \mathbb{R}$ are Borel functions, then $\varphi + \psi$ (that is, $x \mapsto \varphi(x) + \psi(x)$) is also a Borel function. The same for $a\varphi + b\psi$ $(a, b \in \mathbb{R})$, for $\varphi\psi$, and for φ/ψ provided that $\forall x \ \psi(x) \neq 0$.

There is a simple and natural proof; it uses Borel maps $\mathbb{R}^2 \to \mathbb{R}$ such as $(x, y) \mapsto x + y$; we'll return to the point later (in 5a).

3d10 Exercise. Let $\varphi_1, \varphi_2, \dots : \mathbb{R} \to \mathbb{R}$ be Borel functions, $\varphi : \mathbb{R} \to \mathbb{R}$, and $\varphi_n(x) \uparrow \varphi(x)$ for every $x \in \mathbb{R}$. Then φ is a Borel function.³⁷ Prove it. (Hint: $\{x : \varphi(x) \leq y\} = \bigcap_n \{x : \varphi_n(x) \leq y\}$.) What about a decreasing sequence?

3d11 Exercise. Let $\varphi_1, \varphi_2, \dots : \mathbb{R} \to \mathbb{R}$ be Borel functions, $\varphi : \mathbb{R} \to \mathbb{R}$, and $\varphi_n(x) \to \varphi(x)$ for every $x \in \mathbb{R}$. Then φ is a Borel function.³⁸ Prove it. (Hint: $\varphi(x) = \lim_{n \to \infty} \sup\{\varphi_n(x), \varphi_{n+1}(x), \dots\}$; apply 3d10 twice.)

 $^{^{37}\}mathrm{Note}$ that convergence need not be uniform.

³⁸Note that convergence need not be uniform.

Probability theory

3d12 Exercise. Calculate the function

$$\varphi(x) = \lim_{n \to \infty} \lim_{k \to \infty} \cos^{2k}(\pi n! x) \,.$$

Is φ a Borel function?

3d13 Exercise. Prove that the random variable Y of Example 2b6 is well-defined, that is, the function $Y: (0,1) \to \mathbb{R}$ defined there is indeed a Borel function. (Hint: use 3d11.) The same for Example 2b7.

It is quite difficult, to construct an example of a non-Borel function.³⁹ Having a single, explicitly defined function, you may be pretty sure that it is a Borel function (unless its definition is terribly complicated, or uses uncountably many arbitrary choices).

Now we may treat bizarre random variables of Examples 2b6, 2b7 in two ways. One way: Y is a random variable defined on the probability space (0,1) (with Lebesgue measure); $X(\omega) = \omega$, while Y is a bizarre Borel function $(0,1) \to \mathbb{R}$. The other way: X, Y are random variables defined on an arbitrary probability space; $X \sim U(0,1)$, while $Y = \varphi(X)$ where $\varphi: (0,1) \to \mathbb{R}$ is a bizarre Borel function.

3d14 Exercise. Let X, Y be identically distributed random variables⁴⁰ (possibly, on different probability spaces), and $\varphi : \mathbb{R} \to \mathbb{R}$ a Borel function. Then random variables $\varphi(X), \varphi(Y)$ are identically distributed. Prove it. (Hint: find the distribution $P_{\varphi(X)}$ in terms of P_X .)

3d15 Exercise. Let X be a random variable and $\varphi : \mathbb{R} \to \mathbb{R}$ a Borel function. Then the three random variables

 $\varphi(X), \qquad \varphi(X^*), \qquad (\varphi(X))^*$

are identically distributed. Prove it. (Hint: use 2e8 and 3d14.) What about $(\varphi(X^*))^*$? What about a monotone φ ?

³⁹Existence follows from the (non-evident) fact that the set of all Borel functions is of cardinality continuum, while the set of *all* functions is of a higher cardinality.

 $^{^{40}}$ Recall 2d7.