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3 One-dimensional transformations of distributions
3a Linear transformations
Let two random variables X, Y : €2 — R be related by the equality

Y=aX+0 (that is, Vw Y(w) = aX(w) +b)

with some (nonrandom) parameters a,b € R.
Let p€ (0,1), x € R, and y = ax + b. If a > 0 then

(3al) (zis a p-quantile of X ) <= (yis a p-quantile of Y ).
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Proof. (X <z) <= (aX+b<ar+b), therefore P(X <z)=P(aX+b<ax+b) =
IP’(Y<y). Similarly, P ( S:p):IP’(Y<y) So, P(X<x)§p§IP’(X§x)ifand
only if P(Y <y) <p<P(Y <y). O
If @ <0 then
(3a2) (zis a p-quantile of X ) <= (yisa (1 —p)-quantile of Y ).
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Proof. (X < x) = (aX +b > az +b), therefore P (X < z) = P(aX +b >
ax+b) :IP’(Y>y) zl—P(YSy). Similarly,IP’(XSx) zl—P(Y<y). So,
IP’(X<$)SpSIP’(XS:E)ifandonlyifl—P(Yﬁy)§p§1—P(Y<y),which
meansIP’(Y<y)§1—p§]P’(Y§y). O

In terms of cumulative distribution functions,
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Or, more symmetrically (assuming y = ax + b)
Fy(y£) = Fx(2%) when a > 0,

3ad
(3a4) Fy(y£) =1— Fx(z¥F) when a < 0;

do not forget that F(u+) = F(u).
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In terms of quantile functions,

15 ]
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(305) Y*(pt) = aX*(p£) + b when a > 0, r - P " ald

Y*(pt) =aX* (1 —p)F)+b  whena<0;

it follows easily from (Ball), (BaZ) and the fact that Fx(z—) < p < Fx(z+) <— X(p—) <

x < X(p+) (recall ([Ze8)).
If X has a density fx, then Y also has a density fy, and

(3a6) lalfy(y) = fx(x)  (y=ax+b a#0).

Proof. 35Thecasea>0:IP’(u<Y<v):IP’(u<aX+b<v):IP(“—_b<X<

a

=) = f(;) ://;fx( )d:c‘ a change of variable y = az + b, * = (y — b)/a, dv = dy gives

IP’(u <Y < v) f fx( dy, so, the function fy defined by fy(y) = ifx(y%b) is a
density of Y. O
3a7 Exercise. Prove it for the other case, a < 0.

Hint: the sign is changed twice; first, dx = %dy = dy, second, f (o= b / = f((vu bb /{l ‘.

3a8 Exercise. Assuming smoothness, derive ([Bafl) by differentiating equalities

Fy(y) = Fx(z) when a > 0,

3a9
(39) Fy(y) =1— Fx(x) when a < 0;

(y = az +0)

these are (Badl) for the case of continuous Flx, Fy.

IS DENSITY A SUBSTITUTE FOR PROBABILITIES OF POINTS? True, fx(-) is a function
of a point, not a set function (in contrast to Px(-)). However,

P(Y=y)=P(X=uz),
lalfy (y) = fx(x);

the coefficient |a| is an essential distinction between P (X = ) and fx(x). Intuitively,

(y=ax+b, a #0)

fy () |dy| = dp = fx(x) |dz|; dy = adx .

35We'll prove only that there is some density of Y satisfying |a|fy (y) = fx(x). Both densities may be
changed arbitrarily on a set of zero measure.
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A density is not a probability; rather, it is the quotient of (infinitesimal) measures, namely,

(probability)/(Lebesgue measure). Here are two examples, discrete and continuous, for Y =
1

s X

2

w00

densities: 1 1

(3a10)

1 1

Note that a density can exceed 1; moreover, it can be unbounded (recall Ec3).

3all Exercise. Prove that

( z is an atom for X ) (y is an atom for Y ),

<
( = belongs to the support of X ) <= ( y belongs to the support of Y )

assuming y = ax + b, a # 0.

3b Monotone transformations

As you know, a function is called monotone, if it either increases or decreases (that is, either
increases everywhere, or decreases everywhere). Note that a monotone function need not
be continuous, and a continuous function need not be monotone. Note also the distinction
between ‘monotone’ and ‘strictly monotone’.

Let two random variables X,Y : 2 — R be related by the equality

Y = ¢(X), that is, Yw € Q Y(w) = p(X(w)),

which may be written also as Y = ¢ o X.

If p : R — R is increasing and invertible (that is, strictly increasing, continuous, and
p(—00) = —00, p(+00) = +00), then all said in Bal for the case a > 0 remains true (of
course, after replacing ax + b by ¢(x)), except for densities. These require smoothness of ¢,
giving

(3b1) o' (@) fy(y) = fx(z)  wheny=p(z).
In the same sense the case of a decreasing invertible ¢ generalizes Bal for a < 0.

3b2 Exercise. Prove ([BLI) in two ways, by variable change in an integral, and by differen-
tiating a distribution function.

Similar statements hold for a monotone invertible ¢ : (a,b) — (¢, d), provided that
Pla<X<b)=1.
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In general, an increasing ¢ may have discontinuities (jumps) and constant intervals (flats).
Still,
Y=pX) = Y =pX) for all increasing ¢

in the sense that ¢(X*) is a quantile function of Y (since it is an increasing function dis-
tributed like Y'). Other relations may be violated.

3b3 Exercise. Consider the monotone transformation

—1 when X <0,
Y =sgnX =<0  when X =0,
+1 when X >0

of an arbitrary X. Show that Y* = ¢(X*). Find Fy in terms of Fx. What can you say
about atoms, supports, and densities?

3b4 Exercise. Draw a picture similar to (Ball) for Y = X2, What happens near the origin?

3¢ Non-monotone transformations

A simple example: X ~ U(—1,+1) and Y = X?. The function ¢ x) z? is not monotone.
Because of that, Y* has nothing in common with ¢(X*). Say, X* (%) = 0, however,
©(0) = 0 is less than Y*(3) = Me(Y) (and any other Y*(p)).

Here, a single y € (0, 1) corresponds to two values of , namely, 1 = —\/y, 12 = +/y.
Both contribute to the density of Y:

Ix (1) n fx (z2)

W) = 15 T et

Similarly, if a smooth ¢ has n intervals of monotonicity, then fy is a sum of n terms.

The bizarre distribution of Example results from a simple discrete distribution by a
non-monotone transformation ¥ = sin X. Atoms of Y correspond to atoms of X, but Fy
strongly increases on [—1,1] in contrast to the step function Fy, and Y* is continuous, in
contrast to the step function X*.

3d Borel functions

If ¢ is an arbitrary function and X is a random variable, then Y = ¢(X) is a function Q@ — R
but, in general, not a random variable, since the set {w € Q : Y (w) < y} need not belong to
the o-field F of events (recall Zad).

3d1 Definition. A function ¢ : R — R is Borel measurable, or a Borel function, if>®

VyeR {zeR:p() <y}eb.

36Recall that B stands for the o-field of all Borel subsets of R.
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Sometimes we use the probability space (2, F, P) = (R, B, P) (choosing a probability
measure P on (R,B)); in such a case random variables 2 — R are just Borel functions
R — R (irrespective of P). Indeed, is a special case of Bad for (2, F) = (R, B).

3d2 Exercise. If ¢ : R — R is a Borel function and B C R a Borel set, then the set
0o 1 (B) ={z € R: p(x) € B} is also a Borel set. Prove it. (Hint: use Bd1l)

It means that the next definition is equivalent to BdIl

3d3 Definition. A function ¢ : R — R is a Borel function, if for every Borel set B C R its
inverse image ¢~ '(B) = {x € R : p(x) € B} is also a Borel set.

3d4 Exercise. If X : ) — R is a random variable and ¢ : R — R a Borel function, then
Y : Q — R defined by Vw Y (w) = ¢(X(w)) is also a random variable. Prove it. (Hint:
combine Pa3] and Rd11)

3d5 Exercise. Every continuous function ¢ : R — R is a Borel function. Prove it. (Hint:
the set (—oo,y] is closed, therefore its inverse image is also closed. Use [I10})

3d6 Exercise. Every monotone function ¢ : R — R is a Borel function. Prove it. (Hint:
the set (—oo,y] is a ray, therefore its inverse image is also a ray.) Generalize it for piecewise
monotone functions. Does follow from BdAl? Does follow from Bdal

3d7 Exercise. If ¢,1 : R — R are Borel functions, then the function £ : R — R defined by
Vo &(x) = ¢ (p(x)) is also a Borel function. Prove it. (Hint: use Bd3.)

3d8 Exercise. If ¢ : R — R is a Borel function, then z — ¢*(z) (it means (p(z))?, of
course) is a Borel function, and = — @(2?) is a Borel function. Prove it. What about

Lp(z), sinp(z), /() ?

3d9 Proposition. If ¢, 9 : R — R are Borel functions, then p+1) (that is, z — ¢(x)+1(x))
is also a Borel function. The same for ap + by (a,b € R), for ¢, and for ¢ /1 provided that

Vo (x) # 0.

There is a simple and natural proof; it uses Borel maps R? — R such as (z,y) — z + ¥;
we’'ll return to the point later (in [Bal).

3d10 Exercise. Let 1, p2,-+- : R — R be Borel functions, ¢ : R — R, and ¢, (z) T ¢(x)
for every € R. Then ¢ is a Borel function.®” Prove it. (Hint: {z : p(z) <y} =), {z:
on(x) <y}.) What about a decreasing sequence?

3d11 Exercise. Let @1, ¢, - : R — R be Borel functions, ¢ : R — R, and ¢,(z) — ¢(x)
for every # € R. Then ¢ is a Borel function.?® Prove it.

(Hint: ¢(x) = lim,,_ oo sup{@n(x), @ni1(z), . .. }; apply BAID twice.)

37Note that convergence need not be uniform.
38Note that convergence need not be uniform.
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3d12 Exercise. Calculate the function

@(z) = lim lim cos®(mnlx).

n—o00 k—o0o
Is ¢ a Borel function?

3d13 Exercise. Prove that the random variable Y of Example is well-defined, that is,
the function Y : (0,1) — R defined there is indeed a Borel function. (Hint: use BT1l) The
same for Example Ph7

It is quite difficult, to construct an example of a non-Borel function.?® Having a single,
explicitly defined function, you may be pretty sure that it is a Borel function (unless its
definition is terribly complicated, or uses uncountably many arbitrary choices).

Now we may treat bizarre random variables of Examples b Ph7 in two ways. One way:
Y is a random variable defined on the probability space (0,1) (with Lebesgue measure);
X(w) = w, while Y is a bizarre Borel function (0,1) — R. The other way: X,Y are random
variables defined on an arbitrary probability space; X ~ U(0,1), while Y = ¢(X) where
¢ :(0,1) — R is a bizarre Borel function.

3d14 Exercise. Let X, Y be identically distributed random variables® (possibly, on differ-
ent probability spaces), and ¢ : R — R a Borel function. Then random variables p(X), o(Y)
are identically distributed. Prove it. (Hint: find the distribution P, x) in terms of Pyx.)

3d15 Exercise. Let X be a random variable and ¢ : R — R a Borel function. Then the
three random variables

e(X),  oX),  (eX))*

are identically distributed. Prove it. (Hint: use and BAT4l) What about (p(X*))*?
What about a monotone ¢ ?

39Existence follows from the (non-evident) fact that the set of all Borel functions is of cardinality contin-
uum, while the set of all functions is of a higher cardinality.
40Recall
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