Probability — 1999, TAU 1

5 Borel sets, functions and measures

Two cases are studied in parallel in this section, the two-dimensional case (new) and the
one-dimensional case (treated before in a simplistic manner). Full generality will be achieved
by using some theorems of measure theory (formulated here without proofs).

5a Intervals and elementary sets

Some definitions.
A one-dimensional interval is, by definition, a subset of R of one of the following forms:*

(0'7 b); [a" b]; [a" b); (a7 b]; (_OO’ b); (_OO’ b]§ [a, +OO); (CL, +OO);
(—o0,4+00) =R; 0 (the empty set).

A singleton {a} is an interval, since {a} = [a, a].

A two-dimensional interval is a (cartesian) product of two one-dimensional intervals. For
example: [—1,+2] x (0, 3), or (—o0,0] x {r}.

A one-dimensional elementary set is a union of a finite number of one-dimensional in-
tervals. Similarly, a two-dimensional elementary set is a union of a finite number of two-
dimensional intervals. Examples: (—oo, —5] U [—2,1.5) U {7} (one-dim); [0,4] x (0,2) U
[3,6) x (1,3] U [1,2) x {2.5} U {5} x {0.5} (two-dim).

— [

[

[

~e
o = N ow

| o
01 2 3 4 5 6

Every elementary set can be represented as a union of a finite number of disjoint intervals
(which is trivial in dimension 1, and a bit more complicated in dimension 2).

Denote the class of all 1-dimensional elementary sets by £ or &;, and the class of all
2-dimensional elementary sets by &. Both are algebras (fields) of sets (recall 1al), that is,

0,Reé&; 0, R €&
(hal) Ee€& = R\Ee€&; Eec& = R*\Ec&,;
FFret — EnNF,EUFeé&; EFeé — ENF,EUFeS,.

Each 1-dimensional interval has its length, called also its (Lebesgue) measure: mes([a, b]) =
b — a; mes((a,b)) = b — a; mes((—o0,b]) = oo; mes({a}) = 0; etc. Every 1-dimensional
elementary set F € &; has its measure mes(F), equal to the sum of measures of its (disjoint)
intervals. Every 2-dimensional elementary set E € & has its measure mesy(F), equal to
its area. An elementary set has many partitions into (disjoint) intervals; they all give the

!These are exactly the one-dimensional convez sets, as well as the one-dimensional connected sets, but
we do not need it.
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same measure (I omit the proof).? We have finitely additive measures mes : & — [0, +oc],
mess : £ — [0, +00].

5b Non-elementary sets: the first step

A disk does not belong to &, but still, it should have an area!
Define

(51)0:{E1UE2U"':El,EQ,"‘Egl},

5b1
( ) (52)0—:{EluEQU"‘:El,EQ,"'652}.

An open disk belongs to (€;),, which is a special case of the following result. Recall that a
set is called open, if it contains a neighborhood of each point of the set.

5b2 Lemma. Every 1-dimensional open set belongs to (€;),. Every 2-dimensional open set
belongs to (€2),-

Proof. (I prove the 2-dim case; 1-dim case is similar but simpler.) Let
U C R? be an open set. The set of all (a,b) X (¢,d) C U with rational
a,b,c,d is countable; their union belongs to (&;),. However, the union is
equal to U. Indeed, being open, U contains a neighborhood of each point
of U; the neighborhood may be chosen as a rectangle (a,b) x (¢, d) with
rational a, b, c, d. O

Every A € (&), can be represented as E1 W Eo W ..., E, € &, or alternatively, as the
limit of an increasing sequence of elementary sets.

ItE, F,eé&, E, 1T A, F, T B, and lim,,_,,, mes F,, # lim,,_,,, mes F},, does it mean that
A # B? The question is quite nontrivial, even in dimension 1.> Fortunately, the answer is
positive, which is proven by measure theory.* This is why we may define mes, A for A € (&),
as lim,,_,, mes E,,, where (E1, Fs, ...) is any sequence of elementary sets increasing to A.

5b3 Note. Every countable set A C R belongs to (£;),, and mes(A) = 0. Every countable
set A C R? belongs to (&2),, and mesy(A4) = 0.

Countable sets can be dense (recall rational numbers); anyway, they are negligible w.r.t.
Lebesgue measure.

2 Ancient Greeks used only rational numbers. Let Q be space of all rational numbers, E1, ..., E,, C Q be
disjoint intervals, and also Fi,...,F, C Q be disjoint intervals. If mes(E;) + - -- + mes(E,,;) # mes(F;) +
-+ + mes(F,), then necessarily By W ---W E,, # F; W--- W F,. Perform a thought experiment: replace Q
with some non-dense set. The statement becomes wrong!

Elementary measure theory can be built over (), since rational numbers are dense.

3This time, rational numbers do not suffice. It may happen that A and B differ only on irrational
numbers, that is, ANQ=BNQ.

Ancient Greeks could not build our probability theory over Q. Something is wrong with rational numbers!

4The proof uses compactness. An interval [a,b] C R is compact; its rational counterpart [a,b] N Q is not
compact. That is the failure of rational numbers.
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Non-elementary sets appear naturally when dealing with infinite sequences. A number
w € (0,1) has its binary digits

e
w= (0.a1a2...)2:Z2—k, o = ag(w) € {0,1},
as well as decimal digits,
W= (061ﬂ2 .- ')10 = Z % ) ﬂk = Bk(w) € {03 ]-a 25 3a4a 5a 6; 71 8; 9}
k=1

(and the same for other bases). Probabilistically, binary digits are just an (infinitely long)
coin tossing; P (c; = 0) = mes{w € (0,1) : a1 (w) = 0} = mes((0,3)) =1/2,P (a2 =0 |
)= mes((0, §))

mes((0, 1))
is usually close to 1/2 for large n. Thus, the event a; + --- + aig00 < 1000/4 is a large
deviation. What about the probability

a = = 1/2, etc. Probabilistic intuition tells us that (o +--- + ) /n

(5b4) P(3n>1000 a;+---+a, <n/d) =7

Before trying to calculate it, we should ask: is it well-defined? (Otherwise, trying to calculate
it we’ll encounter paradoxes!) For each n, the event® E, = {a;+- - -+a, < n/4} is elementary
(think, why). Therefore, the event A = FE1gg9 U F1go1 U ... belongs to (£1),. (Note that A is
not elementary; in fact, it is dense!) We’ll return to the point later.

Generally, events of the form

(5b5) 3n ( a property of o, ...,y )

belong to (&1),-

5¢ More complicated sets
The class (€2), (as well as (€1),) satisfies® (recall (5al))
@, R2 € (52)0;

(5cl) A,BE€ (&) = ANBE (&)s;
Al,AQ,"‘E(gQ)U- - (A1UA2U...)€(82)U.

However, A € (&), does not imply R\ A € (&;),. In particular, closed sets’ in general do not
belong to (&;),, though they are complements of open sets, therefore (by 5b2) complements

SThat is, the set E,, = {w € (0,1) : oy (w) + - - + a,(w) < n/4}.

6For the intersection, note that E, 1 A and F,, 1 B imply E, N F,, + AN B. For the union, note that a
sequence of sequences can be lined up into a single sequence.

"Recall that a set A is called closed, if z, € A, x, = = imply € A. A set is closed if and only if its
complement is open.
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of (&3),-sets. Say, a closed rectangle belongs to (&), if and only if its sides are parallel to
coordinate axes.® Also, a closed disk does not belong to (&3),-
Similarly to (5bl) we may define

(E)s={EiNEyN---:E,Ey,--- €&},

5c2
( ) (52)5:{ElﬂEgﬂ"'IEl,EQ,"'Egg},

then
A€ (&) <= R\ Ac€ (&)s;

closed sets belong to (£;)s, but open sets, in general, do not belong. Similarly to (5b5),
events of the form

(5¢3) Vn ( a property of as, ..., an)

belong to (£1)s but, in general, do not belong to (&;),-
If A€ (&), and B € (&)s then AN B and AU B, in general, are neither in (&), nor
(52)5.

Some quite important sets are essentially more complicated than all considered before.
For example (recall (5b4)), the set
(5c4) {we(0,1):AINYR > Nay + -+ a, > n/d}
belongs to the class

(5C5) (51)50 = {A1 U A2 U---: Al, AQ, --- € (51)5} y

while the set

\

y —
n n—oo 2

(5¢6) {we(0,1);“1+"'+an 1}

1 e, 11
={w§3anzN S - gug§+—}

k

belongs to the class (£1)s06. Note the simple relation between a sequence of quantifiers (V3V)
and the type of the set (00d). We have a tower of classes

(52)0 _____ - (52)60 _____ - (52)050 —————— > e
(5C7) 82 < (52)6 ——>—§’ (52)05 2§ (52)505 __>_§, .

the arrows being directed toward larger classes. It is known (and far from being evident)
that all these classes differ. The union (&) of the classes satisfies

A€ (£)0 = RE\AE€ (&)o,

5c8

8If they are not parallel, then an elementary set inside the rectangle contains only finite number of its
boundary points. However, the whole boundary is not countable!
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Still not a o-field! If A; € &, Ay € (£2)y, A3 € (€2)s6, Az € (€2)060, - - - then, in general,
A1UAsU. .. does not belong to (£3). Rather, it belongs to (£2)s; We start to understand
that (5c7) is only a miserable part of a giant tower, too vast and complicated for being
exhausted by a sequence.

Fortunately, we can avoid the giant tower. To this end, first of all, we must abandon the
hope of a general form of a set. You see,

sets of (&), are of the form Uy Ey,
(5¢9) sets of (&), are of the form N U Ey,
sets of (&),s0 are of the form Uy M Uy, Egn

and so on;? however, it does not work on higher levels of the giant tower.
In the next section the whole tower will be treated at once, without dividing it into levels.

5d Borel sets

5d1 Definition. (a) Borel o-fields B; (one-dimensional) and By (two-dimensional) are o-
fields generated by &£ and &, respectively.
(b) A Borel set is a set belonging to the Borel o-field.

Recall some similar but simpler definitions. Say, from linear algebra; the linear subspace
L generated by given vectors z1,...,x, can be defined in two equivalent ways:

(a) the intersection of all linear subspaces that contain xq, ..., Zy;

(b) {crz1+ -+ cpxn i c1,-..,0n € R}
Item (b) is the general form of a vector of the generated subspace. Unfortunately, such
a constructive description is not available for Borel sets. Item (a) involves the (vast and
seemingly irrelevant) collection of all linear subspaces that contain z,...,z,, and gives no
clear idea, which vectors belong to the generated space. Anyway, the intersection of a family
of linear spaces is a linear space, be the family small or vast.

The o-field generated by a class is the intersection of all o-fields that contain the class.
Intersection of a family of o-fields is a o-field (check it), be the family small or vast.

Intuitively, a set is a Borel set, if (and only if) it can be constructed from intervals by
iterated operations of complement, finite or countable intersection, and finite or countable
union.

5d2 Definition. A class A of sets!® is called monotone, if

Al,AQ,"'EA,AnTA — AGA,
A, Ay, € ALA LA = A€ A.

Intervals (both 1-dim and 2-dim) are a monotone class, but not an algebra. Elementary
sets are an algebra, but not a monotone class.

5d3 Exercise. Prove that an algebra is monotone if and only if it is a o-field.

OFor example, (5¢6) is Ng Un NnErnn, Where Epny = {3 — 1 < abton <14 13
0More exactly, of subsets of a given set.
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5d4 Theorem. ( “Monotone class theorem”) If A is an algebra, then the monotone class
generated by A is also an algebra.

(I give no proof.)

5d5 Exercise. If A is an algebra, then the monotone class generated by A is equal to the
o-field generated by A. Prove it (using Monotone class theorem).

So, Borel o-fields B, B> may be defined as monotone classes generated by &, &> respec-
tively.

Intuitively, a set is a Borel set, if (and only if) it can be constructed from elementary
sets'! by iterated limits of monotone sequences.

Especially, all open sets, all closed sets, and all countable sets are Borel sets. It is quite
difficult, to construct an example of a non-Borel set!

5d6 Proposition. Let (2, F, P) be a probability space, and X : Q — R a random variable.
Then for every Borel set B C R, the set

X 'B)={we: X(w) € B}
is an event, that is, belongs to the o-field F.

Proof. Consider the class Bx of all Borel sets B C R such that X~!(B) € F; we have
to prove that By is the whole B;. The “inverse image” operation X ~!(-) preserves main
operations on sets:!?

X 0) = X'(R) =Q,
XT(R\ ) Q\X7(B),
X'AnB)=X'4A)nX(B), X '(AuB)=X'AuXx(B),
XY BiUBU...)=X YB)uX YBy)U

Combining it with the fact that F is a o-field, we conclude that By is a o-field.!?
The o-field By contains all intervals (recall 1a2). Therefore, By contains the o-field
generated by intervals. So, Bx contains all Borel sets. O

So, Def. 1a2 is equivalent to the following.

5d7 Definition. A random variable is a function X : ) — R that is F-measurable, which
means

VBeB; {w:X(w)e B}eF.

Now we may ask non-elementary questions about random variiables; not just P (X €
[a,b] ), but also, say, P (X is rational ), etc.!

' Not just intervals!

12Note that the “image” operation is worse; say, X (AN B) # X (A) N X(B), in general.
13Check it!

1 Provided that we have a probability space, of course.
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5¢ Borel functions

5el Definition. (a) A function ¢ : R — R is a Borel function, if VB € B, ¢~ '(B) € B;.
(b) A function ¢ : R* — R is Borel, if VB € B; ¢~ '(B) € Bs.
(c) A map ¢ : R — R? is Borel, if VB € By ¢ (B) € B.
(d) A map ¢ : R? —» R? is Borel, if VB € B, ¢ '(B) € Bs.

(As you probably guess, 5el(a-d) and 5d7 are special cases of a more general notion of
a Borel map from one Borel space to another.)

5e2 Lemma. Let X : 2 — R be a random variable, and ¢ : R — R a Borel function. Then
©(X) is a random variable.'®

Proof. We use 5d7; let B € By, then

{w:p(X(w)) €B}={w: X(w) € '(B)}eF.
——

€B

5e3 Lemma. Every continuous function ¢ : R — R is a Borel function.

Proof. Consider the class B, of all Borel sets B C R such that ¢ '(B) € B;; we have to
prove that B, is the whole B;. Similarly to the proof of 5d6, B, is a o-field. However, every
open interval (a, b) belongs to B,, since ¢~'((a,b)) is an open set.'® O

5e4 Corollary. A continuous function of a random variable is a random variable.
(Note that a continuous function need not be piecewise monotone.)

5e5 Lemma. Let ¢, 9, - : R — R be Borel functions, ¢ : R — R, and ¢,(z) 1 ¢(z) for
every x € R. Then ¢ is a Borel function.!”

Proof. For every a,

{z:9(z) <a} ={z:Yn ¢,(x) ga}:m{x:gon(ac) <a} € By;

similarly to the proof of 5e3, (—oo, a] € B, therefore B, is the whole B;. O

5e6 Lemma. Let ¢, @g,---: R — R be Borel functions, ¢ : R — R, and ¢, (z) — ¢(z) for
every © € R. Then ¢ is a Borel function.!®

Proof. () = lim,_, o sup{¢n(x), pnt1(x), ... }; apply 5eb twice. O

15 A5 before, (X ) means the same as ¢ o X, or w — ¢(X(w)), or @ 5 R % R.
16 Check it.

1"Note that convergence need not be uniform.

8Note that convergence need not be uniform.
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5e7 Exercise. Calculate the function

¢(x) = lim lim cos®*(mnlz).
n—00 k—00

Is ¢ a Borel function?

5e8 Exercise. Let X,Y : Q — R be random variables. Then for every Borel set B C R2,
the set
{weQ: (X(w),Y(w)) € B}

is an event. Prove it. (Hint: similarly to 5d6...)

5e9 Exercise. Let X,Y : Q — R be random variables, and ¢ : R?> — R a Borel function.
Then ¢(X,Y) is a random variable. Prove it. (Hint: similarly to 5e2...)

5e10 Exercise. Every continuous function ¢ : R? — R is a Borel function. Prove it. (Hint:
similarly to 5e3...)

5el1 Corollary. Let X,Y : 2 — R be random variables. Then X +Y and XY are random
variables.

5e12 Exercise. Consider X/Y assuming that P (Y = 0) =0.

5f Borel measures, Lebesgue measure

A probability measure was defined in 1al on an arbitrary o-field F. Especially, a probability
measure on By (or B,) is called a Borel probability measure. Waiving the normalization
P(Q2) = 1 we get a more general notion of a finite Borel measure:

w: By — [0, +00),
(5£1) n(Aw B) = p(A) + u(B),

Similarly to (2a2), o-additivity implies continuity:

B,tB = u(B.)1TuB),

(562) B.LB = u(B,) | uB).

Waiving finiteness, we get a locally finite Borel measure:

W By — [0, +00],

u((a, b)) < 00 whenever — oo < a < b < 400,
n(Aw B) = p(A) + u(B),

p(Ar WAy W) = u(Ay) + p(Ag) + ...

(5£3)

There are also signed measures, o-finite measures, vector-valued measures etc., but we need
only
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e Borel probability measures,
e a single locally finite Borel measure, the famous Lebesgue measure.
Every Borel probability measure p has its cumulative distribution function
(5t4) Fy(@) = u((~00,a])
Similarly to (2a3), F, determines uniquely p(E) for all elementary sets E.

5f5 Lemma. If two Borel probability measures coincide on all intervals, then they coincide
everywhere (on all Borel sets).

Proof. The class {B € By : u(B) = v(B)} is monotone by 5f2, therefore, by Monotone class
theorem 5d4, it is the whole B;. O

5f6 Corollary. ), =F, = pu=wv.

Locally finite measures violate 5f2; true, upward continuity still holds, but downward
continuity fails; say, [n,00) | @, but ,u([n, oo)) may be +oo for all n. Nevertheless:

5f7 Exercise. If two locally finite Borel measures coincide on all bounded intervals, then
they coincide everywhere (on all Borel sets). Prove it. (Hint: measures u,(B) = u(B N
[—n,n]), v,(B) = v(B N [—n,n]) are finite, and coincide an all intervals.)

5f8 Definition. Lebesgue measure (denoted mes) is a locally finite Borel measure on B
satisfying
mes((a,b)) =b—a

whenever —o0o < a < b < .
Uniqueness of Lebesgue measure follows from 5f7,'° but its existence is quite nontrivial.?
5f9 Theorem. Lebesgue measure exists.

The proof is given by measure theory.
Now (at last!) we are in position to give an example of a nondiscrete probability space
(Q,F, P):
Q2=(0,1),
(5f10) f:Bl‘QZ{BEBl :BC (0,1)},
P =mes|q, thatis, P(B)=mes(B) for B € F.

This is the probability space meant in Sections 1—4.

YIntuitively: a Borel set results from elementary sets by iterated monotone limits, and its measure is the
corresponding iterated limit of (elementary) measures.

In the discrete case, probability of a set is the sum of probabilities of its points. Accordingly, all sets have
probabilities.

In the continuous case, probability (or measure) of a set does not arise from its points. Rather, it arises
from its relation to intervals. If a set is not related to intervals, it has no probability (or measure) at all.

A point is not a meter; an interval is a meter.

20Recall 5b.



