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1 Long independent sequences

la Independent events

lal Reminder. Fuair coin: finite probability space 2 = Q,, = {0,1}" with
p(w) = pp(w) = 27" for all w € Q; the number of “heads” — random
variable H = H,, : Q, - R, H(w) = a1 + -+ + a, for w = (ay,...,a,) € Q;

its distribution

P(H=k)=P({w: Hw) =k) = 3 pw).

w:H(w)=k

1a2 Reminder. Binomial distribution (the fair case):

nfm ny n! ' )

1a3 Reminder. Random signs: random variables Xi,..., X, : Q, — R,

Xi(w) =2a — 1 for w = (ay,...,a,) € .

Simple random walk: random variables Sy, ..., S, : Q@ = R, S, = X; +

e+ X
,.‘>k
la4 Remark.
S, =2H, —n;
n+k 1 n!
P(S,=k)=P(H, = = ——— for k=—n,—n+ 2,
A A S lEa]
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1a5 Proposition. ! For every € > 0,
P(2]S,/<e) =1 asn— oo.

Thus, P(|1H, — 1| <e) — 1 as n — co. The frequency is close to the
probability. . .

This is a special case of the Weak Law of Large Numbers, see [IcIl See
also

How to prove [[all? Cumbersome sums of binomial coefficients? No, this
is the old way. The newer way: via Pythagorean theorem in the (2"-dimen-
sional) Euclidean space of random variables!

The Euclidean space Ly(Q2) = Lo(£2,, P,) consists of all functions X :
2 — R and is endowed with the norm and scalar product

IXI = D IX(w)Ppw) = V(X X),
(1a6) wesd
(X,Y) =) X(w)Y(wpw).

weN

Its dimension is equal to the number of points in Q (think, why; any restric-
tion on p(+)7).
Recall the ezpectation E X of a random variable X:

(1a7) EX =3 X(w)p(w) = (X, 1)
weN

an important linear functional on Lo(2). Note that

I X|>=EX?, (that is, E (X?))

(1a8) (X,Y)=EXY . (that is, E (XY))

1a9 Exercise. The random signs X, ..., X,, are orthonormal, that is,

i
E&&:{ o=

0 otherwise.

Prove it. Are they a basis?

1a10 Exercise. ||Si|| = vk for k=0,1,...,n.
Prove it.

1KS, Sect. 2.1, Th. 2.5].
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lall Exercise. P(|X|>¢) < ([ X]|)? for all e > 0 and X € Ly(€).
Prove it.

1lal2 Exercise. Prove Proposition

Here is the normal approximation to the binomial distribution.
1al13 Proposition. !
9 2

\/%eXp <— %> . <1+an<%>) for k +n even,

where a,(-) = 0 uniformly on bounded intervals.

P(S,=k)=

(Clearly, P(S, = k) vanishes if n + k is odd.)

lal4 Remark. The convergence a,(-) — 0 cannot be uniform on R, since
oy (vn + ﬁ) = —1 (think, why). What about a,(y/n)? Well, it is —1 +
1V2rnen/?27" — —1 (think, why).

How to prove Prop. IaI3l? Some calculations with binomial coefficients
(but not their sums. ..) are needed.

lal5 Reminder.

n! =n"e"V2mmpB(n), Bn)—=1; Bn)=1+0(1/n). (Stirling)

Thus,
(1al6) Inn!=nlnn—n+ilnn+4In(2r) +InB(n) .
——
O(1/n)
1al7 Exercise.
1
InP (S, =cn) = —ilnn - g((l —c)In(l —c)+ (1+¢)In(1 +¢))—
1 1 1-— 1
S ln(1-) 42— ln(2ﬂ)+lnﬁ(n)—lnﬁ(u> —lnﬁ(u>
2 2 2 2
whenever cn € {—n,—n +2,...,n}.

Prove it. (Combine [[ad]l with [TaIfl and enjoy many cancellations!)

U[KS, Sect. 2.2, Th. 2.10]; [D, Sect. 2.1, Th. (14)].
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We introduce a function «y : [-1,1] — R by

v(e) = 1(1 +¢)In(l+¢) + %(1 —c)ln(l —¢) force (—1,1),
v(=1) =~(+1) =In2.

(1al18) 2

Now [TaI7 becomes
1 1 1
InP (S, =cn) =—ny(c) — 5 Inn — 5 In(1—c*) +1n2— 5 In(27) +o(1),
if n(1 £ ¢) > 1; moreover,

(1a19) P(S,=cn) = %ﬁ\/;_ﬁ e~ () . (1 + O(ﬁ)) .

A numerical example: n = 200, ¢ = —0.9, IP(SQOO = —180) =7 Really
1.397-10~*; approximately (as above) 1.409-10~4*; by normal approximation:
3.7-10737 (oops. .. ).

About the function ~:

(=) =(e); ~(0) =0;
1
7'(0) =1 since (zlnz) =1+Inz, (rlnz)" = -

1
v"(0)=0; thus ~(c)= 502 +0(c*) asc—0.

’

Proof of [al3d
2 k?
lnIP’(Sn:k)—ln( _Zﬁnexp <— %>>‘§ (k=cn)
2 1 1 .
< ln]P’(Sn:cn)—ln(% 1_CQEe gl ))‘+
2 1 1 2 2
1 —_— _~ a0 -1 & —nc?/2 <
+’ n<\/ﬁ\/1—02\/27re ) n(\/27me ) -
1 1 ,
<0(z =) +ln\/17_—62+|\n7(03)(:;w /2]

O(c?)
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Claim:

1 1
0(7) O() + O(né :0( 4 —>.
D= + O(c®) + O(nc?) ne 4
Proof of the claim. If nc? —1—% <6< i then: nc* < §; % <6 et < %5 < 62
2 . 1. 1 2
¢ <6 o] < 35 gy S 5 <20,
Thus,

2 K2 k4 1
=2t (1ro(5 1 1)),
) V2mn n3
an(k/v/n)

If |k| = O(y/n) then £ = O(%5) = O(2). Thus, supy, |a()| = O(1/n) for

all a,b.

End of proof of Tal3
Proposition[Ialdlis a special case of the Local Limit Theorem. In contrast,

the next result is global.

1a20 Theorem. '
P 1 ’ —z2/2
(a\/ﬁ<5n<b\/ﬁ)—>\/—2_7r/ae dr asn— o
whenever —oo < a < b < 0.

This is the De Moivre-Laplace theorem, a special case of the Central
Limit Theorem.

Proof of [Ta20

First, assume that —oo < a < b < oo. Then:

P(ayn < S, <byn) = > P(S,=k);
k€(av/n,by/n), k+n even
let o(z) = \/12_8_352/2,
s
P(S, =

1KS, Sect. 2.2]; [D, Sect. 2.1, (1.5)].
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e (i) <20 =0) < () (1 ppes)
(+ingen) 3 k

w(—)g (avn < S, <by/n) <
%/_/ke(a\/_ n,by/n), k+n even

n
2 k
< (1+mpa, 7(5)
[a.0] k€(ay/n,by/n), k+n even

B

—1

It remains to prove that the sum converges to the integral. We divide [a, b]
into intervals of length 2/y/n and get an integral sum; only the first and last
terms differ, but contribute only O(1//n) anyway.

The case —00 < a < b < oo is done. The case a = b is trivial. It is
sufficient (think, why) to consider the case —oco < a < b = co. We could
do it via the equality ffooo e /24y = /27 well-known in analysis, but it is
instructive to do it differently, and get the integral equality as a by-product.t
(The argument introduced below will be reused in the proof of [a21])

We note that

liminf P (ayv/n < S,) / e 2y

n—oo

since it exceeds lim inf,, ., P (a\/_ < S, < b\/_) W f e~/ dx for every
b € (a,00). It remains to prove that

li P < S
mawP(avii< 8) < o [ e

We have
Plavn < S,) =P(S, =kn) +P(Sy =k, +2) +...
where k,, = min(Z N (ay/n,c0)); and

n! n—=k
(n k—2 (n+k+2) n+k+2p(5n:k7)
_k

P(S,=k+2)=27" <

P(S, =k) < ;Z;\‘f (S, = k)

'The doubt is: maybe a part 1 — \/% ffooo e=®*/2dz > 0 of the distribution of Sn

us

)!

1+ £

escapes to infinity when n — oo ?



Probability for mathematicians INDEPENDENCE TAU 2013

for k = k,, k, + 2, ...; therefore

P(S, > ayn) <1+1—a/\/ﬁ+<1—a/\/ﬁ)Q+ _l4a/vn Vn
P(Sy=ke) ~— 14a/yn \1+a/yn ~ 2a/yn 2a
and we get
1 1 2
limsupIP’(a\/ﬁ < Sn) < lim sup @P(Sn = kn) — e /2
o0 n—oo 20 a /27

by Mal3l since k,/y/n — a. It follows that

1
2 7

limsupIP’(a\/ﬁ < Sn) < limsupIP’(a\/ﬁ <S5, < b\/ﬁ)JrlimsupIP’(b\/ﬁ < Sn) <

n—oo n—o0 n—oo
1 2 1 1 2
< e T/ 2dy + = o /2
27 /a b+/2
for every b € (a,00); we take b — oo.
End of proof of Ta20
1a21 Proposition. ! For every c € (0,1),
1
—InP (S, >cn) = —y(c) asn— oo,
n
where y(c) = 3(1+¢)In(1 4+ ¢) + 3(1 — ¢)In(1 — ¢).
This is a special case of the Large Deviations Principle.?
Proposition [[a21] suggests the approximation (for large ¢ and n)
IP’(Sn > c) ~eme/m) — n )
V(n—c)ne(n + c)nte
However, Theorem [[a2(] suggests another approximation,
1 o 2 C2
P(S, >c %—/ e 2 dr ~ ex (——)
( ) /271- c/\/ﬁ p 2”
A paradox! What do you think? A clue: for n = 200,
c 0 30 60 90 120 150 180
1-107*

\/27rn ex p<_

1D, Sect. 2.1, Exercise 1.3].
2[KS, Sect. 10.4]; [D, Sect. 1.9].

27" (s ) 6-1072 6-107% 6-107% 5-107" 1.107® 3.107%°
£) 6-1072 6-107% 7-107° 9-107"" 1-107'7 2.107% 4.107%
exp(—ny(£)) 1 1-107t 1-107* 8-1071° 2.107'" 3.10728

1-107%
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Proof of Ta21]

We reuse the argument of the last part of the proof of P(Sn >
cn) = P(Sn = k;n) + IP’(Sn =k, + 2) + ... where k, = min(Z N (cn, 00));

1—c¢

P(S,=k+2) < 1+CIP’(Sn=l<;)
for k = k,, k, + 2, ...; therefore
1§IP’(Sn>cn) §1+1—c (1—0)2 L 1+c’
P(Sn:k:n) 1+c¢ 1+¢ 2c

and we get %lnIP’(Sn > cn) — %lnP(Sn = k;n) — 0. By (IaI9),

S = k) = (o ) ()0 G -

= (2 4o1) » (0,

since %” — C.

End of proof of [a2]]

1a22 Reminder. Unfair coin: The same €2 and H as in [[al] but different
probabilities

pn(azl, . ,a,n) — pa1+~..+an(l_p)n_(a1+"'+an) — le(ak) for a[l’ . ’aln 6 {0’ ]_} .
k=1

It is convenient to write H = H,, ,,; this function on {2 does not depend on p,
but its distribution depends on p.

1a23 Reminder. Binomaial distribution:

P(H,,=k)= (Z)pk(l —p)" % H, ~ Binom(n,p).

1a24 Proposition. ! For every p € [0,1] and & > 0,

P(|iH,,—p|<e) =1 asn—oco.

1KS, Sect. 2.1, Th. 2.5].
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This is more general than (the corollary of) [[all but still, a special case
of the Weak Law of Large Numbers, see [Ic]l

It is easy to prove similarly to [[adl but anyway, will follow
from [LcIl

Rather unexpectedly, can be used for proving Weierstrass’s approx-
imation theorem: polynomials are dense in C|0,1].!

Here is the idea of the probabilistic proof of Weierstrass’s approximation
theorem. Consider the distribution p,,, of %Hmp,

n n ~
/mp:§:<éyfﬂ—ka%m;

k=0

it belongs to the (n + 1)-dimensional linear space of signed measures on
{0,1, p n, ..., 1}, and the vector-function p — g, is polynomial (of degree

n). By[Ma24l u,, is close to 0, (the unit mass at p). Thus, the map p — 6, is
approximately polynomial! Now, given a continuous function f : [0,1] — R
we have f(p) = [ fdé, ~ [ fdpn, = Pu(p), P, being a polynomial. Namely,

[f(p) —E f(5 Hup)| SE[f(; Hup) — f(p)] <

< max () = f() +P(I3Hnp —pl > €) - 2max |f()];
[p—e.pte] 0.1

the former summand is made small usmg uniform continuity of f, the latter

summand — using E |2 H,, , — p|* = _p) < o+

1a25 Proposition. ? For every A € (0,00) and k =0,1,2,...
)\k
]P’(Hn,)\/n = k) — He’)‘ as n — 00.

This is the Poisson Limit Theorem.

Proof.

P (i =) = () (=3)" -

nn—1 n—k+1\ A M FAR
= . @——)Qf—>-+—e.
non n Kk n n k!
1 NG 1

1KS, Sect. 2.1, Th. 2.7]; [D, Sect. 1.5, Example 5.1].
2[KS, Sect. 2.3]; [D, Sect. 2.6(a)].
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1b Measure-theoretic foundations

Some measure theory

1b1l Reminder. An algebra of sets (on X): a set £ of subsets of X such
that

0.Xe&; VE€& X\Ee€é&; VE,Fe& ENF,EUF €.

A o-algebra of sets (on X): an algebra A such that

VA, Ay, o€ A [ An [ JAn € A

A measurable space: (X, A).
A probability measure (on A, or on (X,.A)): a map u : A — [0, 1] such

that u(X) =1 and
p(JAn) =D )

whenever Ay, As, -+ € A are pairwise disjoint. (In such case we may write
W, An.)
A probability space: (X, A, u).

1b2 Reminder. A boz (in RY): a set of the form I; x --- x I; where
I,...,1; C R are bounded intervals (open, closed, or neither).

An elementary set (in RY): a finite union of boxes.

The elementary algebra (on RY): the algebra generated by all boxes;
consists of all elementary sets and their complements (“co-elementary sets”).

The Borel o-algebra B(R?): the o-algebra generated by all boxes, or
equivalently, by all open sets.

1b3 Theorem. ' (Hahn-Kolmogorov) Let £ be an algebra on X, A = o(&)
the o-algebra generated by £, and g : € — [0, 1] a map. Then the following
are equivalent:

(a) there exists one and only one probability measure p on A such that
ple = po;

(b) there exists at least one such p;

(c) uo(X) =1, and po(UnE,) = >, po(E,) whenever Ey, Es, - € € are
pairwise disjoint and U, F,, € £.

! Tao, Th. 1.7.8].
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Clearly, (a)==(b)==(c). In order to prove! (c)=(a) we assume (c);
define the outer measure

1*(Z) = inf { S to(En) : Er B, € €,UpE, D z}

for arbitrary Z C X; and call a set A C X p-measurable if

géfg,u (AAE)=0.
1b4 Exercise. ;" (U, Z,) < ), n*(Z,) for arbitrary 7y, Z,,--- C X.
Prove it. (Do you need (c)?)

1b5 Exercise. p*(E) = po(FE) for all E € £.
Prove it. (Do you need (c)?)

1b6 Exercise. p-measurable sets are a o-algebra.
Prove it.

Taking into account that all sets of £ are p-measurable we conclude that
all sets of A = (&) are p-measurable.
We define p as the restriction of u* to A.

1b7 Exercise. |u*(Z) — p*(W)| < p*(Z A W) for arbitrary Z,W C X.
Prove it.

1b8 Exercise. p*(AUB)+ u*(ANB) = p*(A) + p*(B) for all p-measurable
A, B.

Prove it.

Hint: po(E U F) + po(ENF) = po(E) + po(F) for all B, F € £.

Thus, (AW B) = u(A) + u(B).

1b9 Exercise. p* (LirJnAn) = > p*(A,) for u-measurable A,.
Prove it.
Hint: p* (Er,lfleAn) — (Er)ﬁbvzlAn) < u* (&J;O:NHA,L).

Thus, i is a probability measure, which completes the proof of existence.

Here is uniqueness. Let p; be another such measure. Then puq(A) <
p(A) = pu(A) for all A € A (since A C U, E, implies p1(A) < > i (E,) =
> o (Ey)). The same holds for X \ A, thus, pu1(A) =1 — (X \ A) >
T2 W(X \ A) = u(A) and finally i (4) = u(A).

Theorem [1b3 is proved.

!Following Terry Tao, “An alternate approach to the Carathéodory extension theorem”
(blog)|and Jun Tanaka & Peter F. McLoughlin, “A Realization of Measurable Sets as Limit
Points”, The American Mathematical Monthly 117:3, 261-266 (also larXiv:0712.2270).


http://terrytao.wordpress.com/2009/01/03/
http://arxiv.org/abs/0712.2270
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1b10 Corollary. If two probability measures are equal on an algebra £ then
they are equal on the generated o-algebra o(&).

1b11 Corollary. A probability measure on (Rd, B(Rd)) is uniquely deter-
mined by its values on boxes. The same holds for closed boxes, and for open
boxes.

1b12 Exercise. A probability measure p on (R,B(R)) is uniquely deter-
mined by its cumulative distribution function (CDF)

Fu(z) = p((—o0,z]) forzeR.
Prove it.

1b13 Exercise. (Lebesgue-Stieltjes measure) Let F : R — [0, 1] be an in-
creasing function, F'(—oo) = 0, F'(+00) = 1. Then

(a) there exists one and only one additive function pg on the elementary
algebra &€ (of R) such that

to((a,b)) = F(b—) — F(a+) for —oco<a<b< oo,
po({a}) = F(a+) — F(a—) for —oo < a < o0;

(b) for every E € £ and € > 0 there exists a compact elementary set K C E
such that po(K) > po(F) — ¢
(¢) uo satisfies Condition [1b3(c).

Prove it.

1b14 Exercise. The correspondence p < F), is a bijective correspondence

between all probability measures on (R, B(R)) and all increasing functions

F : R — [0,1] such that F(—oc0) = 0, F(+o0) = 1 and Vo € R F(z+) =
Prove it.

In fact, IbI2 generalizes readily to R,

Fu(z1,...,2q) = p((—00,21] X - -+ x (—00,z4]) ;

unfortunately, [bI4] does not.
Discrete measures:

p=> mbu; n(B)= > pe= pl@); /fdM=Zf(xk)pk.

k:xp€B zeB



Probability for mathematicians INDEPENDENCE TAU 2013 13

Absolutely continuous measures:

u:/p(af)%dx; M(B):/Bp(x)dx; /fdﬂz/f(x)p(w)dx-

Singular measures: nonatomic but concentrated on a set of zero Lebesgue
measure.

The product of two measurable spaces (X1, .A;) and (Xs, Ag) is defined to
be (X7 X Xo, A1 X Ay) where A; x A; is the o-algebra generated by A; x A
for all A; € Ay, Ay € As.

1b15 Exercise. (a) A probability measure p on (X; x X5, 4; X Aj) is
uniquely determined by p(A; x Ay) for all A; € A, Ay € As.

(b) The same holds for p(FE; x Ey) for all £y € &, Ey € & provided that
an algebra & generates A;, and an algebra &, generates As.

Prove it.

Hint: (b) the o-algebra generated by F; x Es contains Fj X As.

In particular, B(R%) x B(R%) = B(R41+dz),
1b16 Reminder. Let (X3, Ay, p1), (Xo, As, p2) be two probability spaces.

The formula
= [ ([ | Lior, ) paldss) ) s (o)

defines correctly a measure p on (X7 x Xy, A; x Ay). Clearly, p satisfies
(1b17) [L(Al X Ag) = ,ul(Al),ug(Ag) for A1 € Al, AQ € AQ .

By [IbI5, 4« is the only measure satisfying (IbIT). It follows that [ [, --- =
T, Jx, -+ We write 1 = 1 X pp, say that p is the product measure, and
(X1 x X, Ay X Ag, pn X po) = (X1, Ay, 1) % (Xa, Ag, p12) is the product of
probability spaces.

1b18 Reminder. Let (X, A, pu) = (X1, Ay, p1) x (Xo, Ag, p12).
(a) (Tonelli)

[ran=| ) / () f(a1,22) € [0, o0

for every measurable f: X — [0, oc].

(b) (Fubini)

/deMZ/X1 ‘Ll(dxl)/x2 po(dz2) f (21, 22) € R

for every integrable f : X — R.
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In particular,

w19) [ fledse) pdnde) = [ K aw)( g ).

The same holds for the product of three, four, ... probability spaces.

1b20 Remark. Associativity of the multiplication: the space (X1, Aq, 1) X
(XQ,.AQ,,MQ) X (Xg,.Ag,Mg) X (X4,.A4,M4) is the same as ((Xl,.Al,[Ll) X
(X2,A2,M2)) X ((X?,,As, p3) X (Xy, Ay, M4))- That is, (p11 ¥ p2) X (p3 X p1g) =
[1 X fo X pg X pg, which follows from the uniqueness; both measures satisfy
M(Al X AQ X A3 X A4) = 1 (Al)/i2<A2)M3<A3)IU4<A4) (thlnk, Why> The same
holds for more than two factors in a group, and more than two groups.

1b21 Reminder. A measurable map from a measurable space (X,.A) to a
measurable space (Y, B) is f: X — Y such that VB € B f~1(B) € A.

The composition of measurable maps, (X, A) — (Y, B) — (Z,C), is again
a measurable map.

It is sufficient to check the condition f~!(B) € A for all B of a set that
generates B.

When Y = R? the Borel o-algebra B = B(R?) is meant by default. Thus,
amap f: X — R?is measurable iff f~}(B) € A for every box B C R¢, or
equivalently, for every open set B C R%. A real-valued function f : X — R
is measurable iff {z : f(z) < a} € A for all a € R.

If (Y,B) = (Y1,B1) x (Y2,B2) then a map f : X — Y boils down to
fi: X =>Yiand fo : X = Yy f(x) = (fl(x),fg(a:)) €Y, x Y, In this
case f is measurable iff fi, fo are measurable (think, why). In particular:
V=Y, =R, Y =R2

Every continuous map R% — R is measurable. (The Borel o-algebras
are meant!)

If f,g:(X,A) = R are measurable then f + g is measurable. Here is a
short and general proof:

RQ
y)/ oot
measurable continuous

measurable

The same holds for f,g: (X, A) — R%
If f, fi, fo, - : R4 = R% | f (-) — f(-) pointwise, and f,, are measurable
then f is measurable. Also sup,, f,.(+), limsup,, f,.() etc.
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1b22 Reminder. Given a measurable map ¢ : (X, A) — (Y,B) and a
probability measure p on (X, .A), the formula

v(B) = pu(¢~"(B)) for BeB

defines a probability measure v on (Y, B), — the induced measure. We have

/Xfosoduzfyfdve[Qm]

for every measurable f : (Y,B) — [0,00]. For f : (Y,B) — R consider
f=r-=r.

The o-algebra o(p) = {¢ ' (B) : B € B} generated by ¢ : X — (Y, B) is
the least o-algebra (on X) that makes ¢ measurable. The o-algebra o(p1, p2)
generated by ¢1 : X — (Y1,B;) and ¢o : X — (Y, By) is, by definition, the
least o-algebra that makes ¢1, @2 measurable. It is the same as cr(o(gol) U
g (902))-

About convergence theorems (monotone, dominated) I give no reminder;
I just assume that you never forget them!

Random variables

By a random variable we mean a measurable function on a given prob-
ability space (€, F,P). (By default all random variables — on a single
probability space.) Usually it maps € to R, but can also map 2 to a given
measurable space; then it may be called a random element of that space. A
random element of R? (endowed with the Borel o-algebra) may be called a
d-dimensional random vector, or just a d-dimensional random variable, —
basically the same as d one-dimensional random variables (the coordinates).

Subsets of {2 belonging to F are called events; P(A) is called the proba-
bility of an event A.

Random variables generate o-algebras (of events): o(X), o(X,Y) etc.

By the distribution of a random variable X : 2 — R we mean the induced
measure Px on R,

Px(B)=P(X '(B)) =P({w: X(w) € B}) =P(X € B)

for Borel sets B C R.

Random variables X, Y : (2 — R are called identically distributed if Px =
Py that is, IP’(X € B) = IP’(Y € B) for every Borel B C R, or equivalently,
every interval B C R; still equivalently, if F'x = Fy, where Fx is the CDF,

Fx(z) =P(X <z).
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For random elements, Py = Py still applies (in contrast to intervals and
CDF). For random vectors CDF applies, and boxes may be used instead of
the intervals.

A 2-dim random vector w — (X (w),Y (w)) has a 2-dim distribution Py.y,
called also the joint distribution of X and Y. Usually Py y is far from being
uniquely determined by Px, Py. Two such vectors (X,Y) and (U,V) are
identically distributed iff Pyy = Pyy. Then Px = Py and Py = Py (but
the converse fails).

If ¢ : R — R is a Borel function and X : 2 — R a random variable then
their composition ¢(X) : © — R is another random variable. Likewise, if
¢ : R? — R is a Borel function and X,Y : Q — R random variables then
©(X,Y): Q2 — R is a random variable.

The expectation E X of a random variable X : 2 — R is, by definition,
the Lebesgue integral

EX = / XdP
Q
provided that X is integrable, that is, E | X| < co. (Otherwise EX = E X —

E X~ the four cases...)
By [1h22]

IEX:/QXdP:/R:cPX(dx);
Egp(X):/Q@(X) dP:/RgodPX:/RzP@(X)(dz);
E@(X,Y):/@(X,Y)dP:/

QOdPX,y = / ZP¢(X,y)(dZ)
Q R2 R

etc.

If X,Y are identically distributed then EX =EY.

Using Tonelli’s theorem on €2 x R (or alternatively, approximation) we
get

IEX:/ ]P(X>a)da—/ P(X < —a)da
0 0

(if integrable. .. four cases...)
Some examples of random variables with distributions of different kind
(Q is (0,1) with Lebesgue measure):

0o 10
X(Zl 2’k6k> = Zl 27k, — discrete;

X(Z:O 2_k6k> = Z:O 27 Bay, — absolutely continuous;

X(Zl 2_kﬁk> = Zl 272k, — singular.
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Independence
Random variables XY : (2 — R are called independent if
Pxy = Px x Py;

that is, IP’(X eAY € B) = IP’(X € A)IP’(Y € B) for all Borel sets A, B C
R, or equivalently, all intervals A, B C R; still equivalently, if Fxy(z,y) =
Fx(z)Fy(y) for all X,Y € R. For random elements, Pyy = Px x Py still
applies (in contrast to intervals and CDF). For random vectors CDF applies,
and boxes may be used instead of the intervals. If X, Y are independent then
f(X),g(Y) are independent, for arbitrary Borel functions f,g. Two 2-dim
random vectors (X,Y) and (U,V) are independent iff Pyyyy = Pxy X
Pyy, that is, P((X,Y) € A,(U,V) € B) = P((X,Y) € A)P((U,V) €
B) for A,B C R? (Borel sets, or only boxes). Then, f(X,Y) and g(U,V)
are independent for all Borel f,g : R? — R. In particular, X and U are
independent; also X and V; Y and U; Y and V. (But the converse fails.)
Random variables X, ..., X, are called independent, if

Xn:PXlx"'XPXn;

-----

that is, IP’(Xl €By,...,. X, € Bn) = IP’(X1 € Bl) . .IP’(Xn € Bn). (This is
much stronger than the pairwise independence. A counterexample: random
signs conditioned by X; ... X, = +1.)

Events Ay, ..., A, are called independent, if their indicators 14,,..., 14,
are independent random variables. For n = 2 this boils down to P (Al, Ag) =
P(Al)IP’(Ag), but for n > 2 it does not.

One says that o-algebras A, ..., A, C F are independent if

VA€ A ... VA, € A, (Al, ..., A, are independent events) )

Random variables Xj,...,X, are independent iff their o¢-algebras
0(X1),...,0(X,) are independent. The same holds for events (the o-algebra
generated by an event A being just {(, 4,Q\ A, Q}).

If random variables X7, X5, X3, X are independent then random vectors
(X1, X5) and (X3, X4) are independent, since

Pix, x2),x3,x0) = Pxy.x0,x35,xs = Pxy X Pxy, X Pxy X Px, =
= (PXI XPXQ) X (PX3 ><PX4):PX17X2 XPX37X4'

Thus, f(X1,X5) and g(X3, X4) are independent for all Borel f,g : R? —
R. (Pairwise independence of X, X5, X3, X, is not sufficient! The same
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counterexample: (X;X5)(X3, Xy4) = +1.) The same holds for more than two
factors in a group, and more than two groups.
If X,Y are independent then

BSOXY) = [ faPsx )= [[ fa)PeldnPridn);

B1(X)9) = ([ £ars) ([ gary) = €500) Eg):
E(XY)=EX)EY).

The same holds for more than two random variables.
Independence for discrete:

Px,... Xn(ffla- S Tn) = pxy (11) - px, (Tn)
Ef(Xl,..., Z fl‘l,..., le(ZL'l) an(ZL'n)

.....

Independence for absolutely continuous:

..... X, (T1, 1) = px(71) . px, (T0)

Ef<X17---7 / /f T1y...,Tp pX1<ZU1> an<SL’n)d$L’1 d

1c Independent random variables

Let X1, X5, ... beindependent identically distributed random variables. Their
sums S, = X + -+ -+ X}, are a (one-dimensional) random walk.

1cl Theorem. ' If E|X;| < oo then
P(|£S, —EXi[<e) =1 asn—oo.

This is the Weak Law of Large Numbers.

Clearly, [LcIl implies and [Ta24l

Interestingly, [Ic]] helps to integrate numerically functions of many (say,
20 or 200) variables (“Monte-Carlo method”).?

HKS, Sect. 7.1, Th. 7.2]; [D, Sect. 1.5, Corollary (5.8)].
2[KS, Sect. 3.8]; [D, Sect. 1.5, Exercise 5.3].
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Proof of [IcI]

Two main ideas: orthogonality (as for [[af]) and approximation by Lo; Lo
is dense in L;, but we need also independence. . .

Let Borel functions @1, g, -+ : R — R satisfy Vo ¢;(x) — z as i — oo,
and ViV |@;(x)] < |z|. Let X € Ly = L1(2) and Y; = ¢;(X). Then Y; € L
and Y; — X in L, (that is, ||Y; — X||1 = E|Y; — X| — 0) by the dominated
convergence theorem. For example, we may take Y; = 1_;;(X) - X or
Y; = mid(—i, X, ).

Let Xj be as in [IcIl however, only pairwise independence will be used.
Given € > 0 we define Y}, = ¢(X}) with a bounded ¢ such that ||Y; — X;||; <
e. Then

HY1+---+Y

a 1
-EY; 2=EH(Yl—EE)+---+(Yn—EYn)H2:

n

1
—/nl|lY1 —EYi|]ls =0 asn— oo
n

by orthogonality ensured by the pairwise independence: (Y, — EY;, Y, —
EY) =E((Vi—EYy)(Y,-EY)) = (E(Yz —EY})) (E(Y,~EY})) =0-0=0

for k # 1.
We have
HX1+---+Xn_EX1 §”X1+---+Xn_n+---+yn .
n 1 n n 1
Yi+--+Y,
+HL—EY1 FEY; —EXy| <
n 1
Yi4+--+Y,
<1 = Vill+ [P E | 4 = il < 26+ 0(1)

limsup,,(...) < 2¢ for every . Convergence in L; is proved; convergence in
probability follows (by the Markov inequality).

End of proof of [IcIl

Recall the cumulative distribution function F' defined by
F(t)=P(X; <t) forteR.

The empirical distribution function is the random function F), defined by

1 n
Fi(t) =~ > o (Xi) -
k=1
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1c2 Theorem. ! For every € > 0,

P(sup |F,(t) — F(t)] <e) =1 asn— oo.
t
This is the weak form of the Glivenko-Cantelli theorem.

1c3 Lemma. For every probability measure? i on R and every ¢ > 0 there
exist m and t; < --- < t,,, such that

u((—oo,tl)) <eg, u((tl,tz)) <e, ..., ,u((tm_l,tm)) <e, u((tm,Jroo)) <e.

Proof. We take t; = sup{t : u((—o0,t)) < e} (the set is not empty!), then
(1((—00,t1)) = limy, p((—o0, t; — 1)) < € but u((—o0, t1]) = limy, p((—o0, t; +
7)) > e. If £ > 0.5 then we are done. Otherwise, to = sup{¢ : u((t1,t)) < e},
then u((t1,t2)) < e but p((ti,t2]) > €, thus u((—oo,ts]) > 2¢. And so
on... U

Proof of

Let F(t) = p((—o0,1]), random functions F,(t) = ,((—o0,t]), and € be
as in 1c2. Lemma [Ic3| gives us tq,...,t,. By 1a24,

P ([ ((—00, t]) — pu((—o00, t])| >¢) =0 asn — oo
for each k =1,...,m. Sum it over k:
P(mgxmn((—oo,tk]) — p((—o0,t])| >€) =0 asn— oco.
The same holds for open intervals (—oco, ;). Assuming that |p, ((—oo,]) —

(=00, t])| < € and |, ((—00, tk)) — (=00, t1))| < & we have for every k
and® every t € (tx_1,t)

(=50, 11) € (=00, 1] on ((—00,8))] ©
C [p((=00, tx1]) — &, p((—00. tr)) + ] 3 p((—00,1])
and therefore? |1, ((—o0,t]) — p((—o00,t])| < 3e. Thus,
P (sup | Fult) — FI()] < 32) = B (sup (00,1 ({00, ] < 3¢) 0
as n — 0o.

End of proof of [c2]

LKS, Sect. 2.1, Th. 2.9].

2The measure may have both atoms and a continuous part, of course.
3The two unbounded intervals are treated similarly.

4You can easily improve 3¢ to 2¢.
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