
Probability for mathematicians INDEPENDENCE TAU 2013 28

Contents

3 Infinite independent sequences 28

3a Independent events . . . . . . . . . . . . . . . . . . . . . . . . 28
3b Independent random variables . . . . . . . . . . . . . . . . . . 33

3 Infinite independent sequences

3a Independent events

Continuous probability spaces are needed here; triangle arrays do not help.

3a1 Definition. (a) Events A1, A2, . . . are independent if for every n the
events A1, . . . , An are independent;

(b) random variables X1, X2, . . . are independent if for every n the ran-
dom variables X1, . . . , Xn are independent;

(c) σ-algebras A1,A2, . . . are independent if for every n the σ-algebras
A1, . . . ,An are independent.

The relation

P
(
X1 ∈ B1, X2 ∈ B2, . . .

)
= P

(
X1 ∈ B1

)
P
(
X2 ∈ B2

)
. . .

holds for independent random variables Xn and Borel sets Bn ⊂ R, but is of
little use.

3a2 Exercise. Let (Ω,F , P ) be (0, 1) with Lebesgue measure, and β1, β2, · · · :
Ω → {0, 1} binary digits;

ω =

∞∑

n=1

βn(ω)

2n
, lim inf

n
βn(ω) = 0 .

Then βn are independent random variables; also, βn = 1lAn , and An are
independent events of probability 0.5 each (“a fair coin tossed endlessly”).

Prove it.

Treating βn as random variables we observe that the random variable
U =

∑

n 2
−nβn is distributed uniformly on (0, 1), that is, FU(u) = u for

0 ≤ u ≤ 1.
We introduce random variables

U1 =
∞∑

n=1

2−nβ2n−1 , U2 =
∞∑

n=1

2−nβ2n .
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For each n the random vector (β1, β3, . . . , β2n−1) is distributed like (β1, β2, . . . , βn);
therefore

∑n

k=1 2
−kβ2k−1 is distributed like

∑n

k=1 2
−kβk, that is, FU1

(u) =
FU(u) whenever u is dyadic (that is, of the form k/2n); it follows that
FU1

= FU . We see that U1 is distributed uniformly on (0, 1); the same
holds for U2.

For each n the random vectors (β1, β3, . . . , β2n−1) and (β2, β4, . . . , β2n)
are independent (think, why), therefore FU1,U2

(u1, u2) = FU1
(u1)FU2

(u2) for
all dyadic u1, u2, and for arbitrary u1, u2 as well. We see that U1, U2 are
independent.1

Graph of U1 Approximating the curve {(U1(ω), U2(ω)) : 0 < ω < 1}

Similarly we may introduce U1, U2, . . . by

Un =

∞∑

k=1

2−kβ2n−1(2k−1)

and check that these are an infinite sequence of independent random vari-
ables, each distributed uniformly on (0, 1).2

Now, given p1, p2, · · · ∈ [0, 1], we may consider events An = {Un ≤ pn}
and check that they are independent, and P

(
An

)
= pn.

Let events A1, A2, . . . be independent. The sum S =
∑∞

k=1 1lAk
, the

random number of occurred events, can be finite or infinite.

3a3 Theorem. 3 (a) If
∑∞

k=1 P
(
Ak

)
< ∞ then S < ∞ almost surely;

(b) if
∑∞

k=1 P
(
Ak

)
= ∞ then S = ∞ almost surely.

These (a) and (b) are called Borel-Cantelli lemmas. Independence mat-
ters for (b) but not (a). For independent events, P

(
S < ∞

)
is either 0 or 1,

which is a special case of Kolmogorov’s 0–1 law.

3a4 Exercise. Let U1, U2, . . . be independent random variables, each dis-
tributed uniformly on (−1, 1). Then

1Instead of dyadic numbers and CDF we could use dyadic algebra; it generates the
Borel σ-algebra.

2[W, Sect. 4.6].
3[KS, Sect. 7.1, Lemmas 7.3, 7.4]; [D, Sect. 1.6, (6.1) and (6.6)].
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(a) the sequence (nUn)
∞
n=1 is dense in R a.s.;

(b) the sequence (n2Un)
∞
n=1 is not dense, and moreover, n2|Un| → ∞ a.s.

Prove it.

If Ak are independent, P
(
Ak

)
→ 0 but

∑

k P
(
Ak

)
= ∞, then the in-

dicators Xk = 1lAk
converge to 0 in L2(Ω) but not almost surely; more-

over, lim supk Xk(ω) = 1 for almost all ω ∈ Ω. (There is a simpler, non-
probabilistic example on Ω = (0, 1).)

Proof of 3a3(a) (the first Borel-Cantelli lemma)

Sn =
n∑

k=1

1lAk
; ESn = p1 + · · ·+ pn , pk = P

(
Ak

)
;

P
(
Sn > M

)
↑ P

(
S > M

)
as n → ∞; (wrong for “≥”!)

P
(
Sn > M

)
≤ ESn

M
=

p1 + · · ·+ pn
M

≤ 1

M

∑

k

P
(
Ak

)
;

P
(
S > M

)
≤ 1

M

∑

k

P
(
Ak

)
↓ 0 as M → ∞.

Another proof: the sequence Sn is increasing and ESn is bounded, there-
fore Sn ↑ S < ∞ a.s.

End of proof of 3a3(a) (the first Borel-Cantelli lemma)

Proof of 3a3(b) (the second Borel-Cantelli lemma)

(Clearly ES = ∞, but we need much more. . . )

P
(
Sn ≤ M

)
= P

(
e−Sn ≥ e−M

)
≤ E e−Sn

e−M
= eM

n∏

k=1

(
pk · e−1 + (1− pk) · 1

)

︸ ︷︷ ︸

1−(1−e−1)pk

≤

≤ eM exp
(

−
n∑

k=1

pk · (1− e−1)
)

↓ 0 as n → ∞; (since 1− ε ≤ e−ε)

P
(
S ≤ M

)
= 0 for all M .

Another proof: E e−Sn → 0 (as before); E e−S ≤ E e−Sn ; E e−S = 0.

End of proof of 3a3(b) (the second Borel-Cantelli lemma)
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Let Ak be equiprobable, of probability p each (“unfair coin”).

3a5 Proposition. 1
n

(
1lA1

+ · · ·+ 1lAn

)
→ p (as n → ∞) almost surely.

This is a special case of the Strong Law of Large Numbers (see 3b2), but
also of the following fact (less general and much simpler to prove).

3a6 Proposition. (Borel’s strong law of large numbers) Let Xn be inde-
pendent, identically distributed random variables such that EX4

1 < ∞, then
1
n
(X1 + · · ·+Xn) → EX1 almost surely.

3a7 Exercise. (a) It is sufficient to prove 3a6 for EX1 = 0.
Let Xn be as in 3a6.

(b) If EX1 = 0 then E (X1 + · · ·+Xn)
4 ∼ 3n2

(
EX2

1

)
2.

Prove it.

Proof of 3a6. Assuming EX1 = 0 and denoting Sn = X1+ · · ·+Xn we have
E
(
Sn

n

)
4 = O( 1

n2 );
∑

n E
(
Sn

n

)
4 < ∞;

∑

n

(
Sn

n

)
4 < ∞ a.s.;

(
Sn

n

)
4 → 0 a.s.;

Sn

n
→ 0 a.s.

3a8 Exercise. For Sn as in 1a5 (the simple random walk),

Sn = o(n) a.s.

Prove it.

Compare it with 1a5. Convergence in L2 is rather evident, but almost
everywhere convergence is not.

A real number x ∈ (0, 1) is called 10-normal, if its decimal digits α1, α2, . . .
defined by

x =
α1

10
+

α2

102
+ . . . ; α1, α2, · · · ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

have equal frequencies, that is,

#{k ∈ [1, n] : αk = a}
n

→ 1

10
as n → ∞ (for all a)

and moreover, their combinations have equal frequencies, that is,

#{k ∈ [1, n] : αk = a1, αk+1 = a2, . . . , αk+l−1 = al}
n

→ 1

10l
as n → ∞

for all a1, . . . , al and all l. Similarly, p-normal numbers are defined for any
p = 2, 3, . . . . Finally, x is called normal, if it is p-normal for all p.
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3a9 Proposition. Normal numbers exist.

Proposition 3a9 follows from Proposition 3a10.

3a10 Proposition. 1 Almost all numbers are normal.

That is, the set of all normal numbers is Lebesgue measurable, and its
Lebesgue measure is equal to 1. This is Borel’s normal number theorem
(1909).

Proof. It suffices to treat a single base, for instance 10, and a single combi-
nation of digits, for instance “71”:

#{k ∈ [1, n] : αk = 7, αk+1 = 1}
n

→ 1

100
as n → ∞ . (?)

Splitting these k into even and odd numbers we note that it suffices to treat
the two cases separately; for instance, the odd case:

#{k : 2k − 1 ≤ n, α2k−1 = 7, α2k = 1}
n

→ 1

200
, (?)

or equivalently,

#{k : 2k − 1 ≤ n, α2k−1 = 7, α2k = 1}
#{k : 2k − 1 ≤ n} → 1

100
as n → ∞ ,

which is a special case of 3a5.

Do not think that the normality exhausts probabilistic properties of (dig-
its of) real numbers.

3a11 Proposition. The series

∞∑

n=1

2βn − 1

n

converges for almost all x ∈ (0, 1). (Here β1, β2, . . . are the binary digits of
x.)

By the way, the sum of the series, f(x) =
∑ (−1)βn

n
, is a terrible (but

measurable) function. Especially,

mes{x ∈ (a, b) : f(x) ∈ (c, d)} > 0

for all intervals (a, b) ⊂ (0, 1), (c, d) ⊂ R (here ‘mes’ stands for the Lebesgue
measure). Surely we cannot draw its graph!

Here is a probabilistic counterpart of 3a11.

1[D, Sect. 6.2, Example 2.5].
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3a12 Proposition. The series X1

1
+ X2

2
+ X3

3
+ . . . converges almost surely.

(Here X1, X2, . . . are independent random signs.)

Convergence in L2 is rather evident, but almost everywhere convergence
is not. See also 3b3 and 3b8.

Propositions 3a11 and 3a12 will be proved in Section 3b.

3a13 Proposition. A measurable function f : R → R satisfying f(x +
2−n) = f(x) for all x ∈ R and n = 1, 2, . . . is constant almost everywhere.

In other words: there exists a ∈ R such that f(x) = a for almost all x.
(It need not hold for all x.) This is an analytical counterpart of the following
probabilistic fact.

3a14 Proposition. Let X1, X2, . . . be independent random signs, and a
random variable Y be of the form Y = fn(Xn, Xn+1, . . . ) for all n. Then Y
is constant a.s.

This is a special case of Kolmogorov’s 0–1 law (see 3b7).

3b Independent random variables

Let F and Fn be as in 1c2.

3b1 Theorem. 1

sup
x∈R

|Fn(x)− F (x)| → 0 amost surely, as n → ∞ .

This is the (strong form of) Glivenko-Cantelli theorem.

Proof. By 1c3, for every ε > 0 there exist m and t1 < · · · < tm such that

µ
(
(−∞, t1)

)
≤ ε , µ

(
(t1, t2)

)
≤ ε , . . . , µ

(
(tm−1, tm)

)
≤ ε , µ

(
(tm,+∞)

)
≤ ε .

Similarly to the proof of 1c2, if |µn

(
(−∞, tk]

)
− µ

(
(−∞, tk]

)
| ≤ ε and

|µn

(
(−∞, tk)

)
− µ

(
(−∞, tk)

)
| ≤ ε for all k then supt |Fn(t)− F (t)| ≤ 3ε.

By 3a5, this happens eventually (almost surely), for every ε > 0 sepa-
rately. Therefore, almost surely it holds for all ε > 0 simultaneously.

1[D, Sect. 1.7, (7.4)].
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Strong law of large numbers

3b2 Theorem. 1 Let X1, X2, . . . be independent identically distributed ran-
dom variables. If E |X1| < ∞ then

X1 + · · ·+Xn

n
→ EX1 a.s. as n → ∞ .

This is the Strong Law of Large Numbers. Compare it with 1c1, 3a5 and
3a6. It appears that 3b2 is much harder to prove.

3b3 Proposition. 2 (Kolmogorov) Suppose X1, X2, . . . are independent
random variables with EXn = 0. If

∑
Var(Xn) < ∞ then the series

∑
Xn

converges almost surely.

Postponing the proof of 3b3 we first show that it implies 3b2.
Before treating random series, recall convergence of series

∑
an of real

numbers (an ∈ R), and do not confuse it with convergence of positive series
(an > 0); do not write

∑
an < ∞ instead of “

∑
an converges”, and note

that
∑

an can converge while
∑

bn diverge even if an/bn → 1.

3b4 Lemma. (Kronecker) If xn ∈ R are such that
∑

xn

n
converges then

x1+···+xn

n
→ 0.

Proof. (sketch) In terms of yn = xn

n
, xn = nyn, it takes the form

if
∑

yn converges then
1

n
y1 +

2

n
y2 + · · ·+ n

n
yn → 0 .

In terms of Sn = y1 + · · ·+ yn, yn = Sn − Sn−1, it takes the form

if Sn → S then Sn −
1

n
(S1 + · · ·+ Sn−1) → 0 ,

which is easy to check.

Proof of 3b2 (strong law of large numbers)
assuming 3b3 (to be proved later)

By the first Borel-Cantelly lemma 3a3(a), |Xn| ≤ n eventually, since
∑∞

n=1 P
(
|Xn| > n

)
=

∑∞

n=1 P
(
|X1| > n

)
≤ E |X1| < ∞.

1[D, Sect. 1.7, Items (7.1) and (8.6)]; [KS, Sect. 7.2, Th. 7.7].
2[D, Sect. 1.8, Th. (8.3)].
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We introduce Yn = Xn ·1l[−n,n](Xn) and note that Y1+···+Yn

n
−X1+···+Xn

n
→ 0

almost surely, since Xn−Yn → 0 almost surely. Thus it is sufficient to prove
that Y1+···+Yn

n
→ EX1 a.s.

We introduce Zn = Yn−EYn and note that EYn = E
(
X1 ·1l[−n,n](X1)

)
→

EX1, therefore
Y1+···+Yn

n
− Z1+···+Zn

n
= EY1+···+EYn

n
→ EX1. Thus it is suffi-

cient to prove that Z1+···+Zn

n
→ 0 a.s.

By 3b4, it is sufficient to prove that
∑

Zn

n
converges almost surely.

By 3b3, it is sufficient to prove that
∑

Var
(
Zn

n

)
< ∞.

We have VarZn = Var Yn ≤ EY 2
n ; it remains to prove that

∑
1
n2EY 2

n <
∞.

In fact,
∑∞

n=1
1
n2EY 2

n ≤ 2E |X1|, since ∀y ∑∞

k=1
y2

k2
· 1l[−k,k](y) ≤ 2|y|.

Indeed, for y ∈ (n− 1, n] we have

∞∑

k=n

1

k2
y2 ≤ 2|y| ⇐=

∞∑

k=n

1

k2
≤ 2

n
≤ 2

y
⇐=

1

n2
+

∞∑

k=n+1

1

k2
≤ 1

n2
+

∫ ∞

n

dx

x2
=

1

n2
+

1

n
≤ 2

n
.

End of proof of 3b2 assuming 3b3

Kolmogorov’s maximal inequality

The following result is needed for 3b3.

3b5 Proposition. LetX1, . . . , Xn be independent random variables, EXk =
0 and EX2

k < ∞ for k = 1, . . . , n. Then, for every c > 0,

P

(

max
k=1,...,n

|Sk| ≥ c
)

≤ ES2
n

c2
.

(Here Sn = X1 + · · ·+Xn.)

3b6 Remark. Evidently, P
(
|Sk| ≥ c

)
≤ ES2

k

c2
≤ ES2

n

c2
, thus, maxk P

(
|Sk| ≥

c
)
≤ ES2

n

c2
. However, Kolmogorov’s result is much stronger! Also, evidently,

P
(
maxk |Sk| ≥ c

)
≤

∑

k P
(
|Sk| ≥ c

)
≤ 1

c2

∑

k ES2
k , but it does not help: the

latter may grow as n (try X2 = X3 = · · · = 0).
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Here is the first proof, for the discrete case; it shows the idea1 used
afterwards in the second, general proof. (We do it for the quadratic function,
but the proofs work for every convex function.)

E
(
Sn

∣
∣X1, . . . , Xk

)
= Sk , thus E

(
S2
n

∣
∣X1, . . . , Xk

)
≥ S2

k ;

(by conditional Jensen, or just conditional EX2 − (EX)2 ≥ 0)

introduce disjoint events Ak = {|S1| < c, . . . , |Sk−1| < c, |Sk| ≥ c} ;
E
(
S2
n

∣
∣Ak

)
≥ c2 ; E

(
S2
n1lAk

)
≥ c2P

(
Ak

)
;

E
(
S2
n1lA1⊎···⊎An

)
≥ c2P

(
A1 ⊎ · · · ⊎An

)
;

ES2
n ≥ c2P

(
max

k
|Sk| ≥ c

)
.

Here is the second (final) proof.

Proof of 3b5

We introduce disjoint events Ak as before and prove that E
(
S2
n1lAk

)
≥

c2P
(
Ak

)
as follows. We have

E
(
S2
n1lAk

)
=

∫

Bk×Rn−k

(x1 + · · ·+ xn)
2 µ1(dx1) . . . µn(dxn) ,

where

Bk = {(x1, . . . , xk) : |x1| < c, . . . , |x1 + · · ·+ xk−1| < c, |x1 + · · ·+ xk| ≥ c} ;

we rewrite the integral as
∫

Bk

µ1(dx1) . . . µk(dxk)

∫

Rn−k

(x1 + · · ·+ xn)
2 µk+1(dxk+1) . . . µn(dxn) ;

taking into account that (for every a)
∫

Rn−k

(a + xk+1 + · · ·+ xn)
2

︸ ︷︷ ︸

=a2+2a(xk+1+···+xn)+(xk+1+···+xn)2

µk+1(dxk+1) . . . µn(dxn) ≥ a2

we get

· · · ≥
∫

Bk

µ1(dx1) . . . µk(dxk) (x1 + · · ·+ xk)
2

︸ ︷︷ ︸

≥c2

≥ c2P
(
Ak

)
.

End of proof of 3b5

1This idea, “stopping”, will be the tenor of Part 2 of the course.



Probability for mathematicians INDEPENDENCE TAU 2013 37

Proof of 3b3

We’ll prove that the partial sums Sn are a Cauchy sequence a.s., that is,

lim
n

sup
k,l≥n

|Sk − Sl| = 0 a.s.

These suprema, being a decreasing (in n) sequence, converge a.s.; in order to
prove that their limit vanishes a.s. it is sufficient to prove that

∀ε > 0 P
(
sup
k,l≥n

|Sk − Sl| > 2ε
)
−−−→
n→∞

0 .

We have, using 3b5,

P

(

sup
k,l≥n

|Sk − Sl| > 2ε
)

≤ P

(

sup
k≥n

|Sk − Sn| > ε
)

=

= lim
m

P
(

max
k=n,...,n+m

|Sk − Sn| > ε
)

︸ ︷︷ ︸

≤ 1

ε2
E (X2

n+1
+···+X2

n+m)

≤ 1

ε2

∞∑

k=n+1

VarXk −−−→
n→∞

0 .

End of proof of 3b3

The proof of 3b2 (strong law of large numbers) is now complete.

Zero-one law

3b7 Proposition. Let X1, X2, . . . be independent random variables, and a
random variable Y be of the form Y = fn(Xn, Xn+1, . . . ) for all n. Then Y
is constant a.s.

This is a form of Kolmogorov’s 0–1 law. (See also 3a14.) Basically, it
holds because every measurable function of X1, X2, . . . is approximately a
measurable function of X1, . . . , Xn (see 3b14).

3b8 Exercise. Let X1, X2, . . . be independent random variables, and Sn =
X1 + · · ·+Xn. Then the following events are of probability 0 or 1 each:

Sn converge;
Sn are bounded;
Sn are bounded from above;
Sn are bounded from below.

Deduce it from 3b7.
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Recall the σ-algebras generated by random variables: σ(X), σ(X, Y )
etc.; σ(X, Y ) consists of sets of the form {ω : (X(ω), Y (ω)) ∈ B} for Borel
B ⊂ R

2. Rewriting (X(ω), Y (ω)) ∈ B as 1lB(X(ω), Y (ω)) = 1 we see that
a σ(X, Y )-measurable indicator function is of the form ϕ(X, Y ) where ϕ is
a Borel measurable indicator function on R

2. It follows (but not immedi-
ately) that the same holds for R-valued (rather than {0, 1}-valued) functions
(the Doob-Dynkin lemma); this is why σ(X, Y )-measurable functions are
often called measurable functions of X, Y . Similarly, σ(X1, X2, . . . )-mea-
surable functions are often called measurable functions of X1, X2, . . . Here
σ(X1, X2, . . . ) is the least σ-algebra making all Xk measurable. Denoting
F∞

n = σ(Xn, Xn+1, . . . ) we have

F∞
n ↓ (the tail σ-algebra) =

⋂

n

F∞
n .

Measurability w.r.t. the tail σ-algebra is measurability w.r.t F∞
n for every n.

It holds for Y of 3b7 and 3a14.

3b9 Proposition (Kolmogorov’s 0-1 law). 1 If Xn are independent then the
tail σ-algebra is trivial.

Denoting Fn
1 = σ(X1, . . . , Xn) we have Fn

1 ↑ σ(X1, X2, . . . ) = F∞
1 in the

sense that F∞
1 is the least σ-algebra that contains all Fn

1 . That is, F∞
1 = σ(E)

where E = ∪nFn
1 .

3b10 Exercise. (a) E is an algebra;
(b) E need not be a σ-algebra.

Prove it.
Hint: (b) try binary digits.

By 1b6, E is dense in σ(E), that is,

(3b11) inf
E∈E

P (A△ E) = 0 for all A ∈ σ(E)

whenever E is an algebra (not just ∪nσ(X1, . . . , Xn)).

3b12 Exercise. If a σ-algebra is independent of (all events of) an algebra
E then it is independent of σ(E).

Prove it.

Proof of Kolmogorov’s 0-1 law. Independence of Fn
1 and F∞

n+1 implies inde-
pendence of Fn

1 and the tail σ-algebra for every n. By 3b12 the tail σ-algebra
is independent of F∞

1 , therefore, of itself!

1[D, Sect. 1.8, (8.1)]; [W, Th. 4.11].
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3a13, 3a14 and 3b7 follow.

Here is another useful consequence of (3b11).

3b13 Exercise. Let F1 ⊂ F2 ⊂ · · · ⊂ F be sub-σ-algebras, and F∞ =
σ(F1,F2, . . . ). Then

L2(F∞) is the closure of
⋃

n

L2(Fn) .

Prove it.
Hint: for an indicator function in L2(F∞) use (3b11); their linear combi-

nations approximate every bounded function.

In particular,

(3b14) L2

(
σ(X1, X2, . . . )

)
is the closure of

⋃

n

L2

(
σ(X1, . . . , Xn)

)

whenever X1, X2, . . . are random variables (not just independent).
Some more applications of zero-one law (and CLT).

3b15 Exercise. For the simple random walk (Sn)n,
(a) supn |Sn| = ∞ a.s.;
(b) lim infn Sn = −∞ and lim supn Sn = ∞ a.s.;
(c) sup{n : Sn = 0} = ∞ a.s.

Prove it.
Hint: (a) maxk(Skn+n − Skn) = n; (b) use (a) and 3b8; (c) use (b).

3b16 Exercise. For the simple random walk (Sn)n,

lim inf
n

Sn√
n
= −∞ and lim sup

n

Sn√
n
= ∞ a.s.

Prove it.
Hint: supk

S
2k+1−S

2k

2k/2
= ∞ (using 2a1).
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