6	Martingales		
	6a	Basic definitions	54
	6b	Gambling strategy, martingale transform, stopping	55
	6c	Positive martingales	57

6 Martingales

6a Basic definitions

First, an example.

Monsters¹ of type A have masses a_1, a_2, \ldots, a_m ; monsters of type B — b_1, b_2, \ldots, b_n In the first fight, a_1 eats b_1 with probability $\frac{a_1}{a_1+b_1}$, gets the mass $a_1 + b_1$ and then fights b_2 ; or b_1 eats a_1 and then fights a_2 ; and so on.²

6a1 Proposition. The monsters of type A win with probability $\frac{A}{A+B}$ where $A = a_1 + \cdots + a_m$ and $B = b_1 + \cdots + b_n$.

Now, the basic definitions.

6a2 Definition. (a) A filtration on a probability space (Ω, \mathcal{F}, P) is an increasing sequence of sub- σ -algebras: $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}$;

(b) An adapted (to the given filtration) process is a sequence $(X_0, X_1, ...)$ of random variables such that for each k, X_k is \mathcal{F}_k -measurable.

A filtered probability space is a probability space endowed with a filtration.

Assume for now that Ω is (finite or) countable (the discrete framework).

6a3 Definition. An adapted process $(X_n)_n$ such that $\forall n \mathbb{E} |X_n| < \infty$ is

(a) a martingale, if $\forall n \ \mathbb{E}(X_{n+1} | \mathcal{F}_n) = X_n$ a.s.;

(b) a supermartingale, if $\forall n \ \mathbb{E}(X_{n+1} | \mathcal{F}_n) \leq X_n \text{ a.s.};$

(c) a submartingale, if $\forall n \ \mathbb{E}(X_{n+1} | \mathcal{F}_n) \geq X_n$ a.s.

We generalize it to arbitrary Ω as follows.³

¹Maybe, banks...

²This is much simpler than a "special gladiator game" of: K.S. Kaminsky, E.M. Luks, P.I. Nelson (1984) "Strategy, nontransitive dominance and the exponential distribution". Austral. J. Statist. **26**:2, 111–118.

³See also Sect. 7c.

6a4 Definition. An adapted process $(X_n)_n$ such that $\forall n \mathbb{E} |X_n| < \infty$ is

- (a) a martingale, if $\forall n \ \forall Y \in L_{\infty}(\mathcal{F}_n) \ \mathbb{E}\left((X_{n+1} X_n)Y\right) = 0;$
- (b) a supermartingale, if $\forall n \ \forall Y \in L^+_{\infty}(\mathcal{F}_n) \ \mathbb{E}\left((X_{n+1} X_n)Y\right) \leq 0;$
- (c) a submartingale, if $\forall n \ \forall Y \in L_{\infty}^{+}(\mathcal{F}_{n}) \ \mathbb{E}\left((X_{n+1} X_{n})Y\right) \geq 0.$

6a5 Exercise. In the discrete framework, Definitions 6a3 and 6a4 are equivalent.

Prove it.

6a6 Exercise. Replacing in Definition 6a4 $X_{n+1} - X_n$ with $X_{n+k} - X_n$ for $k = 1, 2, \ldots$ we get an equivalent definition.

Prove it.

In particular, $Y = \mathbb{1}$ gives $\mathbb{E} X_n = \mathbb{E} X_0$ (a necessary condition). Assume again the discrete framework.

Every $X \in L_1$ leads to a martingale $M_n = \mathbb{E}(X | \mathcal{F}_n)$. "Accumulating data", "revising prediction"...Locally it is the general form of a martingale; globally — not.

Here is an explanation of the terms "supermartingale" and "submartingale". Let $(X_n)_{n=1}^N$ be adapted; introduce a martingale $M_n = \mathbb{E}(X_N | \mathcal{F}_n)$; then:

if (X_n) is a martingale then $X_n = M_n$;

if (X_n) is a supermartingale then $X_n \ge M_n$;

if (X_n) is a submartingale then $X_n \leq M_n$.

Conditional Jensen inequality gives: if (M_n) is a martingale and f is convex ("sublinear") then $(f(M_n))$ is a submartingale.

6a7 Example. The one-dimensional simple random walk (S_n) is a martingale; (S_n^2) is a submartingale.

Functions on a tree...

Proof of 6a1. Denote by M_n the total mass of A-monsters at time n, then $(M_n)_n$ is a martingale $(\mathcal{F}_n$ being the whole past...) since $b_{\ell} \cdot \frac{a_k}{a_k+b_{\ell}} + (-a_k) \cdot \frac{b_{\ell}}{a_k+b_{\ell}} = 0$. Thus, $\mathbb{E} M_{m+n} = \mathbb{E} M_0 = A$; we note that M_{m+n} takes on two values only, 0 and A + B.

6b Gambling strategy, martingale transform, stopping

First, an example.

Let $(S_n)_n$ be the simple random walk, and $T = \inf\{n : |S_n| = 10\}$ (be it finite or infinite).

6b1 Proposition. $T < \infty$ a.s., and $\mathbb{E}T = 100$.

Now, the theory.

6b2 Definition. (a) A previsible (with respect to the given filtration) process is a sequence $(C_1, C_2, ...)$ of random variables such that for each k, C_k is \mathcal{F}_{k-1} -measurable.¹

(b) Given a previsible process $(C_n)_n$ and adapted process $(X_n)_n$ (on the same filtered probability space), we define an adaped process $C \bullet X$ by²

$$(C \bullet X)_0 = 0,$$

$$(C \bullet X)_n = (C \bullet X)_{n-1} + C_n(X_n - X_{n-1}).$$

Thus,

$$(C \bullet X)_n = C_1(X_1 - X_0) + C_2(X_2 - X_1) + \dots + C_n(X_n - X_{n-1}) =$$

= $-C_1X_0 - (C_2 - C_1)X_1 - \dots - (C_n - C_{n-1})X_{n-1} + C_nX_n.$

6b3 Proposition. Let $(M_n)_n$ be a martingale, $(C_n)_n$ previsible, and $C_n(M_n - M_{n-1}) \in L_1$ for all n. Then $C \bullet M$ is a martingale.

Proof. Let $Y \in L_{\infty}(\mathcal{F}_n)$, then $\mathbb{E}\left(((C \bullet M)_{n+1} - (C \bullet M)_n)Y\right) = \mathbb{E}\left(C_{n+1}(M_{n+1} - M_n)Y\right)$, and it vanishes if $C_{n+1}Y \in L_{\infty}$; otherwise apply it to $Y_k = Y \cdot \mathbb{1}_{[-k,k]}(C_{n+1})$ and note that $\sup_k |C_{n+1}(M_{n+1} - M_n)Y_k| \leq |C_{n+1}(M_{n+1} - M_n)Y| \leq ||Y||_{\infty} \cdot \underbrace{|C_{n+1}(M_{n+1} - M_n)|}_{\in L_1}$.

A sufficient condition: $\forall n \ C_n \in L_{\infty}$. An important special case:

$$(C^{\tau})_n = \mathbb{1}_{n \le \tau} = \begin{cases} 1 & \text{for } n \le \tau, \\ 0 & \text{for } n > \tau, \end{cases}$$

where τ is a stopping time as defined below.

6b4 Definition. A stopping time is a map $\tau : \Omega \to \{0, 1, 2, ...\} \cup \{\infty\}$ such that $\{\tau \leq n\} \in \mathcal{F}_n$ for all n.

¹In discrete time it look strange, but in continuous time it does not...

²Imagine that C_n is the number of your shares of a stock at time n, and X_n is the share price at time n...

Note that

$$\{(C^{\tau})_n = 0\} = \{\tau < n\} = \{\tau \le n - 1\} \in \mathcal{F}_{n-1}.$$

In terms of a tree, $\{\tau > n\}$ is just a subtree...

The corresponding martingale transform is the stopped process,

$$(C^{\tau} \bullet X)_n = X_{\tau \wedge n} - X_0 \, .$$

6b5 Corollary. If $(M_n)_n$ is a martingale and τ a stopping time then the stopped process $(M_{\tau \wedge n})_n$ is also a martingale.

Proof of 6b1. The process M defined by $M_n = S_n^2 - n$ is a martingale (think, why). On the other hand, T is a stopping time (think, why). Thus, the stopped process $M_{T \wedge n}$ is a martingale. Therefore $\mathbb{E} M_{T \wedge n} = 0$, that is, $\mathbb{E} S_{T \wedge n}^2 = \mathbb{E} (T \wedge n)$. We get $\mathbb{E} (T \wedge n) \leq 100$ for all n, and therefore $T < \infty$ a.s., $\mathbb{E} T \leq 100$; thus S_T is well-defined, $S_{T \wedge n} \to S_T$ a.s., and the bounded convergence theorem gives $\mathbb{E} S_{T \wedge n}^2 \to \mathbb{E} S_T^2 = 100$; therefore $\mathbb{E} T = 100$.

By the way, $\mathbb{E} S_T = 0$; $\mathbb{P}(S_T = -10) = 0.5 = \mathbb{P}(S_T = 10)$.

Recall 3b15: from $\sup_n |S_n| = \infty$ (a.s.) by Kolmogorov's 0-1 law we got $\inf_n S_n = -\infty$ and $\sup_n S_n = \infty$ a.s.

However, do not think that $\mathbb{E} M_{\tau}$ must vanish! Think about $\tau = \min\{n : S_n = +10\}$.¹

6c Positive martingales

First, an example.

Let Z_n be the size of *n*-th generation (be it the number of animals, neutrons, or men of a given family). Assume that $Z_0 = 1$ always, and each member of the *n*-th generation produces a random number of offsprings (members of the next generation): either 2 (with probability p) or 0 (with probability 1-p). That is, conditionally, given Z_0, \ldots, Z_n , the distribution of $Z_{n+1}/2$ is binomial,

$$\mathbb{P}\left(Z_{n+1}=2k \,\middle|\, Z_0,\ldots,Z_n\right) = \binom{Z_n}{k} p^k (1-p)^{Z_n-k} \,.$$

This is called the simple branching, or Galton-Watson, process.

For $p \leq 0.5$ the process extincts a.s.:

6c1 Proposition. For $p \leq 0.5$, $\mathbb{P}(\exists n \ Z_n = 0) = 1$.

¹Do you like to get rich this way? :-)

For p > 0.5 the process either extincts or grows exponentially:

6c2 Proposition. For p > 0.5 the limit

$$M_{\infty} = \lim_{n \to \infty} \frac{Z_n}{(2p)^n}$$

exists and is finite almost surely, and

$$\mathbb{P}(\exists n \ Z_n = 0) = \mathbb{P}(M_{\infty} = 0) = \frac{1-p}{p}, \quad \mathbb{E}M_{\infty} = 1.$$

Now, the theory.

Let $(M_n)_n$ be a positive martingale, that is, $M_n \ge 0$ a.s. for every n. Given $0 < a < b < \infty$, we define stopping times

$$\sigma_{1} = \inf\{n \ge 0 : M_{n} \le a\}, \quad \tau_{1} = \inf\{n > \sigma_{1} : M_{n} \ge b\},\\ \sigma_{2} = \inf\{n > \tau_{1} : M_{n} \le a\}, \quad \tau_{2} = \inf\{n > \sigma_{2} : M_{n} \ge b\},$$

and so on. (As usual, $\inf \emptyset = \infty$.) Now we define the (random) number of upcrossings:

$$U = \sup\{k : \tau_k < \infty\}; \quad U : \Omega \to \{0, 1, 2, \dots\} \cup \{\infty\}.$$

6c3 Proposition (Dubins's inequality).

$$\mathbb{P}(U \ge k) \le \left(\frac{a}{b}\right)^k$$
 for $k = 0, 1, 2, \dots$

Proof. It is sufficient to prove that $\mathbb{P}(\tau_k < \infty) \leq \frac{a}{b} \mathbb{P}(\sigma_k < \infty)$. We have

$$\mathbb{E} M_{\sigma_k \wedge n} = \mathbb{E} M_{\tau_k \wedge n} = \mathbb{E} M_0;$$

$$\underbrace{\mathbb{E} M_{\sigma_k \wedge n}}_{=\mathbb{E} M_0} = \underbrace{\mathbb{E} (M_{\sigma_k}; \sigma_k \leq n)}_{\leq a \mathbb{P} (\sigma_k \leq n)} + \mathbb{E} (M_n; \sigma_k > n);$$

$$\underbrace{\mathbb{E} M_{\tau_k \wedge n}}_{=\mathbb{E} M_0} = \underbrace{\mathbb{E} (M_{\tau_k}; \tau_k \leq n)}_{\geq b \mathbb{P} (\tau_k \leq n)} + \mathbb{E} (M_n; \tau_k > n);$$

$$\mathbb{E} (M_n; \tau_k > n) - \mathbb{E} (M_n; \sigma_k > n) = \mathbb{E} (M_n; \sigma_k \leq n < \tau_k) \geq 0;$$

$$a \mathbb{P} (\sigma_k \leq n) \geq b \mathbb{P} (\tau_k \leq n);$$

take $n \to \infty$.

The same holds for supermartingales.

6c4 Theorem. Every positive martingale converges a.s. to an integrable random variable.

Proof. By Dubins's inequality, the martingale $(M_n)_n$ cannot cross (a, b) infinitely many times. Almost surely, for all rational a < b, it crosses (a, b) finitely many times, which excludes the case $\liminf M_n < a < b < \limsup M_n$. It means that $\liminf M_n = \limsup M_n$ a.s. Integrability of the limit follows from Fatou lemma.

We turn to branching. Let $(Z_n)_n$ be the simple branching process introduced in Sect. 6c.

Given \mathcal{F}_n we have $\frac{1}{2}Z_{n+1} \sim \operatorname{Binom}(Z_n, p)$, thus $\mathbb{E}(Z_{n+1} | \mathcal{F}_n) = 2pZ_n$, which shows that $M_n = \frac{1}{(2p)^n}Z_n$ is a (positive) martingale. By 6c4, $M_n \rightarrow M_\infty$ a.s., $\mathbb{E} M_\infty \leq 1$.

Proof of 6c1. Case p < 0.5: we have $\sup_n \frac{1}{(2p)^n} Z_n < \infty$, that is, $Z_n = O((2p)^n)$, a.s., which ultimately excludes the case $Z_n \ge 1$; extinction.

Case p = 0.5: $Z_n \to M_\infty$ a.s.; we have to prove that $M_\infty = 0$ a.s. Assuming the contrary we take k > 0 such that $\mathbb{P}(M_\infty = k) > 0$, then

$$\mathbb{I}_{Z_n=k} \to \mathbb{I}_{M_{\infty}=k};$$

$$\mathbb{I}_{Z_n=k,Z_{n+1}=k} \to \mathbb{I}_{M_{\infty}=k};$$

$$\mathbb{P}(Z_n=k) \to \mathbb{P}(M_{\infty}=k);$$

$$\mathbb{P}(Z_n=k,Z_{n+1}=k) \to \mathbb{P}(M_{\infty}=k);$$

$$\mathbb{P}(Z_{n+1}=k|Z_n=k) \to 1,$$

that is, the distribution Binom(k, 0.5) is concentrated at 0.5k, — a contradiction.

More detailed information on the branching process can be obtained using the generating functions

$$f_n(\theta) = \mathbb{E}\,\theta^{Z_n}$$

We have $f_0(\theta) = \theta$; $f_1(\theta) = p\theta^2 + 1 - p$; $\mathbb{E}(\theta^{Z_{n+1}} | Z_n = k) = (f_1(\theta))^k$ (think, why); thus $f_{n+1}(\theta) = \mathbb{E}(f_1(\theta))^{Z_n} = f_n(f_1(\theta))$, that is,

$$f_n = f_1 \circ \cdots \circ f_1$$
 (*n* times).

Iterations for $f_n(0) = \mathbb{P}(Z_n = 0)$ converge (draw a picture!) to the first root of the equation $f_1(\theta) = \theta$. Taking into account that $f_1(1) = 1$ we solve the equation easily: $\theta = (1 - p)/p$. We get

$$\mathbb{P}(Z_n=0) \to \frac{1-p}{p} = \mathbb{P}(\exists n \ Z_n=0).$$

In order to prove 6c2 it remains to prove that $\mathbb{E} M_{\infty} = 1$ and $\mathbb{P}(M_{\infty} = 0) = \mathbb{P}(\exists n \ Z_n = 0)$. In order to prove the former it is sufficient to prove that $M_n \to M_{\infty}$ in L_1 , or in L_2 , or just convergence of M_n in L_2 (to whatever).

6c5 Lemma. If a martingale $(M_n)_n$ satisfies $\mathbb{E} M_n^2 < \infty$ for all n then random variables¹ $M_{n+1} - M_n$ are mutually orthogonal.

Proof. We have $\mathbb{E}((M_{n+1} - M_n)Y) = 0$ for all $Y \in L_{\infty}(\mathcal{F}_n)$ and therefore (by approximation) for all $Y \in L_2(\mathcal{F}_n)$; apply it to $Y = M_{k+1} - M_k$ for k < n.

Thus, $||M_{n+k} - M_n||^2 = ||M_{n+k} - M_{n+k-1}||^2 + \dots + ||M_{n+1} - M_n||^2$; convergence of $(M_n)_n$ in L_2 is equivalent to convergence of $\sum ||M_{n+1} - M_n||^2$, that is, to $\sup_n ||M_n||^2 < \infty$. Here is the conclusion.

6c6 Proposition. A positive² martingale bounded in L_2 converges both in L_2 and almost surely.

In order to prove "the former" it remains to prove that $(M_n)_n$ is bounded in L_2 . We have

$$\operatorname{Var} Z_{1} = 4p(1-p);$$

$$\operatorname{Var} \left(Z_{n+1} \mid Z_{n} = k \right) = k \operatorname{Var} Z_{1} = 4p(1-p)k;$$

$$\operatorname{Var} \left(Z_{n+1} \mid Z_{n} \right) = 4p(1-p)Z_{n};$$

$$\operatorname{Var} \left(M_{n+1} \mid M_{n} \right) = \frac{1}{((2p)^{n+1})^{2}} \operatorname{Var} \left(Z_{n+1} \mid Z_{n} \right) = \frac{4p(1-p)(2p)^{n}}{(2p)^{2n+2}} M_{n};$$

$$\operatorname{Var} M_{n+1} = \mathbb{E} \operatorname{Var} \left(M_{n+1} \mid M_{n} \right) + \operatorname{Var} \mathbb{E} \left(M_{n+1} \mid M_{n} \right);$$

$$\operatorname{Var} M_{n+1} - \operatorname{Var} M_{n} = \mathbb{E} \operatorname{Var} \left(M_{n+1} \mid M_{n} \right) = \frac{4p(1-p)}{(2p)^{n+2}}.$$

But why $\mathbb{P}(M_{\infty} = 0) = \mathbb{P}(Z_n \to 0)$? (" \geq " is evident.) Is the event $1 \leq Z_n = o((2p)^n)$ negligible for p > 0.5?

First, $\mathbb{P}(M_{\infty} = 0 | \mathcal{F}_n) = (\mathbb{P}(M_{\infty} = 0))^{Z_n}$ (independent subtrees...). Second, $\mathbb{P}(M_{\infty} = 0 | \mathcal{F}_n) \to \mathbb{1}_{M_{\infty}=0}$ a.s., as we'll see in 7d1. Thus, on the event $1 \leq Z_n = o((2p)^n)$ (if it is not negligible) we have

Thus, on the event $1 \leq Z_n = o((2p)^n)$ (if it is not negligible) we have $(\mathbb{P}(M_{\infty} = 0))^{Z_n} \to 1$, therefore $\mathbb{P}(M_{\infty} = 0) = 1$ in contradiction to $\mathbb{E} M_{\infty} = 1$.

The proof of 6c2 is thus finished (except for one claim postponed to Sect. 7, the "second" above).

(In fact, $\mathbb{P}(M_{\infty} = 0) = 1$ if and only if $\mathbb{E}(X \ln X) = \infty...$)

¹So-called martingale differences.

²The same holds for non-positive martingales, as we'll see in 7c6.