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6 Martingales

6a Basic definitions

First, an example.
Monsters1 of type A have masses a1, a2, . . . , am; monsters of type B —

b1, b2, . . . , bn In the first fight, a1 eats b1 with probability a1
a1+b1

, gets the mass

a1 + b1 and then fights b2; or b1 eats a1 and then fights a2; and so on.2

6a1 Proposition. The monsters of type A win with probability A
A+B

where
A = a1 + · · ·+ am and B = b1 + · · ·+ bn.

Now, the basic definitions.

6a2 Definition. (a) A filtration on a probability space (Ω,F , P ) is an in-
creasing sequence of sub-σ-algebras: F0 ⊂ F1 ⊂ · · · ⊂ F ;

(b) An adapted (to the given filtration) process is a sequence (X0, X1, . . . )
of random variables such that for each k, Xk is Fk-measurable.

A filtered probability space is a probability space endowed with a filtra-
tion.

Assume for now that Ω is (finite or) countable (the discrete framework).

6a3 Definition. An adapted process (Xn)n such that ∀n E |Xn| < ∞ is
(a) a martingale, if ∀n E

(
Xn+1

∣
∣Fn

)
= Xn a.s.;

(b) a supermartingale, if ∀n E
(
Xn+1

∣
∣Fn

)
≤ Xn a.s.;

(c) a submartingale, if ∀n E
(
Xn+1

∣
∣Fn

)
≥ Xn a.s.

We generalize it to arbitrary Ω as follows.3

1Maybe, banks. . .
2This is much simpler than a “special gladiator game” of: K.S. Kaminsky, E.M. Luks,

P.I. Nelson (1984) “Strategy, nontransitive dominance and the exponential distribution”.
Austral. J. Statist. 26:2, 111–118.

3See also Sect. 7c.



Probability for mathematicians DEPENDENCE TAU 2013 55

6a4 Definition. An adapted process (Xn)n such that ∀n E |Xn| < ∞ is
(a) a martingale, if ∀n ∀Y ∈ L∞(Fn) E

(
(Xn+1 −Xn)Y

)
= 0;

(b) a supermartingale, if ∀n ∀Y ∈ L+
∞(Fn) E

(
(Xn+1 −Xn)Y

)
≤ 0;

(c) a submartingale, if ∀n ∀Y ∈ L+
∞(Fn) E

(
(Xn+1 −Xn)Y

)
≥ 0.

6a5 Exercise. In the discrete framework, Definitions 6a3 and 6a4 are equiv-
alent.

Prove it.

6a6 Exercise. Replacing in Definition 6a4 Xn+1 −Xn with Xn+k −Xn for
k = 1, 2, . . . we get an equivalent definition.

Prove it.

In particular, Y = 1l gives EXn = EX0 (a necessary condition).
Assume again the discrete framework.
Every X ∈ L1 leads to a martingale Mn = E

(
X
∣
∣Fn

)
. “Accumulating

data”, “revising prediction”. . . Locally it is the general form of a martingale;
globally — not.

Here is an explanation of the terms “supermartingale” and “submartin-
gale”. Let (Xn)

N
n=1 be adapted; introduce a martingale Mn = E

(
XN

∣
∣Fn

)
;

then:
if (Xn) is a martingale then Xn = Mn;
if (Xn) is a supermartingale then Xn ≥ Mn;
if (Xn) is a submartingale then Xn ≤ Mn.
Conditional Jensen inequality gives: if (Mn) is a martingale and f is

convex (“sublinear”) then
(
f(Mn)

)
is a submartingale.

6a7 Example. The one-dimensional simple random walk (Sn) is a martin-
gale; (S2

n) is a submartingale.

Functions on a tree. . .

Proof of 6a1. Denote by Mn the total mass of A-monsters at time n, then
(Mn)n is a martingale (Fn being the whole past. . . ) since bℓ ·

ak
ak+bℓ

+ (−ak) ·
bℓ

ak+bℓ
= 0. Thus, EMm+n = EM0 = A; we note that Mm+n takes on two

values only, 0 and A+B.

6b Gambling strategy, martingale transform, stopping

First, an example.
Let (Sn)n be the simple random walk, and T = inf{n : |Sn| = 10} (be it

finite or infinite).
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6b1 Proposition. T < ∞ a.s., and ET = 100.

Now, the theory.

6b2 Definition. (a) A previsible (with respect to the given filtration) pro-
cess is a sequence (C1, C2, . . . ) of random variables such that for each k, Ck

is Fk−1-measurable.1

(b) Given a previsible process (Cn)n and adapted process (Xn)n (on the
same filtered probability space), we define an adaped process C •X by2

(C •X)0 = 0 ,

(C •X)n = (C •X)n−1 + Cn(Xn −Xn−1) .

Thus,

(C •X)n = C1(X1 −X0) + C2(X2 −X1) + · · ·+ Cn(Xn −Xn−1) =

= −C1X0 − (C2 − C1)X1 − · · · − (Cn − Cn−1)Xn−1 + CnXn .

6b3 Proposition. Let (Mn)n be a martingale, (Cn)n previsible, and Cn(Mn−
Mn−1) ∈ L1 for all n. Then C •M is a martingale.

Proof. Let Y ∈ L∞(Fn), then E
(
((C•M)n+1−(C•M)n)Y

)
= E

(
Cn+1(Mn+1−

Mn)Y
)
, and it vanishes if Cn+1Y ∈ L∞; otherwise apply it to Yk = Y ·

1l[−k,k](Cn+1) and note that supk |Cn+1(Mn+1 − Mn)Yk| ≤ |Cn+1(Mn+1 −
Mn)Y | ≤ ‖Y ‖∞ · |Cn+1(Mn+1 −Mn)|

︸ ︷︷ ︸

∈L1

.

A sufficient condition: ∀n Cn ∈ L∞.
An important special case:

(Cτ )n = 1ln≤τ =

{

1 for n ≤ τ,

0 for n > τ,

where τ is a stopping time as defined below.

6b4 Definition. A stopping time is a map τ : Ω → {0, 1, 2, . . . }∪{∞} such
that {τ ≤ n} ∈ Fn for all n.

1In discrete time it look strange, but in continuous time it does not. . .
2Imagine that Cn is the number of your shares of a stock at time n, and Xn is the

share price at time n. . .
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Note that

{(Cτ )n = 0} = {τ < n} = {τ ≤ n− 1} ∈ Fn−1 .

In terms of a tree, {τ > n} is just a subtree. . .
The corresponding martingale transform is the stopped process,

(Cτ •X)n = Xτ∧n −X0 .

6b5 Corollary. If (Mn)n is a martingale and τ a stopping time then the
stopped process (Mτ∧n)n is also a martingale.

Proof of 6b1. The process M defined by Mn = S2
n − n is a martingale

(think, why). On the other hand, T is a stopping time (think, why). Thus,
the stopped process MT∧n is a martingale. Therefore EMT∧n = 0, that is,
ES2

T∧n = E (T ∧ n). We get E (T ∧ n) ≤ 100 for all n, and therefore T < ∞
a.s., ET ≤ 100; thus ST is well-defined, ST∧n → ST a.s., and the bounded
convergence theorem gives ES2

T∧n → ES2
T = 100; therefore ET = 100.

By the way, EST = 0; P
(
ST = −10

)
= 0.5 = P

(
ST = 10

)
.

Recall 3b15: from supn |Sn| = ∞ (a.s.) by Kolmogorov’s 0-1 law we got
infn Sn = −∞ and supn Sn = ∞ a.s.

However, do not think that EMτ must vanish! Think about τ = min{n :
Sn = +10}.1

6c Positive martingales

First, an example.
Let Zn be the size of n-th generation (be it the number of animals, neu-

trons, or men of a given family). Assume that Z0 = 1 always, and each mem-
ber of the n-th generation produces a random number of offsprings (members
of the next generation): either 2 (with probability p) or 0 (with probability
1− p). That is, conditionally, given Z0, . . . , Zn, the distribution of Zn+1/2 is
binomial,

P
(
Zn+1 = 2k

∣
∣Z0, . . . , Zn

)
=

(
Zn

k

)

pk(1− p)Zn−k .

This is called the simple branching, or Galton-Watson, process.
For p ≤ 0.5 the process extincts a.s.:

6c1 Proposition. For p ≤ 0.5, P
(
∃n Zn = 0

)
= 1.

1Do you like to get rich this way? :-)
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For p > 0.5 the process either extincts or grows exponentially:

6c2 Proposition. For p > 0.5 the limit

M∞ = lim
n→∞

Zn

(2p)n

exists and is finite almost surely, and

P
(
∃n Zn = 0

)
= P

(
M∞ = 0

)
=

1− p

p
, EM∞ = 1 .

Now, the theory.
Let (Mn)n be a positive martingale, that is, Mn ≥ 0 a.s. for every n.
Given 0 < a < b < ∞, we define stopping times

σ1 = inf{n ≥ 0 : Mn ≤ a} , τ1 = inf{n > σ1 : Mn ≥ b} ,

σ2 = inf{n > τ1 : Mn ≤ a} , τ2 = inf{n > σ2 : Mn ≥ b} ,

and so on. (As usual, inf ∅ = ∞.) Now we define the (random) number of
upcrossings:

U = sup{k : τk < ∞} ; U : Ω → {0, 1, 2, . . .} ∪ {∞} .

6c3 Proposition (Dubins’s inequality).

P
(
U ≥ k

)
≤

(a

b

)k

for k = 0, 1, 2, . . .

Proof. It is sufficient to prove that P
(
τk < ∞

)
≤ a

b
P
(
σk < ∞

)
. We have

EMσk∧n = EMτk∧n = EM0 ;

EMσk∧n
︸ ︷︷ ︸

=EM0

= E (Mσk
; σk ≤ n)

︸ ︷︷ ︸

≤aP (σk≤n)

+E (Mn; σk > n) ;

EMτk∧n
︸ ︷︷ ︸

=EM0

= E (Mτk ; τk ≤ n)
︸ ︷︷ ︸

≥bP (τk≤n)

+E (Mn; τk > n) ;

E (Mn; τk > n)− E (Mn; σk > n) = E (Mn; σk ≤ n < τk) ≥ 0 ;

aP (σk ≤ n) ≥ bP (τk ≤ n) ;

take n → ∞.

The same holds for supermartingales.

6c4 Theorem. Every positive martingale converges a.s. to an integrable
random variable.
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Proof. By Dubins’s inequality, the martingale (Mn)n cannot cross (a, b) in-
finitely many times. Almost surely, for all rational a < b, it crosses (a, b)
finitely many times, which excludes the case lim infMn < a < b < lim supMn.
It means that lim infMn = lim supMn a.s. Integrability of the limit follows
from Fatou lemma.

We turn to branching. Let (Zn)n be the simple branching process intro-
duced in Sect. 6c.

Given Fn we have 1
2
Zn+1 ∼ Binom(Zn, p), thus E

(
Zn+1

∣
∣Fn

)
= 2pZn,

which shows that Mn = 1
(2p)n

Zn is a (positive) martingale. By 6c4, Mn →
M∞ a.s., EM∞ ≤ 1.

Proof of 6c1. Case p < 0.5: we have supn
1

(2p)n
Zn < ∞, that is, Zn =

O
(
(2p)n

)
, a.s., which ultimately excludes the case Zn ≥ 1; extinction.

Case p = 0.5: Zn → M∞ a.s.; we have to prove that M∞ = 0 a.s.
Assuming the contrary we take k > 0 such that P

(
M∞ = k

)
> 0, then

1lZn=k → 1lM∞=k ;

1lZn=k,Zn+1=k → 1lM∞=k ;

P
(
Zn = k

)
→ P

(
M∞ = k

)
;

P
(
Zn = k, Zn+1 = k

)
→ P

(
M∞ = k

)
;

P
(
Zn+1 = k

∣
∣Zn = k

)
→ 1 ,

that is, the distribution Binom(k, 0.5) is concentrated at 0.5k, — a contra-
diction.

More detailed information on the branching process can be obtained using
the generating functions

fn(θ) = E θZn .

We have f0(θ) = θ; f1(θ) = pθ2+1− p; E
(
θZn+1

∣
∣Zn = k

)
=

(
f1(θ)

)
k (think,

why); thus fn+1(θ) = E
(
f1(θ)

)
Zn = fn

(
f1(θ)

)
, that is,

fn = f1 ◦ · · · ◦ f1 (n times).

Iterations for fn(0) = P
(
Zn = 0

)
converge (draw a picture!) to the first root

of the equation f1(θ) = θ. Taking into account that f1(1) = 1 we solve the
equation easily: θ = (1− p)/p. We get

P
(
Zn = 0

)
→

1− p

p
= P

(
∃n Zn = 0

)
.

In order to prove 6c2 it remains to prove that EM∞ = 1 and P
(
M∞ =

0
)
= P

(
∃n Zn = 0

)
. In order to prove the former it is sufficient to prove that

Mn → M∞ in L1, or in L2, or just convergence of Mn in L2 (to whatever).
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6c5 Lemma. If a martingale (Mn)n satisfies EM2
n < ∞ for all n then

random variables1 Mn+1 −Mn are mutually orthogonal.

Proof. We have E
(
(Mn+1 − Mn)Y

)
= 0 for all Y ∈ L∞(Fn) and therefore

(by approximation) for all Y ∈ L2(Fn); apply it to Y = Mk+1 − Mk for
k < n.

Thus, ‖Mn+k −Mn‖
2 = ‖Mn+k −Mn+k−1‖

2 + · · ·+ ‖Mn+1 −Mn‖
2; con-

vergence of (Mn)n in L2 is equivalent to convergence of
∑

‖Mn+1 − Mn‖
2,

that is, to supn ‖Mn‖
2 < ∞. Here is the conclusion.

6c6 Proposition. A positive2 martingale bounded in L2 converges both in
L2 and almost surely.

In order to prove “the former” it remains to prove that (Mn)n is bounded
in L2. We have

VarZ1 = 4p(1− p) ;

Var
(
Zn+1

∣
∣Zn = k

)
= kVarZ1 = 4p(1− p)k ;

Var
(
Zn+1

∣
∣Zn

)
= 4p(1− p)Zn ;

Var
(
Mn+1

∣
∣Mn

)
=

1
(
(2p)n+1

)
2
Var

(
Zn+1

∣
∣Zn

)
=

4p(1− p)(2p)n

(2p)2n+2
Mn ;

VarMn+1 = E Var
(
Mn+1

∣
∣Mn

)
+VarE

(
Mn+1

∣
∣Mn

)
;

VarMn+1 − VarMn = E Var
(
Mn+1

∣
∣Mn

)
=

4p(1− p)

(2p)n+2
.

But why P
(
M∞ = 0

)
= P

(
Zn → 0

)
? (“≥” is evident.) Is the event

1 ≤ Zn = o
(
(2p)n

)
negligible for p > 0.5?

First, P
(
M∞ = 0

∣
∣Fn

)
=

(
P
(
M∞ = 0

))
Zn (independent subtrees. . . ).

Second, P
(
M∞ = 0

∣
∣Fn

)
→ 1lM∞=0 a.s., as we’ll see in 7d1.

Thus, on the event 1 ≤ Zn = o
(
(2p)n

)
(if it is not negligible) we have

(
P
(
M∞ = 0

))
Zn → 1, therefore P

(
M∞ = 0

)
= 1 in contradiction to

EM∞ = 1.
The proof of 6c2 is thus finished (except for one claim postponed to

Sect. 7, the “second” above).
(In fact, P

(
M∞ = 0

)
= 1 if and only if E (X lnX) = ∞. . . )

1So-called martingale differences.
2The same holds for non-positive martingales, as we’ll see in 7c6.
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