Contents

6 Martingales 54
6a Basic definitions 54
6b Gambling strategy, martingale transform, stopping 55
6c Positive martingales 57

6 Martingales

6a Basic definitions

First, an example.
Monsters ${ }^{1}$ of type A have masses $a_{1}, a_{2}, \ldots, a_{m}$; monsters of type B $b_{1}, b_{2}, \ldots, b_{n}$ In the first fight, a_{1} eats b_{1} with probability $\frac{a_{1}}{a_{1}+b_{1}}$, gets the mass $a_{1}+b_{1}$ and then fights b_{2}; or b_{1} eats a_{1} and then fights a_{2}; and so on. ${ }^{2}$

6a1 Proposition. The monsters of type A win with probability $\frac{A}{A+B}$ where $A=a_{1}+\cdots+a_{m}$ and $B=b_{1}+\cdots+b_{n}$.

Now, the basic definitions.
6a2 Definition. (a) A filtration on a probability space (Ω, \mathcal{F}, P) is an increasing sequence of sub- σ-algebras: $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}$;
(b) An adapted (to the given filtration) process is a sequence $\left(X_{0}, X_{1}, \ldots\right)$ of random variables such that for each k, X_{k} is \mathcal{F}_{k}-measurable.

A filtered probability space is a probability space endowed with a filtration.

Assume for now that Ω is (finite or) countable (the discrete framework).
6a3 Definition. An adapted process $\left(X_{n}\right)_{n}$ such that $\forall n \mathbb{E}\left|X_{n}\right|<\infty$ is
(a) a martingale, if $\forall n \mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}$ a.s.;
(b) a supermartingale, if $\forall n \mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right) \leq X_{n}$ a.s.;
(c) a submartingale, if $\forall n \mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right) \geq X_{n}$ a.s.

We generalize it to arbitrary Ω as follows. ${ }^{3}$

[^0]6a4 Definition. An adapted process $\left(X_{n}\right)_{n}$ such that $\forall n \mathbb{E}\left|X_{n}\right|<\infty$ is
(a) a martingale, if $\forall n \forall Y \in L_{\infty}\left(\mathcal{F}_{n}\right) \mathbb{E}\left(\left(X_{n+1}-X_{n}\right) Y\right)=0$;
(b) a supermartingale, if $\forall n \forall Y \in L_{\infty}^{+}\left(\mathcal{F}_{n}\right) \mathbb{E}\left(\left(X_{n+1}-X_{n}\right) Y\right) \leq 0$;
(c) a submartingale, if $\forall n \forall Y \in L_{\infty}^{+}\left(\mathcal{F}_{n}\right) \mathbb{E}\left(\left(X_{n+1}-X_{n}\right) Y\right) \geq 0$.

6a5 Exercise. In the discrete framework, Definitions 6a3 and 6a4 are equivalent.

Prove it.
6a6 Exercise. Replacing in Definition $6 \mathrm{ar} X_{n+1}-X_{n}$ with $X_{n+k}-X_{n}$ for $k=1,2, \ldots$ we get an equivalent definition.

Prove it.
In particular, $Y=\mathbb{1}$ gives $\mathbb{E} X_{n}=\mathbb{E} X_{0}$ (a necessary condition).
Assume again the discrete framework.
Every $X \in L_{1}$ leads to a martingale $M_{n}=\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)$. "Accumulating data", "revising prediction"... Locally it is the general form of a martingale; globally - not.

Here is an explanation of the terms "supermartingale" and "submartingale". Let $\left(X_{n}\right)_{n=1}^{N}$ be adapted; introduce a martingale $M_{n}=\mathbb{E}\left(X_{N} \mid \mathcal{F}_{n}\right)$; then:
if $\left(X_{n}\right)$ is a martingale then $X_{n}=M_{n}$;
if $\left(X_{n}\right)$ is a supermartingale then $X_{n} \geq M_{n}$;
if $\left(X_{n}\right)$ is a submartingale then $X_{n} \leq M_{n}$.
Conditional Jensen inequality gives: if $\left(M_{n}\right)$ is a martingale and f is convex ("sublinear") then $\left(f\left(M_{n}\right)\right)$ is a submartingale.

6a7 Example. The one-dimensional simple random walk $\left(S_{n}\right)$ is a martingale; $\left(S_{n}^{2}\right)$ is a submartingale.

Functions on a tree...
Proof of 6a1. Denote by M_{n} the total mass of A-monsters at time n, then $\left(M_{n}\right)_{n}$ is a martingale (\mathcal{F}_{n} being the whole past...) since $b_{\ell} \cdot \frac{a_{k}}{a_{k}+b_{\ell}}+\left(-a_{k}\right)$. $\frac{b_{\ell}}{a_{k}+b_{\ell}}=0$. Thus, $\mathbb{E} M_{m+n}=\mathbb{E} M_{0}=A$; we note that M_{m+n} takes on two values only, 0 and $A+B$.

6b Gambling strategy, martingale transform, stopping

First, an example.
Let $\left(S_{n}\right)_{n}$ be the simple random walk, and $T=\inf \left\{n:\left|S_{n}\right|=10\right\}$ (be it finite or infinite).

6b1 Proposition. $T<\infty$ a.s., and $\mathbb{E} T=100$.
Now, the theory.
6b2 Definition. (a) A previsible (with respect to the given filtration) process is a sequence $\left(C_{1}, C_{2}, \ldots\right)$ of random variables such that for each k, C_{k} is \mathcal{F}_{k-1}-measurable. ${ }^{1}$
(b) Given a previsible process $\left(C_{n}\right)_{n}$ and adapted process $\left(X_{n}\right)_{n}$ (on the same filtered probability space), we define an adaped process $C \bullet X$ by 2

$$
\begin{aligned}
& (C \bullet X)_{0}=0 \\
& (C \bullet X)_{n}=(C \bullet X)_{n-1}+C_{n}\left(X_{n}-X_{n-1}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
(C \bullet X)_{n}= & C_{1}\left(X_{1}-X_{0}\right)+C_{2}\left(X_{2}-X_{1}\right)+\cdots+C_{n}\left(X_{n}-X_{n-1}\right)= \\
& =-C_{1} X_{0}-\left(C_{2}-C_{1}\right) X_{1}-\cdots-\left(C_{n}-C_{n-1}\right) X_{n-1}+C_{n} X_{n} .
\end{aligned}
$$

6b3 Proposition. Let $\left(M_{n}\right)_{n}$ be a martingale, $\left(C_{n}\right)_{n}$ previsible, and $C_{n}\left(M_{n}-\right.$ $\left.M_{n-1}\right) \in L_{1}$ for all n. Then $C \bullet M$ is a martingale.

Proof. Let $Y \in L_{\infty}\left(\mathcal{F}_{n}\right)$, then $\mathbb{E}\left(\left((C \bullet M)_{n+1}-(C \bullet M)_{n}\right) Y\right)=\mathbb{E}\left(C_{n+1}\left(M_{n+1}-\right.\right.$ $\left.M_{n}\right) Y$), and it vanishes if $C_{n+1} Y \in L_{\infty}$; otherwise apply it to $Y_{k}=Y$. $\mathbb{1}_{[-k, k]}\left(C_{n+1}\right)$ and note that $\sup _{k}\left|C_{n+1}\left(M_{n+1}-M_{n}\right) Y_{k}\right| \leq \mid C_{n+1}\left(M_{n+1}-\right.$ $\left.M_{n}\right) Y \mid \leq\|Y\|_{\infty} \cdot \underbrace{\left|C_{n+1}\left(M_{n+1}-M_{n}\right)\right|}_{\in L_{1}}$.

A sufficient condition: $\forall n C_{n} \in L_{\infty}$.
An important special case:

$$
\left(C^{\tau}\right)_{n}=\mathbb{1}_{n \leq \tau}= \begin{cases}1 & \text { for } n \leq \tau \\ 0 & \text { for } n>\tau\end{cases}
$$

where τ is a stopping time as defined below.
6b4 Definition. A stopping time is a map $\tau: \Omega \rightarrow\{0,1,2, \ldots\} \cup\{\infty\}$ such that $\{\tau \leq n\} \in \mathcal{F}_{n}$ for all n.

[^1]Note that

$$
\left\{\left(C^{\tau}\right)_{n}=0\right\}=\{\tau<n\}=\{\tau \leq n-1\} \in \mathcal{F}_{n-1} .
$$

In terms of a tree, $\{\tau>n\}$ is just a subtree...
The corresponding martingale transform is the stopped process,

$$
\left(C^{\tau} \bullet X\right)_{n}=X_{\tau \wedge n}-X_{0} .
$$

6b5 Corollary. If $\left(M_{n}\right)_{n}$ is a martingale and τ a stopping time then the stopped process $\left(M_{\tau \wedge n}\right)_{n}$ is also a martingale.

Proof of 6b1. The process M defined by $M_{n}=S_{n}^{2}-n$ is a martingale (think, why). On the other hand, T is a stopping time (think, why). Thus, the stopped process $M_{T \wedge n}$ is a martingale. Therefore $\mathbb{E} M_{T \wedge n}=0$, that is, $\mathbb{E} S_{T \wedge n}^{2}=\mathbb{E}(T \wedge n)$. We get $\mathbb{E}(T \wedge n) \leq 100$ for all n, and therefore $T<\infty$ a.s., $\mathbb{E} T \leq 100$; thus S_{T} is well-defined, $S_{T \wedge n} \rightarrow S_{T}$ a.s., and the bounded convergence theorem gives $\mathbb{E} S_{T \wedge n}^{2} \rightarrow \mathbb{E} S_{T}^{2}=100$; therefore $\mathbb{E} T=100$.

By the way, $\mathbb{E} S_{T}=0 ; \mathbb{P}\left(S_{T}=-10\right)=0.5=\mathbb{P}\left(S_{T}=10\right)$.
Recall 3b15: from $\sup _{n}\left|S_{n}\right|=\infty$ (a.s.) by Kolmogorov's 0-1 law we got $\inf _{n} S_{n}=-\infty$ and $\sup _{n} S_{n}=\infty$ a.s.

However, do not think that $\mathbb{E} M_{\tau}$ must vanish! Think about $\tau=\min \{n$: $\left.S_{n}=+10\right\} .{ }^{1}$

6c Positive martingales

First, an example.
Let Z_{n} be the size of n-th generation (be it the number of animals, neutrons, or men of a given family). Assume that $Z_{0}=1$ always, and each member of the n-th generation produces a random number of offsprings (members of the next generation): either 2 (with probability p) or 0 (with probability $1-p)$. That is, conditionally, given Z_{0}, \ldots, Z_{n}, the distribution of $Z_{n+1} / 2$ is binomial,

$$
\mathbb{P}\left(Z_{n+1}=2 k \mid Z_{0}, \ldots, Z_{n}\right)=\binom{Z_{n}}{k} p^{k}(1-p)^{Z_{n}-k}
$$

This is called the simple branching, or Galton-Watson, process.
For $p \leq 0.5$ the process extincts a.s.:
6c1 Proposition. For $p \leq 0.5, \mathbb{P}\left(\exists n Z_{n}=0\right)=1$.

[^2]For $p>0.5$ the process either extincts or grows exponentially:
6 c 2 Proposition. For $p>0.5$ the limit

$$
M_{\infty}=\lim _{n \rightarrow \infty} \frac{Z_{n}}{(2 p)^{n}}
$$

exists and is finite almost surely, and

$$
\mathbb{P}\left(\exists n Z_{n}=0\right)=\mathbb{P}\left(M_{\infty}=0\right)=\frac{1-p}{p}, \quad \mathbb{E} M_{\infty}=1
$$

Now, the theory.
Let $\left(M_{n}\right)_{n}$ be a positive martingale, that is, $M_{n} \geq 0$ a.s. for every n. Given $0<a<b<\infty$, we define stopping times

$$
\begin{array}{cl}
\sigma_{1}=\inf \left\{n \geq 0: M_{n} \leq a\right\}, & \tau_{1}=\inf \left\{n>\sigma_{1}: M_{n} \geq b\right\}, \\
\sigma_{2}=\inf \left\{n>\tau_{1}: M_{n} \leq a\right\}, & \tau_{2}=\inf \left\{n>\sigma_{2}: M_{n} \geq b\right\},
\end{array}
$$

and so on. (As usual, $\inf \emptyset=\infty$.) Now we define the (random) number of upcrossings:

$$
U=\sup \left\{k: \tau_{k}<\infty\right\} ; \quad U: \Omega \rightarrow\{0,1,2, \ldots\} \cup\{\infty\}
$$

6c3 Proposition (Dubins's inequality).

$$
\mathbb{P}(U \geq k) \leq\left(\frac{a}{b}\right)^{k} \quad \text { for } k=0,1,2, \ldots
$$

Proof. It is sufficient to prove that $\mathbb{P}\left(\tau_{k}<\infty\right) \leq \frac{a}{b} \mathbb{P}\left(\sigma_{k}<\infty\right)$. We have

$$
\begin{gathered}
\mathbb{E} M_{\sigma_{k} \wedge n}=\mathbb{E} M_{\tau_{k} \wedge n}=\mathbb{E} M_{0} ; \\
\underbrace{\mathbb{E} M_{\sigma_{k} \wedge n}}_{=\mathbb{E} M_{0}}=\underbrace{\mathbb{E}\left(M_{\sigma_{k}} ; \sigma_{k} \leq n\right)}_{\leq a \mathbb{P}\left(\sigma_{k} \leq n\right)}+\mathbb{E}\left(M_{n} ; \sigma_{k}>n\right) ; \\
\underbrace{\mathbb{E} M_{\tau_{k} \wedge n}}_{=\mathbb{E} M_{0}}=\underbrace{\mathbb{E}\left(M_{\tau_{k}} ; \tau_{k} \leq n\right)}_{\geq b \mathbb{P}\left(\tau_{k} \leq n\right)}+\mathbb{E}\left(M_{n} ; \tau_{k}>n\right) ; \\
\mathbb{E}\left(M_{n} ; \tau_{k}>n\right)-\mathbb{E}\left(M_{n} ; \sigma_{k}>n\right)=\mathbb{E}\left(M_{n} ; \sigma_{k} \leq n<\tau_{k}\right) \geq 0 ; \\
a \mathbb{P}\left(\sigma_{k} \leq n\right) \geq b \mathbb{P}\left(\tau_{k} \leq n\right) ;
\end{gathered}
$$

take $n \rightarrow \infty$.
The same holds for supermartingales.
6 c 4 Theorem. Every positive martingale converges a.s. to an integrable random variable.

Proof. By Dubins's inequality, the martingale $\left(M_{n}\right)_{n}$ cannot cross (a, b) infinitely many times. Almost surely, for all rational $a<b$, it crosses (a, b) finitely many times, which excludes the case $\lim \inf M_{n}<a<b<\lim \sup M_{n}$. It means that $\lim \inf M_{n}=\lim \sup M_{n}$ a.s. Integrability of the limit follows from Fatou lemma.

We turn to branching. Let $\left(Z_{n}\right)_{n}$ be the simple branching process introduced in Sect. 6c.

Given \mathcal{F}_{n} we have $\frac{1}{2} Z_{n+1} \sim \operatorname{Binom}\left(Z_{n}, p\right)$, thus $\mathbb{E}\left(Z_{n+1} \mid \mathcal{F}_{n}\right)=2 p Z_{n}$, which shows that $M_{n}=\frac{1}{(2 p)^{n}} Z_{n}$ is a (positive) martingale. By 6c4, $M_{n} \rightarrow$ M_{∞} a.s., $\mathbb{E} M_{\infty} \leq 1$.
Proof of 6c1. Case $p<0.5$: we have $\sup _{n} \frac{1}{(2 p)^{n}} Z_{n}<\infty$, that is, $Z_{n}=$ $O\left((2 p)^{n}\right)$, a.s., which ultimately excludes the case $Z_{n} \geq 1$; extinction.

Case $p=0.5: Z_{n} \rightarrow M_{\infty}$ a.s.; we have to prove that $M_{\infty}=0$ a.s. Assuming the contrary we take $k>0$ such that $\mathbb{P}\left(M_{\infty}=k\right)>0$, then

$$
\begin{gathered}
\mathbb{1}_{Z_{n}=k} \rightarrow \mathbb{1}_{M_{\infty}=k} ; \\
\mathbb{1}_{Z_{n}=k, Z_{n+1}=k} \rightarrow \mathbb{1}_{M_{\infty}=k} ; \\
\mathbb{P}\left(Z_{n}=k\right) \rightarrow \mathbb{P}\left(M_{\infty}=k\right) ; \\
\mathbb{P}\left(Z_{n}=k, Z_{n+1}=k\right) \rightarrow \mathbb{P}\left(M_{\infty}=k\right) ; \\
\mathbb{P}\left(Z_{n+1}=k \mid Z_{n}=k\right) \rightarrow 1,
\end{gathered}
$$

that is, the distribution $\operatorname{Binom}(k, 0.5)$ is concentrated at $0.5 k$, - a contradiction.

More detailed information on the branching process can be obtained using the generating functions

$$
f_{n}(\theta)=\mathbb{E} \theta^{Z_{n}}
$$

We have $f_{0}(\theta)=\theta ; f_{1}(\theta)=p \theta^{2}+1-p ; \mathbb{E}\left(\theta^{Z_{n+1}} \mid Z_{n}=k\right)=\left(f_{1}(\theta)\right)^{k}$ (think, why); thus $f_{n+1}(\theta)=\mathbb{E}\left(f_{1}(\theta)\right)^{Z_{n}}=f_{n}\left(f_{1}(\theta)\right)$, that is,

$$
f_{n}=f_{1} \circ \cdots \circ f_{1} \quad(n \text { times }) .
$$

Iterations for $f_{n}(0)=\mathbb{P}\left(Z_{n}=0\right)$ converge (draw a picture!) to the first root of the equation $f_{1}(\theta)=\theta$. Taking into account that $f_{1}(1)=1$ we solve the equation easily: $\theta=(1-p) / p$. We get

$$
\mathbb{P}\left(Z_{n}=0\right) \rightarrow \frac{1-p}{p}=\mathbb{P}\left(\exists n Z_{n}=0\right)
$$

In order to prove 6 c 2 it remains to prove that $\mathbb{E} M_{\infty}=1$ and $\mathbb{P}\left(M_{\infty}=\right.$ $0)=\mathbb{P}\left(\exists n Z_{n}=0\right)$. In order to prove the former it is sufficient to prove that $M_{n} \rightarrow M_{\infty}$ in L_{1}, or in L_{2}, or just convergence of M_{n} in L_{2} (to whatever).

6c5 Lemma. If a martingale $\left(M_{n}\right)_{n}$ satisfies $\mathbb{E} M_{n}^{2}<\infty$ for all n then random variables ${ }^{1} M_{n+1}-M_{n}$ are mutually orthogonal.

Proof. We have $\mathbb{E}\left(\left(M_{n+1}-M_{n}\right) Y\right)=0$ for all $Y \in L_{\infty}\left(\mathcal{F}_{n}\right)$ and therefore (by approximation) for all $Y \in L_{2}\left(\mathcal{F}_{n}\right)$; apply it to $Y=M_{k+1}-M_{k}$ for $k<n$.

Thus, $\left\|M_{n+k}-M_{n}\right\|^{2}=\left\|M_{n+k}-M_{n+k-1}\right\|^{2}+\cdots+\left\|M_{n+1}-M_{n}\right\|^{2}$; convergence of $\left(M_{n}\right)_{n}$ in L_{2} is equivalent to convergence of $\sum\left\|M_{n+1}-M_{n}\right\|^{2}$, that is, to $\sup _{n}\left\|M_{n}\right\|^{2}<\infty$. Here is the conclusion.

6c6 Proposition. A positive ${ }^{2}$ martingale bounded in L_{2} converges both in L_{2} and almost surely.

In order to prove "the former" it remains to prove that $\left(M_{n}\right)_{n}$ is bounded in L_{2}. We have

$$
\begin{gathered}
\operatorname{Var} Z_{1}=4 p(1-p) ; \\
\operatorname{Var}\left(Z_{n+1} \mid Z_{n}=k\right)=k \operatorname{Var} Z_{1}=4 p(1-p) k ; \\
\operatorname{Var}\left(Z_{n+1} \mid Z_{n}\right)=4 p(1-p) Z_{n} ; \\
\operatorname{Var}\left(M_{n+1} \mid M_{n}\right)=\frac{1}{\left((2 p)^{n+1}\right)^{2}} \operatorname{Var}\left(Z_{n+1} \mid Z_{n}\right)=\frac{4 p(1-p)(2 p)^{n}}{(2 p)^{2 n+2}} M_{n} ; \\
\operatorname{Var} M_{n+1}=\mathbb{E} \operatorname{Var}\left(M_{n+1} \mid M_{n}\right)+\operatorname{Var} \mathbb{E}\left(M_{n+1} \mid M_{n}\right) ; \\
\operatorname{Var} M_{n+1}-\operatorname{Var} M_{n}=\mathbb{E} \operatorname{Var}\left(M_{n+1} \mid M_{n}\right)=\frac{4 p(1-p)}{(2 p)^{n+2}} .
\end{gathered}
$$

But why $\mathbb{P}\left(M_{\infty}=0\right)=\mathbb{P}\left(Z_{n} \rightarrow 0\right)$? (" \geq " is evident.) Is the event $1 \leq Z_{n}=o\left((2 p)^{n}\right)$ negligible for $p>0.5$?

First, $\mathbb{P}\left(M_{\infty}=0 \mid \mathcal{F}_{n}\right)=\left(\mathbb{P}\left(M_{\infty}=0\right)\right)^{Z_{n}}$ (independent subtrees...).
Second, $\mathbb{P}\left(M_{\infty}=0 \mid \mathcal{F}_{n}\right) \rightarrow \mathbb{1}_{M_{\infty}=0}$ a.s., as we'll see in 7 d 1 .
Thus, on the event $1 \leq Z_{n}=o\left((2 p)^{n}\right)$ (if it is not negligible) we have $\left(\mathbb{P}\left(M_{\infty}=0\right)\right)^{Z_{n}} \rightarrow 1$, therefore $\mathbb{P}\left(M_{\infty}=0\right)=1$ in contradiction to $\mathbb{E} M_{\infty}=1$.

The proof of 6 c 2 is thus finished (except for one claim postponed to Sect. 7, the "second" above).
(In fact, $\mathbb{P}\left(M_{\infty}=0\right)=1$ if and only if $\left.\mathbb{E}(X \ln X)=\infty \ldots\right)$

[^3]
[^0]: ${ }^{1}$ Maybe, banks...
 ${ }^{2}$ This is much simpler than a "special gladiator game" of: K.S. Kaminsky, E.M. Luks, P.I. Nelson (1984) "Strategy, nontransitive dominance and the exponential distribution". Austral. J. Statist. 26:2, 111-118.
 ${ }^{3}$ See also Sect. 7c.

[^1]: ${ }^{1}$ In discrete time it look strange, but in continuous time it does not...
 ${ }^{2}$ Imagine that C_{n} is the number of your shares of a stock at time n, and X_{n} is the share price at time $n \ldots$

[^2]: ${ }^{1}$ Do you like to get rich this way? :-)

[^3]: ${ }^{1}$ So-called martingale differences.
 ${ }^{2}$ The same holds for non-positive martingales, as we'll see in 7 c 6 .

