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7 Conditioning

7a What is the problem

First, three results announced. They are rather trivial is such special cases as
discrete distributions or absolutely continuous distributions, but nontrivial
for singular (and mixed) distributions. We’ll see that the general theory holds
for all distributions, and generalizes to high and even infinite dimension.

7a1 Proposition. Every 2-dimensional random variable (X, Y ) is distributed
like

(

f(U), g(U, V )
)

for some Lebesgue measurable functions f : (0, 1) → R

and g : (0, 1)× (0, 1) → R such that f is increasing on (0, 1), and g(u, ·) is
increasing on (0, 1) for each u ∈ (0, 1); here U, V are independent random
variables distributed uniformly on (0, 1).

Such f is called the quantile function of X ; and g(u, ·) is the conditional
quantile function of Y given X = f(u).

7a2 Proposition. Let (X1, Y1) be a 2-dimensional random variable (on some
probability space), and (Y2, Z2) another 2-dimensional random variable (on
another probability space) such that Y1 and Y2 are identically distributed.
Then there exists (on some probability space) a 3-dimensional random vari-
able (X, Y, Z) such that (X, Y ) is distributed like (X1, Y1), and (Y, Z) is
distributed like (Y2, Z2).

The idea is simple: X and Z are conditionally independent given Y . But
what exactly does it mean?

7a3 Theorem (disintegration of measure). For every probability measure
µ on R2 there exist a probability measure ν on R and a family (µx)x∈R of
probability measures µx on R such that

µ(A) =

∫

µx(Ax) ν(dx)
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for all Borel sets A ⊂ R2; here Ax = {y : (x, y) ∈ A}. (The function
x 7→ µx(Ax) is thus claimed to be ν-measurable.)

Now, the problem in general.
The elementary definition

P
(

A
∣

∣B
)

=
P
(

A ∩B
)

P
(

B
)

works if and only if P
(

B
)

6= 0. However, in many cases a limiting procedure
gives us a useful result when P

(

B
)

= 0.

7a4 Example. Let (Sn)n be the simple one-dimensional random walk and
B = {∀n Sn > −10} (a zero-probability event). We introduce Bn = {S1 >
−10, . . . , Sn > −10}, observe that Bn ↓ B and let P

(

A
∣

∣B
)

= limn P
(

A
∣

∣Bn

)

for “simple” A. In fact, we get a Markov chain with the transition proba-
bility pk,k−1 = k+9

2k+20
, pk,k+1 = k+11

2k+20
. However, the formula P

(

A
∣

∣B
)

=

limn P
(

A
∣

∣Bn

)

should not be used for all A; otherwise, trying A = B, we get
a paradox: P

(

B
∣

∣B
)

= 0.

Similarly we may define the self-avoiding random walk on Z2 (assuming
convergence); in fact, no one knows the joint distribution of the first two
moves (even roughly)!

Sometimes different “reasonable” sequences Bn ↓ B lead to different re-
sults, which is known as Borel’s paradox or Borel-Kolmogorov paradox. For
example,

lim
ε→0+

P
(

X ≤ 1
∣

∣ − ε < Y < ε
)

6= lim
ε→0+

P
(

X ≤ 1
∣

∣ − ε|X| < Y < ε|X|
)

.

Also, meridians (lines of longitude) and parallels (circles of latitude) on a
sphere.

Sometimes conditioning is really impossible.

7a5 Example. Let (Sn)n be the simple one-dimensional random walk and
B = {Sn → +∞} (a zero-probability event). We note that B = {Sn−S10 →
+∞}, “therefore” B is independent of S1, . . . , S10; conditionally, given B, the
walk behaves as usual, and we get the paradox, P

(

B
∣

∣B
)

= 0, once again.

7a6 Example. Let X ∼ U(0, 1) and B = {X ∈ Q}. We consider e2πiX ;
by symmetry, all rational points “must” get equal probabilities, which is
impossible.
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The conditional density formula

fY |X=x(y) =
fX,Y (x, y)

fX(x)

works well whenever the joint distribution of X, Y is absolutely continuous.
Neither this formula, nor the similar discrete formula

P
(

Y = y
∣

∣X = x
)

=
P
(

X = x, Y = y
)

P
(

X = x
)

covers the (practically important) case of discrete Y but absolutely contin-
uous X .1 A still more complicated case is, conditioning of Y on X = g(Y )
when Y is absolutely continuous and g is not one-to-one (especially when g
behaves like the Weierstrass function).

Bad news: we have no conditioning theory that covers under a single um-
brella all “good” cases listed above. Good news (for those who do not fear
of measure theory): we have a conditioning theory that covers conditioning
of Y on X for an arbitrary joint distribution of random variables (or ran-
dom vectors) X, Y , and this theory includes both the discrete case and the
absolutely continuous case.

7b Discrete case

Let Ω be (at most) countable, F = 2Ω, and F1 ⊂ F a sub-σ-algebra. Clearly,
F1 = σ(X) for some X : Ω → R (X just indexes the equivalence classes with
some real numbers). Here is the elementary conditioning:

P
(

A
∣

∣X = x
)

=
P
(

A ∩X−1(x)
)

P
(

X−1(x)
) =

∑

ω∈A∩X−1(x) p(ω)
∑

ω∈X−1(x) p(ω)
= Px(A) = f(x) ,

P
(

A
∣

∣F1

)

= P
(

A
∣

∣X
)

= f(X) : Ω → R ;

E
(

Y
∣

∣X = x
)

=

∑

ω∈A∩X−1(x) Y (ω)p(ω)
∑

ω∈X−1(x) p(ω)
=

∫

Y dPx = g(x) ,

E
(

Y
∣

∣F1

)

= E
(

Y
∣

∣X
)

= g(X) : Ω → R ;

each conditional measure Px is a probability measure on Ω, concentrated
on X−1(x); the map x → Px depends on the choice of X , but the map
PX : ω 7→ PX(ω) does not. Similarly, regression functions f and g depend on
the choice of X , but the random variables f(X) and g(X) do not. The con-
ditional probability is a special case of the conditional expectation: Y = 1lA.

1See 7e18.
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Convergence of the series is ensured if Y is integrable (except for negligible
x, if any).

Note that E
(

Y
∣

∣F
)

= Y and P
(

A
∣

∣F
)

= 1lA. On the other extreme,
E
(

Y
∣

∣{∅,Ω}
)

= EY (a constant function), and P
(

A
∣

∣{∅,Ω}
)

= P
(

A
)

.
The total probability formula and total expectation formula

E
(

P
(

A
∣

∣F1

))

= P
(

A
)

,

E
(

E
(

Y
∣

∣F1

))

= EY

boil down to the decomposition of measure,

P =
∑

x

P
(

X = x
)

· Px =
∑

ω

p(ω)PX(ω) = EPX ,

the latter expectation being taken in the linear space of signed measures. . . 1

The function a 7→ E
(

(Y −a)2
)

= a2−2aEY +E (Y 2) reaches its minimum
at a = EY (assuming Y ∈ L2, which evidently holds for Y = 1lA). That is,
EY is the orthogonal projection of Y to the one-dimensional space of con-
stants, in L2(Ω,F , P ). The same holds in each L2(Px), thus, the regression
function g minimizes E

(

Y − g(X)
)

2 = E
(

E
(

(Y − g(X))2
∣

∣X
))

. That is,
E
(

Y
∣

∣F1

)

is the orthogonal projection of Y to L2(Ω,F1, P ) ⊂ L2(Ω,F , P ).

7c Conditional expectation

We turn to the general case: (Ω,F , P ) is an arbitrary probability space, and
F1 ⊂ F a sub-σ-algebra. We assume that all null sets belong to F and also

to F1.

The Hilbert space L2(F1) = L2(Ω,F1, P |F1) is a subspace of L2(F) =
L2(Ω,F , P ). We consider the orthogonal projection L2(F) → L2(F1) and
denote it Y 7→ E

(

Y
∣

∣F1

)

. Note that E
(

Y
∣

∣F1

)

is an equivalence class.
Orthogonality means that 〈Y − E

(

Y
∣

∣F1

)

, X〉 = 0, that is,

E
(

X · E
(

Y
∣

∣F1

))

= E (XY ) for all X ∈ L2(F1) ;

this property characterizes E
(

Y
∣

∣F1

)

among L2(F1). In particular,

E
(

E
(

Y
∣

∣F1

))

= E (Y ) ,

the total expectation formula (not a characterization, of course). Moreover,

(7c1) E
(

E
(

Y
∣

∣F1

)

;B
)

= E (Y ;B) for all B ∈ F1 ;

1Recall Sect. 5c.
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also a characterization, since indicators and their linear combinations are
dense in L2. A projection operator is always linear:

E
(

aX
∣

∣F1

)

= aE
(

X
∣

∣F1

)

,

E
(

X + Y
∣

∣F1

)

= E
(

X
∣

∣F1

)

+ E
(

Y
∣

∣F1

)

,

if Xn → X in L2 then E
(

Xn

∣

∣F1

)

→ E
(

X
∣

∣F1

)

in L2 .

But the subspace L2(F1) is special:

if X ∈ L2(F1) then X+ ∈ L2(F1) .

It follows easily that the projection is positive:

if X ≥ 0 a.s. then E
(

X
∣

∣F1

)

≥ 0 a.s.

Thus, the projection operator is continuous (of norm 1) also in the L1 norm
(apply the total expectation formula to X+ and X−), and therefore extends
to L1(Ω,F , P ) by continuity. It is still positive.

The “tower property”

E
(

X
∣

∣F1

)

= E
(

E
(

X
∣

∣F2

)
∣

∣F1

)

a.s. if F1 ⊂ F2 ⊂ F

holds in L2 for a simple geometric reason, and extends to L1 by continuity.

7c2 Example. Let Y ∼ U(0, 1) and X = f(Y ),

f(y) =











3y for 0 ≤ y ≤ 1/3,

1.5(1− y) for 1/3 ≤ y ≤ 2/3,

0.5 for 2/3 ≤ y ≤ 1.

Then E
(

Y
∣

∣X
)

= g(X),

g(x) =











x/3 for 0 < x < 0.5,

5/6 for x = 0.5,

(2− x)/3 for 0.5 < x < 1.

7c3 Exercise. Do it twice. Namely, (a) check it via (7c1); (b) derive it by
minimization.

7c4 Exercise. Two σ-algebras F1,F2 ⊂ F are independent if and only if
E
(

Y
∣

∣F1

)

= EY a.s. for all Y ∈ L2(F2).
Formulate it accurately, and prove.
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7c5 Exercise. Let E
(

Y
∣

∣F1

)

= EY a.s. for a given Y ∈ L2(F).
(a) Does it follow that Y is independent of F1?
(b) Reconsider (a) assuming in addition that Y takes on only 3 values.
(c) The same for only two values.

More on martingales

Now we may use Definition 6a3 (rather than 6a4) in full generality.
A martingale bounded in L2 converges in L2 (recall Lemma 6c5 and the

paragraph after it), Mn → M∞ in L2. We have M∞ = M+
∞ − M−

∞ and
Mn = E

(

M∞

∣

∣Fn

)

= E
(

M+
∞

∣

∣Fn

)

−E
(

M−
∞

∣

∣Fn

)

, the difference between two
L2-bounded positive martingales. Proposition 6c6 is thus generalized.

7c6 Proposition. A martingale bounded in L2 converges both in L2 and
almost surely.

7d A convergence theorem

In the end of Sect. 6c, when proving P
(

1 ≤ Zn = o((2p)n)
)

= 0, we used the
relation P

(

A
∣

∣Fn

)

→ 1lA a.s. (for A ∈ F∞). This relation is proved below.
Recall 3b13: if Fn ↑ F∞ then ∪nL2(Fn) is dense in L2(F∞). It follows

that E
(

X
∣

∣Fn

)

→ X in L2 for allX ∈ L2(F∞), and E
(

X
∣

∣Fn

)

→ E
(

X
∣

∣F∞

)

in L2 for all X ∈ L2 = L2(F). But this is a martingale, bounded in L2; 7c6
ensures a.s. convergence, and we get the following.

7d1 Theorem. Let (Ω,F , P ) be a probability space and F1 ⊂ F2 ⊂ · · · ⊂
F∞ ⊂ F sub-σ-algebras such that Fn ↑ F∞. Then

E
(

X
∣

∣Fn

)

→ X a.s. and in L2 for all X ∈ L2(F∞) ;

E
(

X
∣

∣Fn

)

→ E
(

X
∣

∣F∞

)

a.s. and in L2 for all X ∈ L2(F) ;

P
(

A
∣

∣Fn

)

→ 1lA a.s. and in L2 for all A ∈ F∞ ;

P
(

A
∣

∣Fn

)

→ P
(

A
∣

∣F∞

)

a.s. and in L2 for all A ∈ F .

7e Conditional measures

Now, null sets need not belong to F (nor to F1).
Let (Ω,F , P ) be a probability space, and F1 ⊂ F a sub-σ-algebra. The

conditional probability

P
(

A
∣

∣F1

)

= E
(

1lA
∣

∣F1

)
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satisies

0 ≤ P
(

A
∣

∣F1

)

≤ 1 a.s.,

P
(

A1 ⊎ A2 ⊎ . . .
∣

∣F1

)

= P
(

A1

∣

∣F1

)

+ P
(

A2

∣

∣F1

)

+ . . . a.s.,

∀B ∈ F1 P
(

B
∣

∣F1

)

= 1lB ;

E
(

P
(

A
∣

∣F1

))

= P
(

A
)

,

which, however, does not mean that we can define conditional measures just
by Pω(A) = P

(

A
∣

∣F1

)

(ω).
In the discrete case (at most countable Ω) we may get rid of all negligible

points (if any) and define Pω(A) = P
(

A
∣

∣F1

)

(ω), getting

0 ≤ Pω(A) ≤ 1 ;

Pω(A1 ⊎ A2 ⊎ . . . ) = Pω(A1) + Pω(A2) + . . . ;

∀B ∈ F1 Pω(B) = 1lB(ω) ; especially, Pω(Ω) = 1 ;

∀A ∈ F

∫

Pω(A)P (dω) = P (A)

(

in this sense,

∫

Pω P (dω) = P

)

.

It is a disintegration of P into probability measures Pω localized on corre-
sponding parts of the partition.

In general it does not go. . .

7e1 Definition. Let (Ω,F , P ) be a probability space and F1 ⊂ F a sub-
σ-algebra. A regular conditional probability (given F1) is a family (Pω)ω∈Ω of
probability measures Pω on (Ω,F) such that for every A ∈ F the function
ω 7→ Pω(A) belongs to the equivalence class P

(

A
∣

∣F1

)

.

The function ω 7→ Pω(A) is not required to be F1-measurable; rather, it
must be equal a.s. to some F1-measurable function (of the given equivalence
class).

It is usual to write “Pω(A) = P
(

A
∣

∣F1

)

(ω) a.s.” treating P
(

A
∣

∣F1

)

as an
(arbitrary) element of the equivalence class.

Only the equivalence class of the map ω 7→ Pω matters; but the excep-
tional set should not depend on A.

Generally, a regular conditional probability need not exist (see 7e3).

7e2 Theorem. For (Ω,F) = (R,B) a regular conditional probability exists
and is unique (up to equivalence).

Note that (a) P is an arbitrary Borel probability measure on R; (b) F is
the Borel σ-algebra; P -null sets are not added; (c) F1 ⊂ F is an arbitrary
sub-σ-algebra.
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7e3 Example. There exists1 Z ⊂ [0, 1] of interior Lebesgue measure 0 and
exterior Lebesgue measure 1. We take Ω = [0, 1], F = {(A ∩ Z) ⊎ (B \
Z) : A,B ∈ B}, F1 = B, and define a probability measure P on (Ω,F) by
P
(

(A ∩ Z) ⊎ (B \ Z)
)

= 0.5mesA+ 0.5mesB.
If (Pω)ω is a regular conditional probability, then for almost every2 x ∈

[0, 1] the measure Px must be equal to δx (the atom at x), since Px is con-
centrated on every rational interval containing x. Thus Px(Z) = 1lZ(x) a.s.,
which contradicts to its measurability w.r.t. F1.

7e4 Exercise. Show that P
(

Z
∣

∣F1

)

= 0.5 a.s.

Proof of Theorem 7e2

The uniqueness part of Theorem 7e2 is easy: almost every x satisfies
Px(I) = P ′

x(I) for all rational intervals I, which implies Px = P ′
x.

The existence part needs more effort.

7e5 Definition. A measurable space is a pair (Ω,F) of a set Ω and a
σ-algebra F on it.

Do not confuse “measure space” and “measurable space”! A probability
measure on a measurable space turns it into a probability space.

Elements of F are called measurable sets. A map between two measurable
spaces is called measurable, if the inverse image of every measurable set is
measurable. Two measurable spaces are called isomorphic, if there exists an
isomorphism between them, that is, a measurable bijection with measurable
inverse.

The disjoint union of two measurable spaces is a measurable space, (Ω,F) =
(Ω′,F ′) ⊎ (Ω′′,F ′′).

A measurable part of a measurable space is itself a measurable space (and
the original measurable space becomes the disjoint union).

By an embedding of one measurable space into another we mean an iso-
morphism between the former and a measurable part of the latter.

The following technical definition is introduced temporarily, for this proof
only.

7e6 Definition. A measurable space (Ω,F) is good, if a regular conditional
probability exists for every probability measure on (Ω,F) and every sub-
σ-algebra of F .

1Using the choice axiom, of course.
2W.r.t. Lebesgue measure.
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Existence of regular conditional probability on (R,B) becomes the claim
that (R,B) is good. It follows from the three lemmas below (since a measur-
able space isomorphic to a good one is good).

7e7 Lemma. The Cantor set (with its Borel σ-algebra) is a good measurable
space.

7e8 Lemma. The real line (with its Borel σ-algebra) is embeddable (as a
measurable space) into the Cantor set (with its Borel σ-algebra).

7e9 Lemma. A measurable part of a good measurable space is a good mea-
surable space. In other words, if (Ω,F) = (Ω′,F ′) ⊎ (Ω′′,F ′′) is good then
(Ω′,F ′) is good.

Given (Ω,F) = (Ω′,F ′) ⊎ (Ω′′,F ′′) and two sub-σ-algebras, F ′
1 ⊂ F ′ on

Ω′ and F ′′
1 ⊂ F ′′ on Ω′′, we get the corresponding sub-σ-algebra F1 ⊂ F on

Ω (namely, F1 = {A ⊎ B : A ∈ F ′
1, B ∈ F ′′

1 }).

Proof of 7e9. Given a probability measure P on (Ω′,F ′), we extend it to a
probability measure on (Ω,F) (P (Ω′′) = 0, necessarily). Further, given a
sub-σ-algebra F ′

1 ⊂ F ′, we choose some sub-σ-algebra F ′′
1 ⊂ F ′′ (no matter

which one) and get the corresponding sub-σ-algebra F1 ⊂ F on Ω such that
L2(Ω,F1) = L2(Ω

′,F ′
1) and therefore E

(

·
∣

∣F1

)

= E
(

·
∣

∣F ′
1

)

.
We take a regular conditional probability (Pω)ω∈Ω for F1 and restrict it

to (Pω)ω∈Ω′ . We have Pω(Ω
′) = 1 for almost all ω ∈ Ω′, since Pω(Ω

′) =
P
(

Ω′
∣

∣F1

)

(ω) = 1lΩ′(ω) = 1. Thus we may treat Pω as a probability measure
on (Ω′,F ′), getting a regular conditional probability for F ′

1.

Proof of 7e8. First, R is isomorphic to (0, 1) (as a topological space, the more
so, as a measurable space).

Second, we embed (0, 1) into the Cantor set via binary digits and observe
that the image is a Borel set.

7e10 Lemma. If the function ω 7→ Pω(A) belongs to the equivalence class
P
(

A
∣

∣F1

)

for all A of an algebra E that generates F then it holds for all
A ∈ F (and therefore (Pω)ω∈Ω is a regular conditional probability).

Proof. Recall Sect. 1b: P ∗(A) = P (A) for all A ∈ F , where P ∗ is the outer
measure (defined via E).

Let B ∈ F ; we have to prove that P
(

B
∣

∣F1

)

= P
•
(B) a.s. (denoting the

function ω 7→ Pω(. . . ) by P
•
(. . . )). Given ε > 0, we take A1, A2, · · · ∈ E

such that ∪nAn ⊃ B and
∑

n P (An) ≤ P (B) + ε. Introducing a measur-
able function (and equivalence class) hε =

∑

n P•
(An) =

∑

n P
(

An

∣

∣F1

)

we get, on one hand, P
•
(B) ≤ hε (since Pω

(

∪nAn

)

≤
∑

n Pω(An)) and
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Ehε ≤ P (B) + ε (since EP
•
(An) = EP

(

An

∣

∣F1

)

= P (An)), and on the
other hand, P

(

B
∣

∣F1

)

≤ hε (since 1lB ≤
∑

n 1lAn
).

Applying the same argument to Ω \ B we get a measurable function gε
such that E gε ≥ P (B)− ε, P

•
(B) ≥ gε and P

(

B
∣

∣F1

)

≥ gε.
We have |P

(

B
∣

∣F1

)

−P
•
(B)| ≤ hε− gε and E (hε − gε) ≤ 2ε for arbitrary

ε; therefore P
(

B
∣

∣F1

)

= P
•
(B) a.s.

Proof of 7e7. The Borel σ-algebra of the Cantor set is generated by the
countable algebra E of clopen (that is, both closed and open) sets. Ev-
ery finitely additive set function on this algebra is automatically σ-additive,
due to compactness: if A = A1⊎A2⊎ . . . then Ak = ∅ for all k large enough.
By Theorem 1b3, every finitely additive set function on this algebra extends
to a measure.

We define Pω by

Pω(A) = P
(

A
∣

∣F1

)

(ω) for all A ∈ A ,

choosing a function in each equivalence class (countably many choices) and
extend Pω to a probability measure; indeed, additivity holds a.s. (countably
many equalities!) and is easily ensured everywhere. It remains to use Lemma
7e10.

Theorem 7e2 is thus proved.

7e11 Exercise. Generalize Theorem 7e2 to:
(a) Rn (with the Borel σ-algebra);
(b) R∞ (all infinite sequences of reals with the σ-algebra generated by

the coordinates).
Hint: only Lemma 7e8 needs to be generalized; embedding into the Cantor

set ensures both existence and uniqueness.

Measurable spaces embeddable into the Cantor set are called standard.

Observe that (a) Theorem 7e2 holds for all standard measurable spaces; (b)
all Rn and R∞ (and all their Borel subsets) are standard.1

The requirement that the function ω 7→ Pω(A) belongs to the equivalence
class P

(

A
∣

∣F1

)

can be reformulated using (7c1):

∫

B

Pω(A)P (dω) = P (A ∩ B) for all B ∈ F1 , A ∈ F .

1In fact, all Polish spaces (with Borel σ-algebras), and all their Borel subsets, are
standard.
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Another characterization:

Pω(B) = 1lB(ω) a.s. for each B ∈ F1 (separately) ,(7e12)
∫

Ω

Pω(A)P (dω) = P (A) for each A ∈ F (separately) .(7e13)

Indeed, (7e12) implies
∫

B
Pω(A)P (dω) =

∫

Ω
Pω(A ∩ B)P (dω).

7e14 Exercise. A given A ∈ F is independent of F1 if and only if Pω(A) =
P (A) for almost all ω.

Prove it.

Proof of Theorem 7a3. Theorem 7e2 (the existence part), applied to (Ω,F , P ) =
(R2,B2, µ) and F1 generated by the first coordinate, gives

µ(A) =

∫

Px,y(A)µ(dxdy) .

Measurability of Px,y w.r.t. F1 means that Px,y = Px. Property (7e12) means
that Px is concentrated on {x} × R. Thus, Px,y(A) = Px(A) = µx(Ax). The
first projection of µ is ν.

7e15 Exercise. Prove uniqueness of (µx)x∈R up to a ν-negligible set.

The same holds for many other spaces.

7e16 Exercise. Disintegrate the joint distribution µ of the random variables
X, Y of Example 7c2. Namely, guess the measures µx and check the equality
µ(A) =

∫

µx(Ax) ν(dx).

7e17 Exercise. Disintegrate a measure that has a density (w.r.t. the 2-di-
mensional Lebesgue measure). Namely, guess the measures µx and check the
equality µ(A) =

∫

µx(Ax) ν(dx).

7e18 Exercise. Derive formulas for conditioning of a discrete random vari-
able Y : Ω → Z on a continuous random variable X : Ω → R that has a
density fX .

7e19 Exercise. Every random variable X is distributed like f(U) for some
increasing function f : (0, 1) → R; here U is distributed uniformly on (0, 1).

Prove it.
Hint: first, prove it for a discrete X ; second, take discrete Xn such that

Xn ↑ X .

The function f is unique except for its values at discontinuity points (at
most countable set).
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Proof of Proposition 7a1. By 7e19, X is distributed like some f(U).
Theorem 7a3 gives us the conditional distributions µx of Y given X = x.
By 7e19 (again), µf(u) is the distribution of some g(u, V ). For every y,

m
(

{v : g(u, v) ≤ y}
)

= µf(u)

(

(−∞, y]
)

is measurable in u, and

{(u, v) : v < µf(u)((−∞, y])} ⊂ {(u, v) : g(u, v) ≤ y} ⊂ {(u, v) : v ≤ µf(u)((−∞, y])}

by monotonicity of g(u, ·); it follows that g is measurable. Finally,

P
(

(f(U), g(U, V )) ∈ A
)

=

∫ 1

0

du

∫ 1

0

dv 1lA(f(u), g(u, v)) =

=

∫ 1

0

du

∫ 1

0

dv 1lAf(u)
(g(u, v)) =

∫ 1

0

du µf(u)

(

Af(u)

)

=

=

∫

µx(Ax) ν(dx) = µ(A) = P
(

(X, Y ) ∈ A
)

.

Proof of Proposition 7a2. We have the one-dimensional distribution ν
of Y1 (and Y2 as well), the two-dimensional distribution µ of (Y1, X1) and the
two-dimensional distribution ξ of (Y2, Z2) Theorem 7a3 gives us µy and ξy
such that1 µ(A) =

∫

µy(Ay) ν(dy) and ξ(B) =
∫

ξy(By) ν(dy) for all Borel
sets A,B ⊂ R2; here Ay = {x : (y, x) ∈ A} and By = {z : (y, z) ∈ B}. We
introduce a measure η on R3 by2

η(C) =

∫

(µy × ξy)(Cy) ν(dy)

for all Borel sets C ⊂ R3; here Cy = {(x, z) : (x, y, z) ∈ C}. For a three-
dimensional random variable (X, Y, Z) distributed η we have

P
(

(Y,X) ∈ A
)

= η
(

{(x, y, z) : (y, x) ∈ A}
)

=

∫

(µy×ξy)(Ay×R) ν(dy) =

=

∫

µy(Ay) ν(dy) = µ(A) = P
(

(Y1, X1) ∈ A
)

;

and the same for (Y, Z).

1µy is the conditional distribution of X1 given Y1 = y; and ξy is the conditional distri-
bution of Z2 given Y2 = y.

2Think, is the integrand measurable?
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Conditional measures and conditional expectations

7e20 Proposition. Let (Ω,F , P ) be a probability space, F1 ⊂ F a sub-
σ-algebra, (Pω)ω∈Ω a regular conditional probability (given F1), and Y ∈
L1(Ω,F , P ). Then the function ω 7→

∫

Y dPω belongs to the equivalence
class E

(

Y
∣

∣F1

)

.

Proof. The relation holds for indicators, and (by linearity) for their linear
combinations. Let it hold for each Yn, and 0 ≤ Yn ↑ Y pointwise (not just
a.s.), and Y ∈ L1(Ω,F , P ); it is sufficient to prove that the relation holds
for Y . We have Yn → Y in L1, therefore E

(

Yn

∣

∣F1

)

→ E
(

Y
∣

∣F1

)

in L1. On
the other hand,

∫

Yn dPω ↑
∫

Y dPω ∈ [0,∞] for each ω by the monotone
convergence theorem; the rest is easy.

It is tempting to extend E
(

·
∣

∣F1

)

to all Y such that
∫

|Y | dPω < ∞ for
almost all ω (even if

∫

|Y | dP = ∞). Then, however, strange things happen.
For example, it may be that E

(

Y
∣

∣F1

)

> 0 a.s., but E
(

Y
∣

∣F2

)

< 0 a.s.1

If X is F1-measurable then Pω is concentrated on X−1(X(ω)) for almost
every ω. That is, X(ω′) = X(ω) for Pω-almost all ω′.

“Taking out what is known”:

E
(

XY
∣

∣F1

)

= XE
(

Y
∣

∣F1

)

for X ∈ L∞(F1), Y ∈ L1(F) .

Conditional versions of many inequalities follow immediately from exis-
tence of regular conditional probability. Conditional Markov inequality:

P
(

Y > X
∣

∣F1

)

≤
E
(

Y
∣

∣F1

)

X
a.s. for X ∈ L+

0 (F1), Y ∈ L+
0 (F) .

Conditional Jensen’s inequality:

E
(

h(Y )
∣

∣F1

)

≥ h
(

E
(

Y
∣

∣F1

))

for convex h(·), provided that E
(

|h(Y )|
∣

∣F1

)

< ∞ a.s. Choosing h(x) = |x|p

with p ∈ (1,∞) and taking the (unconditional) expectation we get

‖E
(

Y
∣

∣F1

)

‖p ≤ ‖Y ‖p .

Conditional Cauchy-Schwartz inequality:

|E
(

Y Z
∣

∣F1

)

| ≤
√

E
(

Y 2
∣

∣F1

)

√

E
(

Z2
∣

∣F1

)

.

And so on.
1A counterexample (sketch): P

(

X = n, Y = n + 1
)

= P
(

X = n + 1, Y = n
)

=

0.5pn(1 − p) for n = 0, 1, 2, . . . ; then E
(

aY
∣

∣X = x
)

= pa+a−1

1+p
ax for x = 1, 2, . . . ; we take

ap > 1 and get E
(

aY
∣

∣X
)

> aX a.s., but also E
(

aX
∣

∣Y
)

> aY a.s.
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7f Markov property as conditional independence

The “shortest” Markov process consists of 3 random variables X, Y, Z such
that for every Borel set B ⊂ R,

(7f1) P
(

Z ∈ B
∣

∣X, Y
)

= P
(

Z ∈ B
∣

∣Y
)

a.s.

In other words: in order to predict the future (Z) knowing the past (X) and
the present (Y ), use only the present; the past is irrelevant.

7f2 Exercise. A finite Markov chain (S0, S1, S2, . . . ) (recall Sect. 5b) satisfies

P
(

Sn+1 ∈ B
∣

∣S0, . . . , Sn

)

= P
(

Sn+1 ∈ B
∣

∣Sn

)

a.s.

for every n.
Prove it.

Note that 7f2 may be treated as (7f1) generalized to multi-dimensional
X = (S0, . . . , Sn−1).

It may seem that (7f1) is not time-symmetric; that is, this condition
on (X, Y, Z) does not imply the same condition on (Z, Y,X). However, let
us consider it in the light of conditional distributions. Denoting Py(. . . ) =
P
(

. . .
∣

∣Y = y
)

we rewrite (7f1) as Py(Z ∈ B | X) = Py(Z ∈ B) a.s., which
is just independence of Z and X (recall 7e14). . . but conditionally, given
Y = y.

In order to make this argument rigorous we need the following.

7f3 Proposition. Let (Ω, F ) be a standard measurable space, (Ω, F, P ) a

probability space, F1 ⊂ F2 ⊂ F sub-σ-algebras; (P
(1)
ω )ω∈Ω a regular condi-

tional probability on (Ω,F , P ) given F1; and (P
(2)
ω )ω∈Ω a regular conditional

probability on (Ω,F , P ) given F2. Then for almost every ω1, (P
(2)
ω )ω∈Ω is

also a regular conditional probability on (Ω,F , P
(1)
ω1 ) given F2.

Proof. By 7e10 (and standardness) it is sufficient to check (7e12) and (7e13)

on (Ω,F , P
(1)
ω1 ) for almost all ω1; the exceptional set of ω1 may depend on

A,B. That is, we need

P (2)
ω (B) = 1lB(ω) P (1)

ω1
-a.s. for each B ∈ F2 (separately) ,

∫

Ω

P (2)
ω (A)P (1)

ω1
(dω) = P (1)

ω1
(A) P -a.s. for each A ∈ F (separately) .

The former: the equality holds P -a.s. therefore it holds P
(1)
ω1 -a.s. for P -almost

every ω1.
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The latter: the function f : ω → P
(2)
ω (A) belongs to the equivalence class

P
(

A
∣

∣F2

)

; thus, by 7e20, the function ω1 7→
∫

Ω
f dP

(1)
ω1 =

∫

Ω
P

(2)
ω (A)P

(1)
ω1 (dω)

belongs to the equivalence class E
(

f
∣

∣F1

)

= E
(

P
(

A
∣

∣F2

)
∣

∣F1

)

= P
(

A
∣

∣F1

)

(the tower property); and the function ω1 7→ P
(1)
ω1 (A) belongs to the same

equivalence class.

We may apply it to a probability measure µ on R3 and its disintegrations:

µ(A) =

∫

µy(Ay) ν1(dy) , Ay = {(x, z) : (x, y, z) ∈ A} ;

µ(A) =

∫

µx,y(Ax,y) ν2(dxdy) , Ax,y = {z : (x, y, z) ∈ A}

for Borel A ⊂ R3. By 7f3, for ν1-almost every y we have the disintegration

µy(A) =

∫

µx,y(Ax)µy(dxdz) =

∫

µx,y(Ax) νy(dx) , Ax = {z : (x, z) ∈ A}

for Borel A ⊂ R2; here νy is the marginal of µy.
In other words, for arbitrary random variables X, Y, Z we have

P
(

(X,Z) ∈ A
∣

∣Y = y
)

=

∫

P
(

(X,Z) ∈ A
∣

∣X = x, Y = y
)

νy(dx) =

= E
(

P
(

(X,Z) ∈ A
∣

∣X, Y = y
)
∣

∣Y = y
)

for Borel A ⊂ R2 (since νy is the conditional distribution of X given Y =
y). We get the conditioned (on Y = y) version of the formula P

(

. . .
)

=
EP

(

. . .
∣

∣X
)

mentioned in Sect. 7e.

7f4 Definition. Random variables X,Z are conditionally independent given
Y , if for PY -almost every y the conditional distribution of (X,Z) given Y = y
is a product,

PX,Z|Y=y = PX|Y=y × PZ|Y=y .

An equivalent definition without conditional distributions:

P
(

X ∈ A,Z ∈ B
∣

∣Y
)

= P
(

X ∈ A
∣

∣Y
)

P
(

Z ∈ B
∣

∣Y
)

a.s.

for all Borel sets A,B ⊂ R.

7f5 Proposition. The Markov property (7f1) is equivalent to the conditional
independence of X,Z given Y .

Now we can define easily the Markov property for random functions on a
graph, on the lattice Zn, etc.
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