Given a sequence $\left(x_{1}, \ldots, x_{n}\right)$ of digits $x_{k} \in\{0,1, \ldots, 9\}$, we consider sets

$$
E_{d}=\left\{k: x_{k}=0, x_{k+d}=1, x_{k+2 d}=2, x_{k+3 d}=3, x_{k+4 d}=4\right\} ;
$$

if $k+i d>n$ it is treated modulo n (that is, $n+1=1$ and so on).
Let $n=10000$, and x_{1}, \ldots, x_{n} be chosen at random (probability 10^{-n} for each sequence).

Clearly, $\mathbb{E}\left|E_{d}\right|=0.1$ for each d; here $\left|E_{d}\right|$ is the number of elements in E_{d}.

Question 1. Prove that

$$
\mathbb{P}\left(50<\left|E_{1}\right|+\cdots+\left|E_{1000}\right|<150\right)>0.95 .
$$

Consider events

$$
\begin{aligned}
& A=\left\{x_{1}=0\right\}, \\
& B=\left\{\left|E_{1}\right|=0, \ldots,\left|E_{11}\right|=0,\left|E_{12}\right|=1\right\}, \\
& C=\left\{E_{1}=\emptyset, \ldots, E_{11}=\emptyset, E_{12}=\{1\}\right\} .
\end{aligned}
$$

Question 2. Prove that

$$
\mathbb{P}(C \mid A \cap B)=\frac{10}{n} \frac{\mathbb{P}(B)}{\mathbb{P}(B \mid A)}
$$

Question 3. Prove that

$$
|\mathbb{P}(B \mid A)-\mathbb{P}(B)| \leq 0.015
$$

