After the exam of 26.01.2014: Typical errors, comments etc.

QUESTION 1

Item (a)

ERROR: "If $g(x) \neq 0$ then either g(x) > 0 (and f(x) = g(x)) or g(x) < 0 (and f(x) = -g(x))".

CLARIFICATION: $g : \mathbb{R}^n \to \mathbb{R}^m$ rather than $\mathbb{R}^n \to \mathbb{R}$.

PENALTY: 7 points.

The same penalty applies to other arguments that make sense only for m = 1.

Item (c)

ERROR: "define h by $h(x) = (f(x))^2$, then $\nabla h(x) = 2f(x)\nabla f(x)$; using ∇f found in Item (a) we see that ∇h vanishes on Z_q ".

CLARIFICATION: the formula for ∇f does not apply on Z_g . If you really want to go this way, you have to prove two claims for $x_0 \in Z_g$. First, $\nabla h(x_0) = 0$. Second, $\lim_{x \to x_0} \nabla h(x) = 0$.

PENALTY: 5 points.

COMMENT: It is much easier to use the C^1 function $y \mapsto |y|^2$ on \mathbb{R}^m .

QUESTION 2

FATAL ERROR:¹ "a point of local extremum of $\varphi_a + \varphi_b$ on $S_1(0)$ is also a point of local extremum of $\sin \frac{1}{2}\varphi_a + \sin \frac{1}{2}\varphi_b$ on $S_1(0)$ ".

CLARIFICATION: The gradient of $\varphi_a + \varphi_b$ is generally not collinear to the gradient of $\sin \frac{1}{2}\varphi_a + \sin \frac{1}{2}\varphi_b$.

FATAL ERROR: " $\nabla f = 0$ at a point of local extremum of f on $S_1(0)$ ".

CLARIFICATION: rather, $\nabla f = \lambda \nabla g$; λ need not vanish.

FATAL ERROR: long calculations that do not prove that x is a linear combination of a, b.

CLARIFICATION: You need to prove that x is a linear combination of a, b; you do not need to calculate explicitly the coefficients of the linear combination! Long calculations are irrelevant; they do not bring you points, and are not checked.

COMMENT: In particular, you do not need to know that $(\arcsin t)' = \frac{1}{\sqrt{1-t^2}}$; all you need is just $\arcsin \in C^1(0,1)$.

ADDITIONAL COMMENT: I did not ask you to really find these extrema, but if you want (after the exam) to find them anyway, do it in two steps:

¹It means, no points for this question!

first, using Lagrange multipliers, prove that all extremal points are situated on the plane spanned by a, b, thus, on a circe (the plane intersected with the sphere);

Analysis-III

second, parametrize this circle by a single angular variable and apply the *one-dimensional* calculus.

QUESTION 3

Item (a)

ERROR: "inf_P(U(f, P) + U(g, P)) \leq inf_PU(f, P) +inf_PU(g, P)".

CLARIFICATION: Generally, $\sup(X+Y) \leq \sup(X) + \sup(Y)$ and $\inf(X+Y) \geq \inf(X) + \inf(Y)$. A specific argument (joint refinement of two partitions) is needed.

PENALTY: 5 points.

The same penalty applies to other incorrect treatment of \inf_{P} .

Item (c)

FATAL ERROR:¹ " $v^*(E) + v^*(F) = v^*(E \cup F) + v^*(E \cap F)$ ". CLARIFICATION: v is additive, but v^* is not. FATAL ERROR: " $\int (\mathbbm{1}_E + \mathbbm{1}_F) = \int \mathbbm{1}_E + \int \mathbbm{1}_F$ ". CLARIFICATION: \int is additive, but $\int \mathbbm{1}_E + \int \mathbbm{1}_F - \int \mathbbm{1}_{E \cap F}$ ". CLARIFICATION: rather, $\int \mathbbm{1}_{E \cup F} \leq \int \mathbbm{1}_E + \int \mathbbm{1}_F - \int \mathbbm{1}_{E \cap F}$ ". CLARIFICATION: rather, $\int \mathbbm{1}_{E \cup F} \leq \int \mathbbm{1}_E + \int \mathbbm{1}_F + \int \mathbbm{1}_F + \int (-\mathbbm{1}_{E \cap F})$; the last term is $(- \int \mathbbm{1}_{E \cap F})$, not $(-\int \mathbbm{1}_{E \cap F})$. ERROR: " $\mathbbm{1}_{E \cup F} = \mathbbm{1}_E + \mathbbm{1}_F$ ". CLARIFICATION: E, F need not be disjoint.

PENALTY: 5 points.

QUESTION 4

Item (a)

FATAL ERROR: v(E) is an expression containing r.

CLARIFICATION: E is defined without any parameter; its volume cannot depend on some r.

ERROR: " E_z is a disk of radius 1 - z; its area is $\pi(1 - z)^2$ ". CLARIFICATION: no, its radius is $\sqrt{1 - z}$ and area $\pi(1 - z)$.

PENALTY: 6 points.

¹It means, no points for this item.

Question 2 Question 3 Total Question 1 Question 4

GRADES STATISTICS

Total	Question 1	Question 2	Question 3	Question 4
76	30		25	21
76	15	40		21
73	25		25	23
73	22		30	21
71	20		30	21
70	20		23	27
69	17		25	27
64	24	0		40
62	30		5	27
61	10		24	27
60	30	0	30	
60	25		14	21
60		0	20	40
60	30	0		30
60	30	0	30	
60	30	0	30	
57	30	0		27
55	30	0	25	
54	15		18	21
52	25	0		27
52		0	25	27
52		0	25	27
51		0	30	21
51	16		17	18
50	25	0	25	
48	28	0	20	
47		0	20	27
46	20	0	26	
40	22	0	18	
33	12		10	11
32	16	0		16
26	20	0	6	
26	8		5	13
20	10	0	10	
16	8		8	0
10	0	0	10	
8	5		3	0
0	0	0		