After the exam of 12.09.2014: Typical errors, comments etc.

QUESTION 2

FATAL ERROR (AGAIN):¹ " $\nabla f = 0$ at a point of local extremum of f on $S_1(0)$ ".

CLARIFICATION: rather, $\nabla f = \lambda \nabla q$; λ need not vanish.

ERROR: vague discussion of how the needed linear combination should result from the obtained equations.

PENALTY: 13 points.

CLARIFICATION: You need to prove existence of numbers α, β, γ such that $x = \alpha a + \beta b + \gamma c$. No less, no more.

ERROR: the given linear independence of a, b, c is not used (and so, the denominator could vanish).

PENALTY: 7 points.

QUESTION 4

Item (b) Comment: if $m \leq f(\cdot) \leq M$ on [a, b] then

$$m\int_a^b \sin^2 nx \, \mathrm{d}x \le \int_a^b f(x) \sin^2 nx \, \mathrm{d}x \le M \int_a^b \sin^2 nx \, \mathrm{d}x \,.$$

However, $\int_a^b f(x) \cos 2nx \, dx$ need not be sandwiched between $m \int_a^b \cos 2nx \, dx$ and $M \int_a^b \cos 2nx \, dx$.

Item (c)

ERROR: Pointwise convergence of the integrals $\int_0^1 f(r,\theta) \sin^2 nr r \, dr$, treated as functions of θ , does not imply convergence of their $\int_0^{2\pi} (\dots) \, d\theta$.

PENALTY: 7 points. COMMENT: try $\int_0^1 \left(\int_0^{2\pi} f(r,\theta) \, \mathrm{d}\theta \right) \sin^2 nr \, r \, \mathrm{d}r.$

¹It means, no points for this question!

Total	Question 1	Question 2	Question 3	Question 4
103		40	30	33
100	30	40	30	
100	30	40	30	
90		40	30	20
73	10	33	30	
60	15	20	25	
50	30	0		20
46		20	13	13
46		15	18	13

GRADES STATISTICS