After the exam of 12.09.2014: Typical errors, comments etc.

Question 2
Fatal error (again): ${ }^{1}$ " $\nabla f=0$ at a point of local extremum of f on $S_{1}(0)$ ".

Clarification: rather, $\nabla f=\lambda \nabla g ; \lambda$ need not vanish.
Error: vague discussion of how the needed linear combination should result from the obtained equations.

Penalty: 13 points.
Clarification: You need to prove existence of numbers α, β, γ such that $x=\alpha a+\beta b+\gamma c$. No less, no more.

Error: the given linear independence of a, b, c is not used (and so, the denominator could vanish).

Penalty: 7 points.

Question 4

Item (b)

Comment: if $m \leq f(\cdot) \leq M$ on $[a, b]$ then

$$
m \int_{a}^{b} \sin ^{2} n x \mathrm{~d} x \leq \int_{a}^{b} f(x) \sin ^{2} n x \mathrm{~d} x \leq M \int_{a}^{b} \sin ^{2} n x \mathrm{~d} x
$$

However, $\int_{a}^{b} f(x) \cos 2 n x \mathrm{~d} x$ need not be sandwiched between $m \int_{a}^{b} \cos 2 n x \mathrm{~d} x$ and $M \int_{a}^{b} \cos 2 n x \mathrm{~d} x$.

Item (c)
Error: Pointwise convergence of the integrals $\int_{0}^{1} f(r, \theta) \sin ^{2} n r r \mathrm{~d} r$, treated as functions of θ, does not imply convergence of their $\int_{0}^{2 \pi}(\ldots) \mathrm{d} \theta$.

Penalty: 7 points.
Comment: try $\int_{0}^{1}\left(\int_{0}^{2 \pi} f(r, \theta) \mathrm{d} \theta\right) \sin ^{2} n r r \mathrm{~d} r$.

[^0]
Grades statistics

Total	Question 1	Question 2	Question 3	Question 4
103		40	30	33
100	30	40	30	
100	30	40	30	
90		40	30	20
73	10	33	30	
60	15	20	25	
50	30	0		20
46		20	13	13
46		15	18	13

[^0]: ${ }^{1}$ It means, no points for this question!

