Appendix: If spaces are not a joy to you

If spaces are not a joy to you, feel free to switch to the language of invariance under transformations, as follows.

For single-space notions, such as "bounded set", "continuous function", "simple path".

well-defined in Euclidean vec-	invariant under orthogonal transforma- tions
tor ${ }^{f d}$ space	
well-defined in Euclidean affine	invariant under orthogonal affine transfor-
${ }^{f d}$ space	mations
well-defined in vector ${ }^{f d}$ space	invariant under linear transformations
well-defined in affine ${ }^{f d}$ space	invariant under affine transformations

All transformations are assumed to be invertible.
Orthogonal transformations are linear isometries. $\quad \forall x|A x|=|x|$.
Orthogonal affine transformations are composed from orthogonal transformations and shifts. $\quad T(x)=A x+b, \quad \forall x|A x|=|x|$.
Affine transformations are composed from linear transformations and shifts. $T(x)=A x+b$.

Points: $\quad x \mapsto T(x)$.
Sets: $\quad X \mapsto T(X)=\{T(x): x \in X\} ; \quad x \in X \Longleftrightarrow T(x) \in T(X)$.
Paths: $\quad \gamma \mapsto T \circ \gamma ; \quad \gamma(t)=x \Longleftrightarrow(T \circ \gamma)(t)=T(x)$.
Functions: $\quad f \mapsto f \circ T^{-1} ; \quad f(x)=\left(f \circ T^{-1}\right)(T(x))$.
For mappings (linear and nonlinear) from a space to a space, and related two-space notions

well-defined for a pair of Eu clidean vector ${ }^{f d}$ spaces	ns-
well-defined for a pair of $E u$ clidean affine fdspaces	ariant under pairs of orthogonal affine ansformations
well-defined for a pair of vector	ariant under pairs of linear transforma-
well-defined for a pair of affine ${ }^{f}$ dspaces	invariant under pairs of affine transformations

$$
\begin{array}{llll}
\text { Mappings: } & & f \mapsto T_{2} \circ f \circ T_{1}^{-1} ; \\
& y=f(x) \quad \Longleftrightarrow \quad T_{2}(y)=\left(T_{2} \circ f \circ T_{1}^{-1}\right)\left(T_{1}(x)\right) .
\end{array}
$$

