Appendix: If spaces are not a joy to you

If spaces are not a joy to you, feel free to switch to the language of invariance under transformations, as follows.

For single-space notions, such as "bounded set", "continuous function", "simple path".

well-defined in Euclidean vec-	invariant under <i>orthogonal</i> transforma-
tor fd space	tions
well-defined in Euclidean affine	invariant under orthogonal affine transfor-
fd space	mations
well-defined in vector fd space	invariant under <i>linear</i> transformations
well-defined in <i>affine</i> fd space	invariant under $affine$ transformations

All transformations are assumed to be invertible.

Orthogonal transformations are linear isometries. $\forall x \ |Ax| = |x|$. Orthogonal affine transformations are composed from orthogonal transformations and shifts. T(x) = Ax + b, $\forall x \ |Ax| = |x|$. Affine transformations are composed from linear transformations and shifts. T(x) = Ax + b.

 $\begin{array}{lll} \text{Points:} & x \mapsto T(x).\\ \text{Sets:} & X \mapsto T(X) = \{T(x) : x \in X\}; & x \in X \iff T(x) \in T(X).\\ \text{Paths:} & \gamma \mapsto T \circ \gamma; & \gamma(t) = x \iff (T \circ \gamma)(t) = T(x).\\ \text{Functions:} & f \mapsto f \circ T^{-1}; & f(x) = (f \circ T^{-1})(T(x)). \end{array}$

For mappings (linear and nonlinear) from a space to a space, and related two-space notions

well-defined for a pair of Eu -	invariant under pairs of <i>orthogonal</i> trans-
$clidean \ vector \ fd$ spaces	formations
well-defined for a pair of Eu -	invariant under pairs of orthogonal affine
clidean affine fd spaces	transformations
well-defined for a pair of <i>vector</i>	invariant under pairs of <i>linear</i> transforma-
fd spaces	tions
well-defined for a pair of <i>affine</i>	invariant under pairs of <i>affine</i> transforma-
fd spaces	tions
Mappings:	$f \mapsto T_2 \circ f \circ T_1^{-1};$

s:			$f \mapsto T_2 \circ f \circ T_1^{-1};$
	y = f(x)	\iff	$T_2(y) = (T_2 \circ f \circ T_1^{-1})(T_1(x)).$