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The n-dimensional space Rn may be treated as a Euclidean space, or just
a vector space, etc. Its topology is uniquely determined by its algebraic struc-
ture.

1a Prerequisites: linear algebra

You should know the notion of: Forgot? Then see:

Vector space (=linear space) [Sh:p.26 “Vector space axioms”]

Isomorphism of vector spaces: a linear bijection.
Basis of a vector fd space [Sh:Def.2.1.2 on p.28]

Dimension of a vector fd space: the number of vectors in every basis.
Two vector fd spaces are isomorphic if and only if their dimensions are equal.
Subspace of a vector space.
Linear operator (=mapping=function) between vector spaces [Sh:3.1]

Inner product on a vector space: 〈x, y〉 [Sh:p.31 “Inner product properties”]

A basis of a subspace, being a linearly independent system, can be extended
to a basis of the whole vector fd space.

1a1 Definition. A Euclidean vector space consists of a vector space and an
inner product.1

Isomorphism of Euclidean vector spaces: an isometric linear bijection.

On a Euclidean vector space:

Euclidean norm (=modulus=abs. value) of vector: |x| =
√
〈x, x〉 [Sh:p.32]

The Cauchy-Schwartz inequality: −|x||y| ≤ 〈x, y〉 ≤ |x||y|. [Sh:Th.2.2.5]

The triangle inequality: |x+ y| ≤ |x|+ |y|. [Sh:Th.2.2.6]

1I dislike this definition, since it does not exclude the pathology of incomplete infinite-
dimensional Euclidean spaces. Fortunately, in this course we need only finite dimension.
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Every Euclidean fd space has an orthonormal basis.
Two Euclidean fd spaces are isomorphic if and only if their dimensions are
equal.
A subspace of a Euclidean space is another Euclidean space.

An orthonormal basis of a subspace can be extended to an orthonormal basis
of the whole Euclidean fd space.

1a2 Proposition. Every linear operator from one Euclidean vector fd space
to another sends some orthonormal basis of the first space into an orthogonal
system in the second space.

This is called the Singular Value Decomposition.1

1a3 Exercise. Let a vector fd space be endowed with two Euclidean metrics.
Then it contains a basis orthonormal in the first metric and orthogonal in
the second metric.

Prove it.2

1a4 Exercise. Let V1, V2 be vector spaces and T : V1 → V2 a linear bijection.
Prove that T−1 : V2 → V1 is linear.

1a5 Exercise. Prove that every isomorphism between two vector spaces
preserves all the notions introduced for vector spaces: basis, dimension, sub-
space, inner product.

1b Prerequisites: topology

You should know the notion of: Forgot? Then see:

A sequence of points of Rn [Sh:p.36]3

Its convergence, limit [Sh:p.42–43]

1See: Todd Will, ”Introduction to the Singular Value Decomposition”,
http://www.uwlax.edu/faculty/will/svd/index.html Quote:

The Singular Value Decomposition (SVD) is a topic rarely reached in undergraduate
linear algebra courses and often skipped over in graduate courses.

Consequently relatively few mathematicians are familiar with what M.I.T. Professor
Gilbert Strang calls ”absolutely a high point of linear algebra.”

2Hint: E1 = (V, 〈·, ·〉1), E2 = (V, 〈·, ·〉2); apply 1a2 to the identity operator E1 → E2.
3Quote: The only obstacle . . . is notation . . . n already denotes the dimension of the

Euclidean space where we are working; and furthermore, the vectors can’t be denoted with
subscripts since a subscript denotes a component of an individual vector. . . . As our work
with vectors becomes more intrinsic, vector entries will demand less of our attention, and
we will be able to denote vectors by subscripts.

More quote (p. 64–65): The author does not know any graceful way to avoid this no-
tation collision, the systematic use of boldface or arrows to adorn vector names being

http://www.uwlax.edu/faculty/will/svd/index.html
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Mapping Rm → Rn; continuity (at a point; on a set) [Sh:p.41–48]

Subsequence; Bolzano-Weierstrass theorem [Sh:p.52–53]

Subset of Rn, its limit points; closed set; bounded set [Sh:p.51]

Compact set [Sh:p.54]

Open set [Sh:p.191]1

Closure, boundary, interior [Sh:p.311,314]

Open cover; Heine-Borel theorem [Sh:p.312]

Open ball, closed ball, sphere [Sh:p.50,191–192]

Open box, closed box [Sh:p.246]

[Sh:Exer. 2.3.8–2.3.11, 2.4.1–2.4.8]

1b1 Exercise. For a function f : (0,∞)× (0,∞)→ R defined by
f(x, y) = y sin(1/x) prove that the limits

lim
(x,y)→(0,0),x>0,y>0

f(x, y) and lim
x→0+

lim
y→0+

f(x, y)

exist and equal 0, but the second iterated limit

lim
y→0+

lim
x→0+

f(x, y)

does not exist.

1b2 Exercise.
Consider functions f : R2 \ {(0, 0)} → R constant on all
rays from the origin; that is, f(r cosϕ, r sinϕ) = h(ϕ)
for some h : R→ R, h(ϕ + 2π) = h(ϕ). Assume that h
is continuous.

(a) Prove that the iterated limits

lim
x→0+

lim
y→0+

f(x, y) and lim
y→0+

lim
x→0+

f(x, y)

exist and are equal to h(0) and h(π/2) respectively.
(b) prove that the “full” limit

lim
(x,y)→(0,0),x>0,y>0

f(x, y)

heavyhanded, and the systematic use of the Greek letter ξ rather than its Roman coun-
terpart x to denote scalars being alien. Since mathematics involves finitely many symbols
and infinitely many ideas, the reader will in any case eventually need the skill of discerning
meaning from context, a skill that may as well start receiving practice now.

1Quote: A set, however, is not a door: it can be neither open or closed, and it can be
both open and closed. (Examples?)
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exists if and only if h is constant on [0, π/2].
(c) It can happen that the two iterated limits exist and are equal, but the

“full” limit does not exist. Give an example.
(d) The same as (c) and in addition, f is a rational function (that is, the

ratio of two polynomials).1

(e) Generalize all that to arbitrary (not just positive) x, y.

1b3 Exercise.
Consider functions g : R2 \ {(0, 0)} → R of the form
g(x, y) = f(x2, y) where f is as in 1b2.

(a) Prove that the limit

lim
t→0+

g(ta, tb)

exists for every (a, b) 6= (0, 0); calculate the limit in terms of the function h
of 1b2.

(b) It can happen that the “full” limit

lim
(x,y)→(0,0)

g(x, y)

does not exist. Give an example.

1b4 Exercise. “Componentwise nature of continuity” Prove or disprove: a
mapping f : R → Rn is continuous if and only if each coordinate function
fk : R→ R is continuous; here f(x) =

(
f1(x), . . . , fn(x)

)
. [Sh:Th.2.3.9]

1b5 Exercise. Prove or disprove: a mapping f : R2 → R is continuous if and
only if it is continuous in each coordinate separately; that is, f(x, ·) : R→ R
is continuous for every x, and f(·, y) : R→ R is continuous for every y.

1b6 Exercise. Prove the Bolzano-Weierstrass theorem and the Heine-Borel
theorem.

1b7 Exercise. (a) Prove that finite union of closed sets is closed, but union
of countably many closed sets need not be closed; moreover, every open set
in Rn is such union. However, intersection of closed sets is always closed.

(b) Formulate and prove the dual statement (take the complement).

1b8 Exercise. Prove that a set K ⊂ Rn is compact if and only if every
continuous function f : K → R is bounded.

1Hint: try x2 + y2 in the denominator.
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1b9 Exercise. Prove that a continuous image of a compact set is compact,
but a continuous image of a bounded set need not be bounded, and a con-
tinuous image of a closed set need not be closed; moreover, every open set in
Rn is a continuous image of a closed set.1

1b10 Exercise. Prove that every decreasing sequence of nonempty compact
sets has a nonempty intersection. Does it hold for closed sets? for open sets?

1b11 Exercise. Let K ⊂ Rn be compact, and f : K → Rm continuous.
Prove that f is uniformly continuous, that is,
∀ε > 0 ∃δ > 0 ∀x, y ∈ K

(
|x− y| < δ =⇒ |f(x)− f(y)| < ε

)
.

1b12 Exercise. Let X ⊂ Rn be a closed set, f : X → Rm a continuous
mapping. Prove that its graph Γf = {(x, f(x)) : x ∈ X} is a closed subset
of Rn+m. Is the converse true?

1b13 Exercise. Prove existence of a bijection f from the open unit ball
B(0, 1) ⊂ Rn onto the whole Rn such that f and f−1 are continuous. (Such
mappings are called homeomorphisms). What about the closed ball?

1b14 Exercise. Let f : R → R be a continuous bijection. Prove that
f−1 : R→ R is continuous.

1b15 Exercise. Give an example of a continuous bijection f : [0, 1)→ S1 =
{(x, y) : x2 + y2 = 1} ⊂ R2 such that f−1 : S1 → [0, 1) fails to be continuous.
The same for f : [0,∞)→ S1.

1b16 Exercise. Give an example of a continuous bijec-
tion f : R → A = {(x, y) : (|x| − 1)2 + y2 = 1} ⊂ R2

such that f−1 : A→ R fails to be continuous.

1b17 Exercise. Give an example of a continuous bijection
f : R2 → B = {(x, y, z) : (

√
x2 + y2 − 1)2 + z2 = 1} ⊂ R3

such that f−1 : B → R2 fails to be continuous.2

1Hint: the closed set need not be connected.
2What about a continuous bijection f : R2 → R2 ? In fact, f−1 is continuous, which

can be proved using powerful means of topology (the Jordan curve theorem).
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1c The joy of spaces 1

To a mathematician, the word space
doesn’t connote volume but instead
refers to a set endowed with some
structure.2 [Sh:p.24]

An affine space is nothing more than
a vector space whose origin we try to
forget about.

Marcel Berger, “Geometry I”, p. 32.

Let V be a vector space.

1c1 Definition. An affine space with the difference space V consists of a
set S and a map V ×S → S denoted (v, a) 7→ v+a such that for every a ∈ S

0 + a = a ;

v + (w + a) = (v + w) + a for all v, w ∈ V ;

the map V 3 v 7→ v + a ∈ S is bijective.

Here is an equivalent definition (“Weyl’s axioms”).3

1c2 Definition. An affine space with the difference space V consists of a
set S and a map S × S → V denoted (a, b) 7→ b− a such that

(c− b) + (b− a) = c− a for all a, b, c ∈ S ;

∀a ∈ S ∀v ∈ V ∃ ! b ∈ S b− a = v .

The difference space of an affine space S is often denoted by ~S.

1c3 Example. Given a continuous function g : R → R, consider the set
S1 = {f : f ′ = g} of all its antiderivatives (that is, indefinite integrals).
This S1 is an affine space with the difference space P0 = {f : f ′ = 0} of all
constant functions.

More generally, Sn = {f : f (n) = g} is an affine space with the difference
space Pn−1 = {f : f (n) = 0} of all polynomials of degree (at most) n− 1.

1c4 Exercise. Fill in the details in 1c3. What about a more general linear
differential equation?

1Additional sources:
“Affine and Euclidean geometry”, chapter II of a course in Madrid Politech. Univ.;
“Basics of Euclidean geometry”, chapter 6 of the book: J. Gallier, “Geometric Methods
and Applications” (pdf or djvu);
“Vector spaces, affine spaces, and metric spaces”, chapter 2 of the book: Bærentzen,
J. Gravesen, F. Anton, H. Aanæs, “Guide to Computational Geometry Processing”;
chapters 1, 2 of the book: M. Audin, “Geometry”.

2If you wonder why, see “Space (mathematics)” in Wikipedia.
3For several other equivalent definition see nLab.

http://ocw.upm.es/algebra/affine-and-projective-geometry-1/class-material
http://dx.doi.org/10.1007/978-1-4419-9961-0_6
http://www.cis.upenn.edu/~cis610/geombchap6.pdf
http://carlossicoli.free.fr/G/Gallier_J.-Geometric_methods_and_applications_for_computer_science_and_engineering%28Springer,1998%29%28600dpi%29%28KA%29%28T%29%28589s%29_MD_.djvu
http://dx.doi.org/10.1007/978-1-4471-4075-7_2
http://carlossicoli.free.fr/A/Audin_M.-Geometry%28Springer_Universitext,2003%29%28363s%29.pdf
http://en.wikipedia.org/wiki/Space_(mathematics)
http://nlab.mathforge.org/nlab/show/affine+space
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1c5 Exercise. (a) Define isomorphism between affine spaces. Is it uniquely
determined by the corresponding isomorphism between their difference spaces?

(b) Define the dimension of an affine fd space.
(c) Prove that two affine fd spaces are isomorphic if and only if their di-

mensions are equal.
(d) Define an affine subspace of an affine space. Is it uniquely determined

by the corresponding subspace of the difference space? What about an affine
subspace of a vector space?

(e) Recall Sn of 1c3. Is it finite-dimensional? What is its dimension?
Check that it is a hyperplane in the vector spaceBn = {f : ∃c ∈ R f (n) = cg}
(unless g = 0).

1c6 Exercise. Let S1 be an affine plane (that is, 2-dimensional affine space),
and a1, b1, c1 ∈ S1 not on a line (a line being a 1-dimensional affine subspace).
Let the same hold for S2 and a2, b2, c2 ∈ S2. Prove that one and only one
isomorphism between S1 and S2 sends a1 to a2, b1 to b2 and c1 to c2.

Thus, up to isomorphism there is only one affine plane (“the affine plane”)
and only one triangle on it!

1c7 Definition. An Euclidean affine space is an affine space whose difference
space is a Euclidean vector space (that is, endowed with a Euclidean metric).1

On the affine Euclidean plane triangles differ (up to isomorphism); you
know, some are right-angled, acute-angled, obtuse-angled, isosceles, equilat-
eral etc. Nothing like this can happen on the affine plane.

Recall a result from Euclidean geometry: the three bisectors of a triangle
intersect [Sh:p.27]. Can we define bisector(s) on the affine plane? Yes, we
can! The given Euclidean metric is irrelevant. We can simplify the task in
two ways.

First way: work on the affine plane. No lengths, no angles. The smaller
the labyrinth of possible arguments, the easier to find a proof.

Second way: restrict yourself to equilateral triangles. That is, replace the
given (irrelevant) Euclidean metric with another (relevant) Euclidean metric
that makes the given triangle equilateral.

This is instructive.

Irrelevant structure is a nuisance. Downgrade the given structure as far
as possible. A relevant structure may help. Try to upgrade the structure
according to the given situation.

1Surely, Euclid himself did not treat some point as “the origin” of the space. Also,
for him a length (or distance) was not a number; rather, the ratio of two lengths was a
number.
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1c8 Exercise. Given a triangle abc on an affine plane, upgrade the plane to
a (vector, not affine) Euclidean plane such that |a − b| = |b − c| = |c − a|,
|a| = |b| = |c| and a+ b+ c = 0.

Also the three altitudes of a triangle intersect [Sh:p.37–38]. In this case
Euclidean metric is relevant.

The space Rn is more than just a Euclidean vector space; it is a Euclidean
vector space endowed with an orthonormal basis (or equivalently, Cartesian
coordinates). And conversely, an n-dimensional Euclidean vector space en-
dowed with an orthonormal basis is canonically isomorphic to Rn. 1 Linear
operators on such space (or from one such space to another) correspond bi-
jectively and canonically to n× n matrices.

The Singular Value Decomposition 1a2 may be reformulated as follows.

1c9 Proposition. Every linear operator from an n-dimensional Euclidean
vector space to an m-dimensional Euclidean vector space has a diagonal m×n
matrix in some pair of orthonormal bases.2

m < n m = n

m > n

In particular, this holds for every linear operator Rn → Rn. It does not
mean that every matrix is diagonalizable! Two bases give much more freedom
than one basis.

This is instructive.

Whenever possible, downgrade a single space to a pair of spaces.

In other words: downgrade canonically isomorphic spaces to (just) iso-
morphic spaces.

We’ll prove theorems much harder than the result about the three bisec-
tors. The help of spaces will be relatively small. Still, even a relatively small
simplification of a difficult proof should not be missed.

1Thus we feel comfortable saying that it is Rn. . .
2Absolute values of the numbers on the diagonal of this matrix are well-known as

singular values of the operator T ; they are square roots of the eigenvalues of the operator
T ∗T , and do not depend (up to permutation) on the choice of the pair of bases.
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1c10 Exercise. For every linear operator T : Rn → Rm deduce the relation

dimT (Rn) + dimT−1(0) = n

from 1c9. Generalize to arbitrary pair of vector fd spaces.

1d Linearity and continuity

The general form of a linear function f : Rn → R [Sh:p.65]:

f(x) = 〈a, x〉 for some a ∈ Rn .

Such f is continuous [Sh:p.65] (being a linear combination of coordinate
functions).

The general form of a linear operator T : Rn → Rm [Sh:p.68]:

T (x) = Ax for some m× n matrix A .

Such T is continuous [Sh:Th.3.1.5] (since each coordinate of Tx is a linear
function of x).

Affine function f : Rn → R:

f(x) = 〈a, x〉+ t for some a ∈ Rn, t ∈ R .

Affine operator T : Rn → Rm:

T (x) = Ax+ b for some m× n matrix A and some b ∈ Rm .

Such f and T are continuous.
Thus, every linear (as well as affine) bijection T : Rn → Rn is a homeo-

morphism (that is, T and T−1 are continuous).

1d1 Exercise. Prove that every homeomorphism Rn → Rn preserves all the
topological notions introduced in Sect. 1b: convergence of sequence, limit
point, closed set, bounded set,1 compact set, open set, closure, boundary,
interior.

Given an n-dimensional vector space V , we choose a linear bijection T :
V → Rn (equivalently, a basis of V , basically, coordinates on V ) and transfer
all topological notions from Rn to V via T . For instance, ( xn → x in
V ) ⇐⇒ ( T (xn) → T (x) in Rn ); ( K is compact in V ) ⇐⇒ ( T (K)
is compact in Rn ). The choice of T does not matter. Here is why. Let

1“Bounded set” is generally not a topological notion; but in Rn it is equivalent to the
notion “subset of a compact set”.
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T1, T2 : V → Rn be linear bijections, then T2T
−1
1 : Rn → Rn is a linear

bijection, therefore a homeomorphism. Thus, ( T1(xn) → T1(x) ) ⇐⇒ (
(T2T

−1
1 )T1(xn) → (T2T

−1
1 )T1(x) ) ⇐⇒ ( T2(xn) → T2(x) ); also, ( T1(K) is

compact ) ⇐⇒ ( (T2T
−1
1 )T1(K) is compact ) ⇐⇒ ( T2(K) is compact ); etc.

Topological notions are well-defined on every vector (as well as affine)
fd space.

Every linear bijection between vector fd spaces is a homeomorphism. The
same holds for an affine bijection between affine fd spaces.1

1d2 Exercise. Recall the n-dimensional vector space Pn−1 of polynomials
discussed in 1c3. Prove that the following conditions on f, f1, f2, · · · ∈ Pn−1
are equivalent:

(a) fk → f in Pn−1;

(b) fk(0)→ f(0), f ′k(0)→ f ′(0), . . . , f
(n−1)
k (0)→ f (n−1)(0);

(c) fk(0)→ f(0), fk(1)→ f(1), . . . , fk(n− 1)→ f(n− 1);
(d) fk(·)→ f(·) pointwise; that is, fk(x)→ f(x) for every x ∈ R;
(e) fk(·) → f(·) locally uniformly; that is, max|x|≤M |fk(x) − f(x)| → 0

for every M .
Hint: (c) consider the linear operator Pn−1 3 g 7→

(
g(0), g(1), . . . , g(n−1)

)
∈

Rn.

1d3 Exercise. The same as 1d2 for the n-dimensional affine space Sn = {f :
f (n) = g} discussed in 1c3.

Hint: use 1d2.

1d4 Exercise. Let V be a vector fd space, and V1 ⊂ V its subspace.
(a) Upgrade V to Rn (by choosing a basis) getting V1 = {(x1, . . . , xn) :

xm+1 = · · · = xn = 0}; here n = dimV and m = dimV1.
(b) Conclude that every subspace of a vector (as well as affine) fd space is

closed (topologically).2

1e Norms of vectors and operators

1e1 Definition. The norm ‖T‖ of a linear operator T : E1 → E2 between
Euclidean vector fd spaces E1, E2 is

‖T‖ = sup
x∈E1,x 6=0

|T (x)|
|x|

.

1In infinite dimension the situation is utterly different.
2In infinite dimension the situation is strikingly different.
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Also,
‖T‖ = max

|x|≤1
|T (x)|

(think, why); this is the maximum of a continuous function on a compact set
[Sh:p.73].

The operator norm ‖A‖ of an m×n matrix A is, by definition, the norm
of the corresponding operator Rn → Rm.

1e2 Exercise. If a matrix A = (ai,j)i,j is diagonal then

‖A‖ = max
i=1,...,min(m,n)

|ai,i|.

Prove it.

The set Mm,n(R) of all m×n matrices (with real elements) evidently is an
mn-dimensional vector space. Does the operator norm turn it to a Euclidean
space? No, it does not. Even if we restrict ourselves to M2,2(R), and even
to its 2-dimensional subspace of diagonal matrices, we get (by 1e2, up to
isomorphism) R2 with the norm

‖(s, t)‖ = max(|s|, |t|) ,

its unit ball {x : ‖x‖ ≤ 1} being the square [−1, 1]× [−1, 1]. This is not the
Euclidean plane! For two non-collinear vectors a = (1, 1) and b = (1,−1) we
have ‖a‖ = 1, ‖b‖ = 1 and ‖a+b‖ = 2, which never happens on the Euclidean
plane. Also, the “parallelogram equality” |a − b|2 + |a + b|2 = 2|a|2 + 2|b|2
holds for arbitrary vectors a, b of a Euclidean space, but fails for the operator
norm.

1e3 Definition. (a) A norm on a vector space V is a function V 3 x 7→
‖x‖ ∈ [0,∞) such that

‖tx‖ = |t| · ‖x‖ for all x ∈ V, t ∈ R ;

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V ;

‖x‖ > 0 whenever x 6= 0 .

(b) A normed space consists of a vector space and a norm on it.

Euclidean vector spaces are a special case of normed spaces.1 Distances
are well-defined in normed spaces, but angles — only in Euclidean spaces.

1In fact, a normed space is Euclidean iff the norm satisfies the parallelogram equality.
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1e4 Exercise. Prove that

−‖x− y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x− y‖

for all x, y ∈ V .

1e5 Exercise. Prove that the operator norm is indeed a norm on Mm,n(R).

1e6 Lemma. Every norm on Rn is continuous.

Proof. For arbitrary t1, . . . , tn ∈ R,

‖(t1, . . . , tn)‖ = ‖t1e1 + · · ·+ tnen‖ ≤ |t1| · ‖e1‖+ · · ·+ |tn| · ‖en‖ ≤

≤ (‖e1‖+ · · ·+ ‖en‖) ·max(|t1|, . . . , |tn|) ≤ C
√
t21 + · · ·+ t2n

where1 C = ‖e1‖+ · · ·+ ‖en‖ (and e1, . . . , en are the standard basis). Thus,
‖x‖ ≤ C|x| for all x ∈ Rn. Now, if |xn − x| → 0 then ‖xn − x‖ → 0, and by
1e4, ‖xn‖ → ‖x‖.

The sphere Sn−1 = {x ∈ Rn : |x| = 1} being compact, a norm ‖·‖ reaches
its minimum c and maximum C on Sn−1:

c = min
|x|=1
‖x‖ , C = max

|x|=1
‖x‖ ;

0 < c ≤ C <∞ (think, why c > 0). Thus,

∀x c|x| ≤ ‖x‖ ≤ C|x| ;
‖xn‖ → 0 if and only if |xn| → 0 ;

one says that ‖ · ‖ and | · | are equivalent norms. We conclude.

1e7 Proposition. For every vector fd space V ,2

(a) for every norm ‖ · ‖ on V ,

(xn → x) ⇐⇒ (‖xn − x‖ → 0) for all x, x1, x2, · · · ∈ V ;

(b) for every pair of norms ‖ · ‖1, ‖ · ‖2 on V ,

∃c, C ∈ (0,∞) ∀x ∈ V c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 .

All norms are equivalent on an arbitrary vector fd space.

1Even better, C =
√
‖e1‖2 + · · ·+ ‖en‖2 fits.

2In infinite dimension the situation is utterly different.
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1e8 Exercise. Generalize 1e1 and 1e5 to the space L(X, Y ) of all linear
operators [Sh:p.71] between normed (not just Euclidean) fd spaces X, Y .1

1e9 Exercise. If S ∈ L(X, Y ) and T ∈ L(Y, Z) then TS ∈ L(X,Z) and
‖TS‖ ≤ ‖T‖ · ‖S‖. Prove it.

1e10 Exercise. (a) Prove equivalence of two definitions of the Hilbert-
Schmidt norm ‖A‖HS of an m× n matrix A = (ai,j)i,j:
‖A‖HS =

(∑
j,k a

2
j,k

)
1/2;

‖A‖HS =
√

trace(A∗A).
(b) Is (Mm,n(R), ‖ · ‖HS) a normed space? a Euclidean space?
(c) Prove that ‖A‖ ≤ ‖A‖HS ≤

√
n‖A‖.2

A bit about convexity.

1e11 Definition. (a) A set C in a vector space is convex if for all x, y ∈ C
the segment [x, y] = {θx + (1 − θ)y : 0 ≤ θ ≤ 1} is contained in C. (The
same applies in an affine space.)

(b) A real-valued function f on a vector (or affine) space, or on a convex
set therein, is called convex if

f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θ)f(y)

for all θ ∈ [0, 1] and all x, y in the domain of f .

1e12 Exercise. Prove that a function f : R2 → R is convex if and only if
the set {(x, y, z) : z ≥ f(x, y)} ⊂ R3 is convex.

1e13 Exercise. Prove that convexity of the sets {x : f(x) ≤ t} for all t ∈ R
is necessary but not sufficient for convexity of a function f .3

1e14 Exercise. Prove that the second condition of 1e3 (‖x+y‖ ≤ ‖x‖+‖y‖)
is equivalent (given the other two conditions) to (a) convexity of the norm,
and also to (b) convexity of the ball {x ∈ V : ‖x‖ ≤ 1}.4

1Linear operators between spaces of operators are also well-defined, and sometimes
called superoperators (mostly by physicists); see also “Superoperator” in Wikipedia.

2Hint to ‖A‖ ≤ ‖A‖HS: using the Cauchy-Schwarz inequality, estimate first y2k and
then

∑m
k=1 y

2
k; here yk =

∑
j ak,jxj .

Hint to ‖A‖HS ≤
√
n‖A‖: |Aej | ≤ ‖A‖ for each j = 1, . . . , n.

3Hint: for “but not sufficient” try dimension one.
4Hint: (b) x+y

‖x‖+‖y‖ = θ x
‖x‖ + (1− θ) y

‖y‖ .

http://en.wikipedia.org/wiki/Superoperator


Tel Aviv University, 2013/14 Analysis-III,IV 14

1e15 Exercise. Let p ∈ [1,∞). Prove that the function

Rn 3 (t1, . . . , tn) 7→
(
|t1|p + · · ·+ |tn|p

)
1/p ∈ [0,∞)

is a norm on Rn.1

This norm is often denoted ‖ · ‖p.2
In the limit p→∞ we get

‖(t1, . . . , tn)‖∞ = max(|t1|, . . . , |tn|) .

1f Paths and connectedness

1f1 Definition. A path3 in Rn is a continuous map γ : [0, 1] → Rn; the
points γ(0) and γ(1) are called the endpoints of the path γ, and γ is called a
path from γ(0) to γ(1). A path γ is closed if γ(0) = γ(1). A path γ is simple
if the restriction γ

∣∣
(0,1)

is one-to-one. The inverse path is t 7→ γ(1− t).

Two paths γ1, γ2 are called equivalent, if there exists an increasing bijec-
tion ϕ : [0, 1] → [0, 1] such that γ2(s) = γ1(ϕ(s)). Normally, we need not
distinguish equivalent paths.

Sometimes it is convenient to use also γ : [a, b] → Rn for given a < b.
(Non-closed intervals, and even the whole R, are also used sometimes, but
then endpoints and closed paths are not defined.)

1f2 Example. (a) The segment with endpoints at x and y: γ(t) = tx +
(1 − t)y for t ∈ [0, 1]. The segment with the inverse orientation: γ−1(t) =
ty + (1− t)x.

(b) The unit circle with the natural orientation: γ(t) = (cos t, sin t) for
t ∈ [0, 2π]. The circle with the opposite orientation: γ−1(t) = (cos t,− sin t)
for t ∈ [0, 2π]. The path γ10(t) = (cos 10t, sin 10t) for t ∈ [0, 2π] is also the
circle, but run 10 times (not equivalent to γ).

(c) The Archimedean spiral: γ(t) = (t cos t, t sin t) for t ∈ [0, 2π].

1f3 Exercise. Draw the images (with orientation) of the following paths
given in the polar coordinates:
(a) r = 1− cos 2t, ϕ = t for t ∈ [0, 2π];
(b) r2 = 4 cos t, ϕ = t for t ∈ [−π/2, π/2];

1Hint: the function (t1, . . . , tn) 7→ |t1|p + · · ·+ |tn|p is convex (being the sum of convex
functions), therefore the set {(t1, . . . , tn) : |t1|p + · · ·+ |tn|p ≤ 1} is convex.

2On the space of operators, the Schatten norm is ‖T‖p =
(
|s1|p + · · ·+ |sn|p

)
1/p where

s1, . . . , sn are the singular values of T .
3Note that (a) it is not a set of points, and (b) it can be space-filling.
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(c) r = 2 sin 3t, ϕ = t for t ∈ [0, π].
Also, draw the image (with orientation) of the “path” in R3 defined as γ(t) =
(cos t, sin t, t) for t ∈ R.

1f4 Definition. A set X ⊂ Rn is called path-connected if for each pair of
points x, y ∈ X there is a path in X 1 from x to y.

1f5 Example. R1 \ {0} and R2 \ {x1 = 0} are not path-connected; Sn−1,
R2 \ {0} and R3 \ {x1 = x2 = 0} are path-connected.

1f6 Example. Prove that a set X ⊂ R is path-connected if and only if it is
an interval (of any kind: [a, b], [a, b), [a,∞), (a, b], [a, a] etc).

1f7 Exercise. Prove that a continuous image of a path-connected set is
path-connected. That is, if X ⊂ Rn is a path-connected set and f : X → Rm

a continuous mapping then the image f(X) is also path-connected.

1f8 Exercise. “Mean-value property” Suppose X is a path-connected set
and f : X → R a continuous function. If infX f < 0 and supX f > 0 then
there exists a point x ∈ X such that f(x) = 0.

1f9 Definition. An open path-connected subset of Rn is called a domain
(or region).

1f10 Exercise. Let G ⊂ Rn be open, and x ∈ G. Introduce the set U ⊂ G
of all y ∈ G such that there exists a path in G from x to y, and V = G \ U .
Prove that U and V are open sets.

1f11 Exercise. Prove that every open set in Rn can be decomposed into at
most countable union of disjoint domains.

1f12 Definition. A set X ⊂ Rn is connected if no pair of open sets U, V ⊂
Rn satisfies

X ⊂ U ∪ V ; U ∩ V = ∅ ; X ∩ U 6= ∅ ; X ∩ V 6= ∅ .

1f13 Exercise. Prove that an open set in Rn is connected if and only if it
is not the union of two disjoint nonempty open sets.

1f14 Exercise. Prove that every path-connected set in Rn is connected.2

1f15 Exercise. Prove that every connected open set in Rn is path-connected.3

1f16 Exercise. The same for polygonal connectedness . (That is, a path is
required to be a polygonal line.)

1That is, γ : [0, 1]→ X.
2Hint: think about inf{t : γ(t) /∈ U}.
3Hint: use 1f10.
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Thus, all kinds of connectedness are equivalent for open sets in Rn. For
closed sets connectedness is more subtle.

“Topologist’s sine curve”
This compact set is connected
but not path-connected

This unbounded closed set contains two
connected components (the two horizontal
lines) that cannot be separated by U, V

A connected component is, by definition, a maximal connected subset.
According to Sect. 1d, all said above applies in every finite-dimensional

vector (as well as affine) space.
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