11 From boundary to exterior derivative; Stokes' theorem

11a What is the problem 173
11b Chains 175
11c Order 0 and order 1 176
11d Order 1 and order 2: exterior derivative 178
11e Algebra of differential forms 180
11f Change of variables 183
11 g Proving the theorem 185
11h First implications 187

Terms "boundary" and "derivative" get new meaning, and become dual to each other.

11a What is the problem

A box $B \subset \mathbb{R}^{n}$ may be treated as a special case of a singular n-box in \mathbb{R}^{n} : $\Gamma: B \rightarrow \mathbb{R}^{n}, \Gamma(u)=u$. Thus every n-form ω on \mathbb{R}^{n} leads to an additive box function

$$
B \mapsto \int_{B} \omega=\int_{B} \omega\left(u, e_{1}, \ldots, e_{n}\right) \mathrm{d} u
$$

where $\left(e_{1}, \ldots, e_{n}\right)$ is the usual orthonormal basis in \mathbb{R}^{n}. It is natural to define

$$
\begin{equation*}
\int_{E} \omega=\int_{E} \omega\left(u, e_{1}, \ldots, e_{n}\right) \mathrm{d} u \tag{11a1}
\end{equation*}
$$

for all Jordan measurable sets $E \subset \mathbb{R}^{n}$. (In this sense, every n-form in \mathbb{R}^{n} is locally proportional to the volume.)

The singular 2-box Γ of 10 e 2 is not a homeomorphism between the box $B=[0,1] \times[0,2 \pi] \subset \mathbb{R}^{2}$ and the disk $D=\{x:|x| \leq 1\} \subset \mathbb{R}^{2}$. And nevertheless,

$$
\begin{equation*}
\int_{\Gamma} \omega=\int_{D} \omega \text { for every } 2 \text {-form } \omega \tag{11a2}
\end{equation*}
$$

since

$$
\begin{gathered}
\int_{\Gamma} \omega=\int_{B} \omega\left(\Gamma(u),\left(D_{1} \Gamma\right)_{u},\left(D_{2} \Gamma\right)_{u}\right) \mathrm{d} u=\int_{0}^{1} \mathrm{~d} r \int_{0}^{2 \pi} \mathrm{~d} \theta \omega\left(\binom{r \cos \theta}{r \sin \theta},\binom{\cos \theta}{\sin \theta},\binom{-r \sin \theta}{r \cos \theta}\right), \\
\int_{D} \omega=\int_{0}^{1} r \mathrm{~d} r \int_{0}^{2 \pi} \mathrm{~d} \theta \omega\left(\binom{r \cos \theta}{r \sin \theta},\binom{1}{0},\binom{0}{1}\right),
\end{gathered}
$$

and

$$
L\left(\binom{\cos \theta}{\sin \theta},\binom{-r \sin \theta}{r \cos \theta}\right)=r L\left(\binom{1}{0},\binom{0}{1}\right)
$$

for every antisymmetric bilinear form L on \mathbb{R}^{2} (think, why). The missing segment $\{0\} \times[0,1]$ does not matter for the 2-dimensional integral.

We may say that this singular box is equivalent to the disk (w.r.t. 2-forms). However, what happens to the boundary? The boundary ∂B of B is not a box but the union of four 1-dimensional boxes, and $\left.\Gamma\right|_{\partial B}$ may be treated as a path $\partial \Gamma$ consisting of four singular 1-boxes (one degenerated to a point).

Interestingly,

$$
\begin{equation*}
\int_{\partial \Gamma} \omega=\int_{S} \omega \text { for every 1-form } \omega ; \tag{11a3}
\end{equation*}
$$

here $\int_{S} \omega=\int_{0}^{2 \pi} \omega\left(\binom{\cos \theta}{\sin \theta},\binom{-\sin \theta}{\cos \theta}\right) \mathrm{d} \theta$. The segment $\{0\} \times[0,1]$ does not harm since it occurs twice, with opposite signs. We may say that the boundary of this singular box is equivalent to the boundary of the disk.

Just a good luck? No! Rather, a manifestation of a deep and important relation between singular boxes and their boundaries. Another example:

11b Chains

11b1 Definition. A (singular) k-chain (in \mathbb{R}^{n}) is a formal linear combination of singular k-boxes.

That is,

$$
C=c_{1} \Gamma_{1}+\cdots+c_{p} \Gamma_{p},
$$

where $a_{1}, \ldots, a_{p} \in \mathbb{R}$ and $\Gamma_{1}, \ldots, \Gamma_{p}$ are singular k-boxes. More formally, this is a real-valued function with finite support on the (huge!) set of all singular k-boxes;

$$
c_{1}=C\left(\Gamma_{1}\right), \ldots, c_{p}=C\left(\Gamma_{p}\right) ; \quad C(\Gamma)=0 \text { for all other } \Gamma .
$$

Clearly, all k-chains are a (huge) vector space, with a basis indexed by all singular k-boxes. Less formally we say that the singular k-boxes are the basis, and each singular box is (a special case of) a chain: $\Gamma=1 \cdot \Gamma$.

11b2 Definition.

$$
\int_{C} \omega=c_{1} \int_{\Gamma_{1}} \omega+\cdots+c_{p} \int_{\Gamma_{p}} \omega
$$

for every k-chain $C=c_{1} \Gamma_{1}+\cdots+c_{p} \Gamma_{p}$ and every k-form ω.
Note that the integral is bilinear; $\int_{C} \omega$ is linear in C for every ω (by construction), and linear in ω for every C (since $\int_{\Gamma} \omega$ evidently is linear in $\omega)$.

11b3 Definition. Two k-chains C_{1}, C_{2} are equivalent if

$$
\int_{C_{1}} \omega=\int_{C_{2}} \omega \text { for all } k \text {-forms } \omega\left(\text { of class } C^{0}\right) .
$$

Let $B \subset \mathbb{R}^{k}$ be a box, P its partition, and $\Gamma: B \rightarrow \mathbb{R}^{n}$ a singular box. Then

$$
\left.\Gamma \sim \sum_{b \in P} \Gamma\right|_{b},
$$

since $\Gamma \mapsto \int_{\Gamma} \omega$ is an additive function of a singular box.

\sim

\sim

Recall that singular 1-boxes are C^{1}-paths.
By 10 c 12 , equivalent paths are equivalent 1 -chains.
By 10c10, the 1-chain $\gamma+\gamma_{-1}$ is equivalent to 0 ; here γ_{-1} is the inverse path.

11c Order 0 and order 1

The case $k=0$ is included as follows. The space \mathbb{R}^{0} consists, by definition, of a single point 0 . The only 0 -dimensional box is $\{0\}$. A singular 0 -box in \mathbb{R}^{n} is thus $\{x\}$ for some $x \in \mathbb{R}^{n}$. ${ }^{1}$ A 0 -form on \mathbb{R}^{n} is a function $\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (of class C^{m}). And

$$
\int_{\{x\}} \omega=\omega(x),
$$

of course. Accordingly, $\int_{C} \omega=c_{1} \omega\left(x_{1}\right)+\cdots+c_{p} \omega\left(x_{p}\right)$ for a 0 -chain $C=$ $c_{1}\left\{x_{1}\right\}+\cdots+c_{p}\left\{x_{p}\right\}$.

11c1 Exercise. If two 0-chains are equivalent then they are equal.
Prove it.
The boundary of a singular 1-box $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n}$ is, by definition, the 0 -chain

$$
\partial \gamma=\left\{\gamma\left(t_{1}\right)\right\}-\left\{\gamma\left(t_{0}\right)\right\},
$$

a linear combination of two singular 0-boxes (not to be confused with $\gamma\left(t_{1}\right)$ $\left.\gamma\left(t_{0}\right)\right)$. Thus,

$$
\int_{\partial \gamma} \omega=\omega\left(\gamma\left(t_{1}\right)\right)-\omega\left(\gamma\left(t_{0}\right)\right) \quad \text { for a } 0 \text {-form } \omega \text {. }
$$

[^0]The boundary of a 1 -chain $C=c_{1} \gamma_{1}+\cdots+c_{p} \gamma_{p}$ is, by definition, the 0 -chain $\partial C=c_{1} \partial \gamma_{1}+\cdots+c_{p} \partial \gamma_{p}$. For example,
the boundary of

the boundary of

Note that the map $C \mapsto \partial C$ is linear (by construction).
Given a 0 -form ω of class C^{1} on \mathbb{R}^{n}, that is, a continuously differentiable function $\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$, its derivative $D \omega$ may be thought of as a 1 -form of class C^{0} on \mathbb{R}^{n}, denoted $d \omega$;

$$
\begin{equation*}
(d \omega)(x, h)=(D \omega)_{x}(h)=\left(D_{h} \omega\right)_{x} \tag{11c2}
\end{equation*}
$$

11c3 Proposition. (Stokes' theorem for $k=1$)
Let C be a 1 -chain in \mathbb{R}^{n}, and ω a 0 -form of class C^{1} on \mathbb{R}^{n}. Then

$$
\int_{C} d \omega=\int_{\partial C} \omega
$$

Proof. By linearity in C it is sufficient to prove it for $C=\gamma$ (a single 1-box, that is, a path $\left.\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n}\right)$. We have

$$
\begin{aligned}
& \int_{\gamma} d \omega=\int_{t_{0}}^{t_{1}} d \omega\left(\gamma(t), \gamma^{\prime}(t)\right) \mathrm{d} t=\int_{t_{0}}^{t_{1}}(D \omega)_{\gamma(t)}\left(\gamma^{\prime}(t)\right) \mathrm{d} t= \\
&=\int_{t_{0}}^{t_{1}}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \omega(\gamma(t))\right) \mathrm{d} t=\omega\left(\gamma\left(t_{1}\right)\right)-\omega\left(\gamma\left(t_{0}\right)\right)=\int_{\partial \gamma} \omega
\end{aligned}
$$

11c4 Corollary.

$$
C_{1} \sim C_{2} \quad \text { implies } \quad \partial C_{1}=\partial C_{2}
$$

for arbitrary 1-chains C_{1}, C_{2} in \mathbb{R}^{n}.
Indeed, $\int_{\partial C_{1}} \omega=\int_{C_{1}} d \omega=\int_{C_{2}} d \omega=\int_{\partial C_{2}} \omega$ for every 0 -form ω of class C^{1}. Similarly to 11 c 1 it follows that $\partial C_{1}=\partial C_{2}$.

The case $k=1$ is special; for higher k we'll see that $C_{1} \sim C_{2}$ implies $\partial C_{1} \sim \partial C_{2}$ but not $\partial C_{1}=\partial C_{2}$. Nothing like 11c1 exists for higher k.

Let us try to prove that $C_{1} \sim C_{2} \Longrightarrow \partial C_{1} \sim \partial C_{2}$ for $k=1$ without 11 c 1 . The only problem is that $C^{1}\left(\mathbb{R}^{n}\right) \neq C^{0}\left(\mathbb{R}^{n}\right)$. However, $C^{1}\left(\mathbb{R}^{n}\right)$ is dense in $C^{0}\left(\mathbb{R}^{n}\right)$ in the following sense.

11c5 Lemma. For every $f \in C^{0}\left(\mathbb{R}^{n}\right)$ there exist $f_{i} \in C^{1}\left(\mathbb{R}^{n}\right)$ such that $f_{i} \rightarrow f$ uniformly on bounded sets.

Proof (sketch, for $n=2$). Define f_{ε} for $\varepsilon>0$ by

$$
f_{\varepsilon}\left(x_{1}, x_{2}\right)=\frac{1}{\varepsilon^{2}} \int_{\left[x_{1}, x_{1}+\varepsilon\right] \times\left[x_{2}, x_{2}+\varepsilon\right]} f,
$$

then the partial derivative

$$
\frac{\partial}{\partial x_{1}} f_{\varepsilon}\left(x_{1}, x_{2}\right)=\frac{1}{\varepsilon^{2}} \int_{\left[x_{2}, x_{2}+\varepsilon\right]}\left(f\left(x_{1}+\varepsilon, \cdot\right)-f\left(x_{1}, \cdot\right)\right)
$$

is continuous; similarly, the other partial derivative is continuous; thus, $f_{\varepsilon} \in$ $C^{1}\left(\mathbb{R}^{n}\right)$. The uniform convergence to f (as $\varepsilon \rightarrow 0$) follows from uniform continuity of f (on bounded sets).

11c6 Exercise. Complete the proof, and generalize it to all dimensions.
Thus, C^{0} may be replaced with C^{1} in Def. 11 b 3 for $k=0$.

11d Order 1 and order 2: exterior derivative

The boundary of a singular 2-box Γ is, by definition, the 1-chain

$$
\left.\Gamma\right|_{A B}+\left.\Gamma\right|_{B C}+\left.\Gamma\right|_{C D}+\left.\Gamma\right|_{D A}=\left.\Gamma\right|_{A B}+\left.\Gamma\right|_{B C}-\left.\Gamma\right|_{D C}-\left.\Gamma\right|_{A D}
$$

This is not really a definition of a 1-chain, since I did not specify the four 1 -dimensional boxes (which is very easy to do); but its equivalence class is well-defined, and this is all we need solving the following question.

Given a 1 -form ω, can we construct a 2 -form, call it $d \omega$, such that $\int_{C} d \omega=$ $\int_{\partial C} \omega$ for all 2-chains C ?

We have a function $C \mapsto \int_{\partial C} \omega$ of a singular box; this is an additive function, since the map $\Gamma \mapsto \partial \Gamma$ is additive (up to equivalence).

We want to differentiate this additive function in the hope that its derivative exists and is a 2 -form $d \omega$.

Note that

$$
\begin{equation*}
\partial(\partial \Gamma)=0 \quad \text { for a singular 2-box } \Gamma ; \tag{11d1}
\end{equation*}
$$

by 11 c 3 . $\int_{\partial \Gamma} d \omega=\int_{\partial(\partial \Gamma)} \omega=0$ for every 0 -form ω. It should be $\int_{\Gamma} d(d \omega)=$ $\int_{\partial \Gamma} d \omega=0$ for all Γ, that is, $d(d \omega)=0$. Indeed, this fact will be proved, see (11e4). A wonder: the second derivative of a 0 -form is always zero, irrespective of the second derivatives of the function! Indeed, exterior derivative is very similar to the usual derivative for 0 -forms, but very dissimilar for 1-forms.

For now we only need to guess a formula for $d \omega$; having the formula, hopefully we'll be able to prove the equality.

Given a point $x \in \mathbb{R}^{n}$ and two vectors $h, k \in \mathbb{R}^{n}$, we consider small singular boxes $\Gamma_{\varepsilon}:[0,1] \times[0,1] \rightarrow \mathbb{R}^{n}$,

$$
\Gamma_{\varepsilon}\left(u_{1}, u_{2}\right)=x+\varepsilon u_{1} h+\varepsilon u_{2} k ;
$$

an additive function on Γ_{ε} should be of order ε^{2} as $\varepsilon \rightarrow 0+$; we divide it by ε^{2} and calculate the limit:

$$
\begin{gathered}
\frac{1}{\varepsilon^{2}} \int_{\partial \Gamma_{\varepsilon}} \omega=\frac{1}{\varepsilon^{2}} \int_{0}^{1} \omega\left(x+\varepsilon u_{1} h, \varepsilon h\right) \mathrm{d} u_{1}+\frac{1}{\varepsilon^{2}} \int_{0}^{1} \omega\left(x+\varepsilon h+\varepsilon u_{2} k, \varepsilon k\right) \mathrm{d} u_{2}- \\
-\frac{1}{\varepsilon^{2}} \int_{0}^{1} \omega\left(x+\varepsilon u_{1} h+\varepsilon k, \varepsilon h\right) \mathrm{d} u_{1}-\frac{1}{\varepsilon^{2}} \int_{0}^{1} \omega\left(x+\varepsilon u_{2} k, \varepsilon k\right) \mathrm{d} u_{2}= \\
=\int_{0}^{1} \frac{\omega\left(x+\varepsilon u_{1} h, h\right)-\omega\left(x+\varepsilon u_{1} h+\varepsilon k, h\right)}{\varepsilon} \mathrm{d} u_{1}+ \\
+\int_{0}^{1} \frac{\omega\left(x+\varepsilon h+\varepsilon u_{2} k, k\right)-\omega\left(x+\varepsilon u_{2} k, k\right)}{\varepsilon} \mathrm{d} u_{2} \rightarrow-\left(D_{k} \omega(\cdot, h)\right)_{x}+\left(D_{h} \omega(\cdot, k)\right)_{x}
\end{gathered}
$$

Taking into account that

$$
\frac{1}{\varepsilon^{2}} \int_{\Gamma_{\varepsilon}} d \omega \rightarrow(d \omega)(x, h, k)
$$

(for arbitrary 2-form $d \omega$) we see that the needed $d \omega$ (if exists) is as follows.
11d2 Definition. The exterior derivative of a 1 -form ω of class C^{1} is a 2 -form $d \omega$ defined by

$$
(d \omega)(\cdot, h, k)=D_{h} \omega(\cdot, k)-D_{k} \omega(\cdot, h) .
$$

11d3 Theorem. (Stokes' theorem for $k=2$)
Let C be a 2 -chain in \mathbb{R}^{n}, and ω a 1 -form of class C^{1} on \mathbb{R}^{n}. Then

$$
\int_{C} d \omega=\int_{\partial C} \omega .
$$

The proof will be given in Sect. 11g.

11e Algebra of differential forms

For every $k=0,1, \ldots, n$ all k-forms (of class C^{m}) on \mathbb{R}^{n} are a vector space. For $k=0$ this space is just $C^{m}\left(\mathbb{R}^{n}\right)$.

The product $f \omega$ of a 0 -form f and a k-form ω is another k-form $f \omega$ defined by

$$
(f \omega)\left(x, h_{1}, \ldots, h_{k}\right)=f(x) \omega\left(x, h_{1}, \ldots, h_{k}\right) \quad \text { for } x, h_{1}, \ldots, h_{k} \in \mathbb{R}^{n}
$$

it is of class C^{m} whenever f and ω are; the mapping $(f, \omega) \mapsto f \omega$ is bilinear; also, $g(f \omega)=(g f) \omega$.

The exterior derivative of a 0 -form $f \in C^{1}\left(\mathbb{R}^{n}\right)$ is a 1 -form $d f$ defined by (recall 11c2))

$$
\begin{equation*}
(d f)(x, h)=(D f)_{x}(h)=\left(D_{h} f\right)_{x} ; \tag{11e1}
\end{equation*}
$$

the mapping $f \mapsto d f$ is linear; also, $d(f g)=f d g+g d f$.
The exterior derivative of the i-th coordinate function $x \mapsto x_{i}$ is traditionally denoted by $d x_{i}$ (for $i=1, \ldots, n$); thus,

$$
\begin{equation*}
\left(d x_{i}\right)(x, h)=h_{i} \quad \text { for all } x \in \mathbb{R}^{n} \text { and } h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{R}^{n} \tag{11e2}
\end{equation*}
$$

A linear form L on \mathbb{R}^{n} is generally $L(h)=\sum_{i=1}^{n} c_{i} h_{i}$ for some $c_{1}, \ldots, c_{n} \in$ \mathbb{R}; thus, a 1-form ω on \mathbb{R}^{n} is generally $\omega(x, h)=\sum_{i=1}^{n} f_{i}(x) h_{i}$ for some $f_{1}, \ldots, f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$. That is (recall Sect. 10c),

$$
\omega=\sum_{i=1}^{n} f_{i} d x_{i}
$$

ω is of class C^{m} if and only if all f_{i} are. In particular,

$$
d f=\sum_{i=1}^{n} D_{i} f d x_{i}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}
$$

since $D_{h} f=\sum_{i=1}^{n}\left(D_{i} f\right) h_{i}$.
A 1-form on \mathbb{R}^{1} is $f d x_{1}$. Treating a box $B \subset \mathbb{R}^{1}$ as a singular 1-box (id : $B \rightarrow \mathbb{R}^{1}$) we have $\int_{B} \omega=\int_{B} f\left(x_{1}\right) \mathrm{d} x_{1}$ for $\omega=f d x_{1}$, since $\left(d x_{1}\right)\left(x, e_{1}\right)=1$ (recall 11a1) and (11e2p).

The exterior (or wedge) product of two 1-forms ω_{1}, ω_{2} is a 2 -form $\omega_{1} \wedge \omega_{2}$ defined by ${ }^{1}$

$$
\left(\omega_{1} \wedge \omega_{2}\right)(x, h, k)=\omega_{1}(x, h) \omega_{2}(x, k)-\omega_{1}(x, k) \omega_{2}(x, h)
$$

[^1]it is of class C^{m} whenever ω_{1} and ω_{2} are; the mapping $\left(\omega_{1}, \omega_{2}\right) \mapsto \omega_{1} \wedge \omega_{2}$ is bilinear and antisymmetric: $\omega_{1} \wedge \omega_{2}=-\omega_{2} \wedge \omega_{1}$. Also, $\left(f \omega_{1}\right) \wedge\left(g \omega_{2}\right)=$ $(f g)\left(\omega_{1} \wedge \omega_{2}\right)$. By 11e2),
\[

\left(d x_{i} \wedge d x_{j}\right)(x, h, k)=h_{i} k_{j}-k_{i} h_{j}=\left|$$
\begin{array}{ll}
h_{i} & k_{i} \tag{11e3}\\
h_{j} & k_{j}
\end{array}
$$\right| .
\]

A bilinear form L on \mathbb{R}^{n} is generally

$$
L(h, k)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i, j} h_{i} k_{j}
$$

it is antisymmetric if and only if $c_{i, j}=-c_{j, i}$; in this case $L(h, k)=\sum_{i, j} c_{i, j} h_{i} k_{j}=$ $\sum_{i<j} c_{i, j}\left(h_{i} k_{j}-h_{j} k_{i}\right)$. Thus, by 11e3), a 2-form ω on \mathbb{R}^{n} is generally

$$
\omega=\sum_{i<j} f_{i, j} d x_{i} \wedge d x_{j}=\frac{1}{2} \sum_{i, j} f_{i, j} d x_{i} \wedge d x_{j}
$$

in the former notation $f_{i, j}$ are given for $i<j$ only, while in the latter notation $f_{i, j}=-f_{j . i} ; \omega$ is of class C^{m} if and only if all $f_{i, j}$ are. For example, the 2 -form of 10 e 12 is $x_{1} d x_{2} \wedge d x_{3}$.

A 2-form on \mathbb{R}^{2} is $f d x_{1} \wedge d x_{2}$. Treating a box $B \subset \mathbb{R}^{2}$ as a singular 2-box (id : $B \rightarrow \mathbb{R}^{2}$) we have $\int_{B} f d x_{1} \wedge d x_{2}=\int_{B} f(x) \mathrm{d} x_{1} \mathrm{~d} x_{2}$, since $\left(d x_{1} \wedge\right.$ $\left.d x_{2}\right)\left(x, e_{1}, e_{2}\right)=1$ (recall (11a1) and 11e3).

We turn to Def. 11d2. Let $\omega=d f, f \in C^{2}\left(\mathbb{R}^{n}\right)$; then, by 11e1) (and Sect. 2g $),(d \omega)(\cdot, h, k)=D_{h} \omega(\cdot, k)-D_{k} \omega(\cdot, h)=D_{h}\left(D_{k} f\right)-D_{k}\left(D_{h} f\right)=0$, that is,

$$
\begin{equation*}
d(d f)=0 \tag{11e4}
\end{equation*}
$$

as it should be (recall (11d1) and the paragraph after it).
Now consider $d(f \omega)$ for $f \in C^{1}\left(\mathbb{R}^{n}\right)$ and a 1 -form ω of class C^{1} on \mathbb{R}^{n}. We have

$$
\begin{aligned}
& (d(f \omega))(\cdot, h, k)=D_{h}(f \omega(\cdot, k))-D_{k}(f \omega(\cdot, h))= \\
& =\left(D_{h} f\right) \omega(\cdot, k)+f D_{h} \omega(\cdot, k)-\left(D_{k} f\right) \omega(\cdot, h)-f D_{k} \omega(\cdot, h)= \\
& =f d \omega(\cdot, h, k)+\left(D_{h} f\right) \omega(\cdot, k)-\left(D_{k} f\right) \omega(\cdot, h)= \\
& =f d \omega(\cdot, h, k)+d f(\cdot, h) \omega(\cdot, k)-d f(\cdot, k) \omega(\cdot, h)= \\
& \quad=f d \omega(\cdot, h, k)+(d f \wedge \omega)(\cdot, h, k) ;
\end{aligned}
$$

thus,

$$
\begin{equation*}
d(f \omega)=d f \wedge \omega+f d \omega . \tag{11e5}
\end{equation*}
$$

It follows via (11e4) that

$$
\begin{equation*}
d(f d g)=d f \wedge d g \tag{11e6}
\end{equation*}
$$

for $f \in C^{1}\left(\mathbb{R}^{n}\right), g \in C^{2}\left(\mathbb{R}^{n}\right)$, and we get the following definition equivalent to 11 d 2 ,

11e7 Definition. The exterior derivative of a 1-form ω of class C^{1} is a 2 -form $d \omega$ defined by

$$
d \omega=\sum_{i=1}^{n} d f_{i} \wedge d x_{i} \quad \text { for } \omega=\sum_{i=1}^{n} f_{i} d x_{i}
$$

The 2-form $d \omega$ is of class C^{m} whenever ω is of class C^{m+1}; the mapping $\omega \mapsto d \omega$ is linear; and $d(f \omega)$ is given by 11e5).

11e8 Exercise. Check that

$$
\int_{\Gamma} \omega=\int_{B} \sum_{i<j} f_{i, j}(x) \frac{\partial\left(x_{i}, x_{j}\right)}{\partial\left(u_{1}, u_{2}\right)} \mathrm{d} u_{1} \mathrm{~d} u_{2}
$$

for every 2-form $\omega=\sum_{i<j} f_{i, j} d x_{i} \wedge d x_{j}$ on \mathbb{R}^{n} and singular 2-box $\Gamma: B \rightarrow \mathbb{R}^{n}$; here $x=\left(x_{1}, \ldots, x_{n}\right)=\Gamma\left(u_{1}, u_{2}\right)$ and

$$
\frac{\partial\left(x_{i}, x_{j}\right)}{\partial\left(u_{1}, u_{2}\right)}=\left|\begin{array}{ll}
\frac{\partial x_{i}}{\partial u_{1}} & \frac{\partial x_{i}}{\partial u_{2}} \\
\frac{\partial x_{j}}{\partial u_{1}} & \frac{\partial x_{j}}{\partial u_{2}}
\end{array}\right| .
$$

In particular,

$$
\int_{\Gamma} d x_{i} \wedge d x_{j}=\int_{B} \frac{\partial\left(x_{i}, x_{j}\right)}{\partial\left(u_{1}, u_{2}\right)} \mathrm{d} u_{1} \mathrm{~d} u_{2}
$$

11e9 Exercise. ${ }^{1}$ (a) Let $\Gamma: B \rightarrow \mathbb{R}^{3}$ be a singular 2-box in \mathbb{R}^{3}, and Γ_{0} : $B \rightarrow \mathbb{R}^{3}$ its projection onto the $x y$ plane; that is, $\Gamma(u)=\left(\Gamma_{1}(u), \Gamma_{2}(u), \Gamma_{3}(u)\right)$ and $\Gamma_{0}(u)=\left(\Gamma_{1}(u), \Gamma_{2}(u), 0\right)$ for $u \in B$. Prove that $\int_{\Gamma} d x \wedge d y=\int_{\Gamma_{0}} d x \wedge d y$.
(b) Consider $\Gamma:[0, a] \times[0, \pi] \rightarrow \mathbb{R}^{3}, \Gamma(r, \theta)=\left(r \cos \theta, r \sin \theta, r^{2}\right)$. Sketch the surface noting that θ varies from 0 to π, not from 0 to 2π. Try to determine $\int_{\Gamma} d x \wedge d y$ by geometrical reasoning, and then check your answer by integration. Do the same for $d y \wedge d z$ and $d z \wedge d x$.

11e10 Exercise. ${ }^{2}$ (a) Integrate a 2 -form $x d y \wedge d z+y d x \wedge d y$ on \mathbb{R}^{3} over the singular 2-box $\Gamma:[0,1] \times[0,1] \rightarrow \mathbb{R}^{3}, \Gamma(u, v)=\left(u+v, u^{2}-v^{2}, u v\right)$.
(b) The same for $\Gamma:[0,2 \pi] \times[0,1] \rightarrow \mathbb{R}^{3}, \Gamma(u, v)=(v \cos u, v \sin u, u)$.

[^2]11 e 11 Exercise. ${ }^{1}$ (a) Calculate $\left(a_{1} d x_{1}+a_{2} d x_{2}\right) \wedge\left(b_{1} d x_{1}+b_{2} d x_{2}\right)$, observe a 2×2 determinant;
(b) calculate $\left(a_{1} d x_{1}+a_{2} d x_{2}+a_{3} d x_{3}\right) \wedge\left(b_{1} d x_{1}+b_{2} d x_{2}+b_{3} d x_{3}\right)$, observe a cross product.

11 e 12 Exercise. Check that $d(x d y-y d x)=2 d x \wedge d y$.

11f Change of variables

Given a mapping $\varphi \in C^{1}\left(\mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n}\right)$, every singular k-box $\Gamma: B \rightarrow \mathbb{R}^{\ell}$ leads to a singular k-box $\varphi \circ \Gamma: B \rightarrow \mathbb{R}^{n}$. Thus, every k-form ω on \mathbb{R}^{n} leads to a box function $\Gamma \mapsto \int_{\varphi \circ \Gamma} \omega$; it is additive (since the mapping $\Gamma \mapsto \varphi \circ \Gamma$ is). Can we find a k-form $\varphi^{*} \omega$ on \mathbb{R}^{ℓ} such that $\int_{\varphi \circ \Gamma} \omega=\int_{\Gamma} \varphi^{*} \omega$ for all Γ ?
11f1 Definition. Given a k-form ω on \mathbb{R}^{n} and a mapping $\varphi \in C^{1}\left(\mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n}\right)$, the pullback of ω along φ is a k-form $\varphi^{*} \omega$ on \mathbb{R}^{ℓ} defined by

$$
\begin{aligned}
& \left(\varphi^{*} \omega\right)\left(x, h_{1}, \ldots, h_{k}\right)=\omega\left(\varphi(x),(D \varphi)_{x}\left(h_{1}\right), \ldots,(D \varphi)_{x}\left(h_{k}\right)\right)= \\
& \quad=\omega\left(\varphi(x),\left(D_{h_{1}} \varphi\right)_{x}, \ldots,\left(D_{h_{k}} \varphi\right)_{x}\right) \text { for } x, h_{1}, \ldots, h_{k} \in \mathbb{R}^{\ell} .
\end{aligned}
$$

The form $\varphi^{*} \omega$ is of class C^{m} whenever ω is of class C^{m} and φ is of class C^{m+1}. The mapping $\omega \mapsto \varphi^{*} \omega$ is linear. For $k=0$ the pullback is just the composition: $\left(\varphi^{*} f\right)(x)=f(\varphi(x)) ; \varphi^{*} f=f \circ \varphi$ (no need in C^{m+1} in this case). And $\varphi^{*}(f \omega)=\left(\varphi^{*} f\right)\left(\varphi^{*} \omega\right)=(f \circ \varphi) \varphi^{*} \omega$ for $f \in C^{1}\left(\mathbb{R}^{n}\right)$.

A singular k-box Γ in \mathbb{R}^{n} is a C^{1}-mapping $B \rightarrow \mathbb{R}^{n}$ on a box $B \subset \mathbb{R}^{k}$ rather than the whole \mathbb{R}^{k}, but still, the pullback $\Gamma^{*} \omega$ is well-defined (on B),

$$
\left(\Gamma^{*} \omega\right)\left(u, h_{1}, \ldots, h_{k}\right)=\omega\left(\Gamma(u),\left(D_{h_{1}} \Gamma\right)_{u}, \ldots,\left(D_{h_{k}} \Gamma\right)_{u}\right)
$$

for $u \in B$ and $h_{1}, \ldots, h_{k} \in \mathbb{R}^{k}$. In particular, for the usual basis e_{1}, \ldots, e_{k} of \mathbb{R}^{k} we have $\left(\Gamma^{*} \omega\right)\left(u, e_{1}, \ldots, e_{k}\right)=\omega\left(\Gamma(u),\left(D_{1} \Gamma\right)_{u}, \ldots,\left(D_{k} \Gamma\right)_{u}\right)$. Thus, the definition of $\int_{\Gamma} \omega$ given in Sect. 10e may be rewritten as $\int_{\Gamma} \omega=$ $\int_{B}\left(\Gamma^{*} \omega\right)\left(u, e_{1}, \ldots, e_{k}\right) \mathrm{d} u$. Using (11a1) we get

$$
\begin{equation*}
\int_{\Gamma} \omega=\int_{B} \Gamma^{*} \omega . \tag{11f2}
\end{equation*}
$$

We see that it was the integral of the pullback, from the very beginning!
By the chain rule 2b12,

$$
(D(\varphi \circ \Gamma))_{u}=(D \varphi)_{\Gamma(u)} \circ(D \Gamma)_{u}
$$

[^3]thus,
\[

$$
\begin{gathered}
\left((\varphi \circ \Gamma)^{*} \omega\right)\left(u, h_{1}, \ldots, h_{k}\right)=\omega\left((\varphi \circ \Gamma)(u),(D(\varphi \circ \Gamma))_{u}\left(h_{1}\right), \ldots,(D(\varphi \circ \Gamma))_{u}\left(h_{k}\right)\right)= \\
\quad=\omega\left(\varphi(\Gamma(u)),(D \varphi)_{\Gamma(u)}(D \Gamma)_{u} h_{1}, \ldots,(D \varphi)_{\Gamma(u)}(D \Gamma)_{u} h_{k}\right)= \\
=\left(\varphi^{*} \omega\right)\left(\Gamma(u),(D \Gamma)_{u} h_{1}, \ldots,(D \Gamma)_{u} h_{k}\right)=\left(\Gamma^{*}\left(\varphi^{*} \omega\right)\right)\left(u, h_{1}, \ldots, h_{k}\right)
\end{gathered}
$$
\]

that is, ${ }^{1}$

$$
(\varphi \circ \Gamma)^{*} \omega=\Gamma^{*}\left(\varphi^{*} \omega\right)
$$

which leads to the change of variable formula

$$
\int_{\varphi \circ \Gamma} \omega=\int_{B}(\varphi \circ \Gamma)^{*} \omega=\int_{B} \Gamma^{*}\left(\varphi^{*} \omega\right)=\int_{\Gamma} \varphi^{*} \omega
$$

for singular boxes, and therefore (by linearity in C), also for k-chains C is \mathbb{R}^{n} :

$$
\begin{equation*}
\int_{\varphi \circ C} \omega=\int_{C} \varphi^{*} \omega, \tag{11f3}
\end{equation*}
$$

where $\varphi \circ C=c_{1}\left(\varphi \circ \Gamma_{1}\right)+\cdots+c_{p}\left(\varphi \circ \Gamma_{p}\right)$ for $c=c_{1} \Gamma_{1}+\cdots+c_{p} \Gamma_{p}$.
11f4 Lemma. For every 0-form $f \in C^{1}\left(\mathbb{R}^{n}\right)$ and $\varphi \in C^{1}\left(\mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n}\right)$,

$$
\varphi^{*}(d f)=d\left(\varphi^{*} f\right)
$$

Proof.

$$
\begin{aligned}
\left(\varphi^{*}(d f)\right)(x, h)=(d f) & \left(\varphi(x),(D \varphi)_{x} h\right)= \\
& =(D f)_{\varphi(x)}(D \varphi)_{x} h \stackrel{2 b 12}{=} D(f \circ \varphi)_{x} h=d\left(\varphi^{*} f\right)(x, h)
\end{aligned}
$$

11f5 Lemma. For all 1-forms ω_{1}, ω_{2} on \mathbb{R}^{n} and $\varphi \in C^{1}\left(\mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n}\right)$,

$$
\varphi^{*}\left(\omega_{1} \wedge \omega_{2}\right)=\left(\varphi^{*} \omega_{1}\right) \wedge\left(\varphi^{*} \omega_{2}\right)
$$

Proof.

$$
\begin{gathered}
\left(\varphi^{*}\left(\omega_{1} \wedge \omega_{2}\right)\right)(x, h, k)=\left(\omega_{1} \wedge \omega_{2}\right)\left(\varphi(x),(D \varphi)_{x} h,(D \varphi)_{x} k\right)= \\
=\omega_{1}\left(\varphi(x),(D \varphi)_{x} h\right) \omega_{2}\left(\varphi(x),(D \varphi)_{x} k\right)-\omega_{1}\left(\varphi(x),(D \varphi)_{x} k\right) \omega_{2}\left(\varphi(x),(D \varphi)_{x} h\right)= \\
=\left(\varphi^{*} \omega_{1}\right)(x, h)\left(\varphi^{*} \omega_{2}\right)(x, k)-\left(\varphi^{*} \omega_{1}\right)(x, k)\left(\varphi^{*} \omega_{2}\right)(x, h)= \\
=\left(\left(\varphi^{*} \omega_{1}\right) \wedge\left(\varphi^{*} \omega_{2}\right)\right)(x, h, k) .
\end{gathered}
$$

[^4]11f6 Lemma. For every 1-form ω of class C^{1} on \mathbb{R}^{n} and $\varphi \in C^{2}\left(\mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n}\right)$,

$$
\varphi^{*}(d \omega)=d\left(\varphi^{*} \omega\right) .
$$

Proof. We have $\omega=\sum_{i=1}^{n} f_{i} d x_{i}$ and $d \omega=\sum_{i=1}^{n} d f_{i} \wedge d x_{i}$. It is sufficient to prove that $\varphi^{*}\left(d f_{i} \wedge d x_{i}\right)=d\left(\varphi^{*}\left(f_{i} d x_{i}\right)\right)$. We have

$$
\begin{aligned}
& \varphi^{*}\left(d f_{i} \wedge d x_{i}\right) \stackrel{[11 f 5}{=} \varphi^{*}\left(d f_{i}\right) \wedge \varphi^{*}\left(d x_{i}\right) \stackrel{\boxed{11 f 4}}{=} \\
= & d\left(\varphi^{*} f_{i}\right) \wedge d\left(\varphi^{*} x_{i}\right) \stackrel{\boxed{\boxed{11 e 6}}}{=} d\left(\varphi^{*}\left(f_{i}\right) d \varphi^{*}\left(x_{i}\right)\right) \stackrel{\boxed{11 f 4}}{=} d\left(\varphi^{*}\left(f_{i}\right) \varphi^{*}\left(d x_{i}\right)\right)=d\left(\varphi^{*}\left(f_{i} d x_{i}\right)\right) .
\end{aligned}
$$

A differential form may be defined on an open subset of \mathbb{R}^{n} (rather than the whole \mathbb{R}^{n}); everything generalizes readily to this case. Below, in some exercises, some forms are defined on $\mathbb{R}^{2} \backslash\{(0,0)\}$.

11f7 Exercise. ${ }^{1}$ (a) $(x, y)=\varphi(r, \theta)=(r \cos \theta, r \sin \theta)$; find $\varphi^{*} \omega$ for $\omega=$ $d x \wedge d y$;
(b) the same φ, but $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$;
(c) the same ω as in (b), but $(x, y)=\varphi(u, v)=\left(u^{2}-v^{2}, 2 u v\right)$.

11f8 Exercise. ${ }^{2}$ Consider mappings: $\varphi(r, \theta)=(r \cos \theta, r \sin \theta), \psi(u, v)=$ $\left(u^{2}-v^{2}, 2 u v\right)$, and $\xi(r, \theta)=\left(r^{2}, 2 \theta\right)$. For $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ find $\varphi^{*} \omega, \xi^{*}\left(\varphi^{*} \omega\right)$, $\psi^{*} \omega$, and $\varphi^{*}\left(\psi^{*} \omega\right)$. Explain the result.

11f9 Exercise. ${ }^{3}$ For a given $r>0$ consider a singular 2-box $\Gamma:[0,2 \pi] \times$ $[0, \pi] \rightarrow \mathbb{R}^{3}, \Gamma(\theta, \varphi)=(r \cos \theta \sin \varphi, r \sin \theta \sin \varphi, r \cos \varphi)$ and a 2 -form $\omega=$ $-\frac{x}{r} d y \wedge d z-\frac{y}{r} d z \wedge d x-\frac{z}{r} d x \wedge d y$. Find the pullback $\Gamma^{*} \omega$.

11g Proving the theorem

11g1 Exercise. Let $\Gamma, \Gamma_{1}, \Gamma_{2}, \cdots: B \rightarrow \mathbb{R}^{n}$ be singular k-boxes such that $\Gamma_{i} \rightarrow \Gamma$ in C^{1}, that is,

$$
\Gamma_{i} \rightarrow \Gamma, \quad D_{1} \Gamma_{i} \rightarrow D_{1} \Gamma, \quad \ldots, \quad D_{k} \Gamma_{i} \rightarrow D_{k} \Gamma \quad \text { uniformly on } B .
$$

Then

$$
\int_{\Gamma_{i}} \omega \rightarrow \int_{\Gamma} \omega \text { for every } k \text {-form } \omega \text { on } \mathbb{R}^{n} \text {. }
$$

Prove it.

[^5]11g2 Exercise. Let $\Gamma, \Gamma_{1}, \Gamma_{2}, \cdots: B \rightarrow \mathbb{R}^{n}$ be singular 2-boxes such that $\Gamma_{i} \rightarrow \Gamma$ in C^{1}. Then

$$
\int_{\partial \Gamma_{i}} \omega \rightarrow \int_{\partial \Gamma} \omega \text { for every 1-form } \omega \text { on } \mathbb{R}^{n} .
$$

Prove it.
11 g 3 Lemma. For every $\Gamma \in C^{1}\left(B \rightarrow \mathbb{R}^{n}\right)$ there exist $\Gamma_{i} \in C^{2}\left(B \rightarrow \mathbb{R}^{n}\right)$ such that $\Gamma_{i} \rightarrow \Gamma$ in C^{1}.

Proof (sketch, for $B=[0,1] \times[0,1] \subset \mathbb{R}^{2}$). The argument of 11 c 5 needs only a slight modification. We define Γ_{ε} for $\varepsilon>0$ by

$$
\Gamma_{\varepsilon}\left(u_{1}, u_{2}\right)=\frac{1}{\varepsilon^{2}} \int_{\left[u_{1}, u_{1}+\varepsilon\right] \times\left[u_{2}, u_{2}+\varepsilon\right]} \Gamma\left(\frac{v_{1}}{1+\varepsilon}, \frac{v_{2}}{1+\varepsilon}\right),
$$

then the partial derivative

$$
\frac{\partial}{\partial u_{1}} \Gamma_{\varepsilon}\left(u_{1}, u_{2}\right)=\frac{1}{\varepsilon} \int_{\left[u_{2}, u_{2}+\varepsilon\right]} \frac{1}{\varepsilon}\left(\Gamma\left(\frac{u_{1}+\varepsilon}{1+\varepsilon}, \frac{v_{2}}{1+\varepsilon}\right)-\Gamma\left(\frac{u_{1}}{1+\varepsilon}, \frac{v_{2}}{1+\varepsilon}\right)\right) \mathrm{d} v_{2}
$$

is of class C^{1} and converges (uniformly) to $\frac{\partial}{\partial u_{1}} \Gamma\left(u_{1}, u_{2}\right)$.
Proof of Theorem 11d3. It is sufficient to prove the equality $\int_{\Gamma} d \omega=\int_{\partial \Gamma} \omega$ for every singular 2-box Γ. Applying (11f2) to the 2-box B and the four 1-boxes constituting ∂B we transform the needed equality into $\int_{B} \Gamma^{*}(d \omega)=\int_{\partial B} \Gamma^{*} \omega$. By 11g1, 11g2 and 11 g 3 we may assume that Γ is of class C^{2}. Thus, 11 f 6 applies, and the needed equality becomes

$$
\int_{B} d\left(\Gamma^{*} \omega\right)=\int_{\partial B} \Gamma^{*} \omega .
$$

Now we may forget the singular 2-box Γ in \mathbb{R}^{n} and the 1-form ω on \mathbb{R}^{n}; it remains to prove the equality $\int_{B} d \omega=\int_{\partial B} \omega$ for every 1-form ω of class C^{1} on the square $B=[0,1] \times[0,1] \subset \mathbb{R}^{2}$.

In general $\omega=f_{1} d u_{1}+f_{2} d u_{2}$; by linearity in ω we may consider two 1 -forms separately, $f_{1} d u_{1}$ and $f_{2} d u_{2}$; we consider only $\omega=f\left(u_{1}, u_{2}\right) d u_{1}$, since the other case is similar.

We have $d \omega=d f \wedge d u_{1}=\left(\frac{\partial f}{\partial u_{1}} d u_{1}+\frac{\partial f}{\partial u_{2}} d u_{2}\right) \wedge d u_{1}=-\frac{\partial f}{\partial u_{2}} d u_{1} \wedge d u_{2}$, thus

$$
\begin{aligned}
& \int_{B} d \omega=-\int_{[0,1] \times[0,1]} \frac{\partial f}{\partial u_{2}} d u_{1} d u_{2}=-\int_{0}^{1} d u_{1} \int_{0}^{1} d u_{2} \frac{\partial f}{\partial u_{2}}= \\
& =-\int_{0}^{1} d u_{1}\left(f\left(u_{1}, 1\right)-f\left(u_{1}, 0\right)\right)=-\int_{0}^{1} f\left(u_{1}, 1\right) d u_{1}+\int_{0}^{1} f\left(u_{1}, 0\right) d u_{1}
\end{aligned}
$$

On the other hand, $\int_{\partial B} \omega=\int_{0}^{1} f\left(u_{1}, 0\right) d u_{1}-\int_{0}^{1} f\left(u_{1}, 1\right) d u_{1}$.

11h First implications

Here is a counterpart of 11 c 4 .

11h1 Corollary.

$$
C_{1} \sim C_{2} \quad \text { implies } \quad \partial C_{1} \sim \partial C_{2}
$$

for arbitrary 2-chains C_{1}, C_{2} in \mathbb{R}^{n}.
Indeed, $\int_{\partial C_{1}} \omega=\int_{C_{1}} d \omega=\int_{C_{2}} d \omega=\int_{\partial C_{2}} \omega$ for every 1-form ω of class C^{1}, and therefore also for every 1 -form of class C^{0}, since 11c5 generalizes readily to 1 -forms.

Now we return to a question posed in Sect. 10c (after 10c11): is the path function $\gamma \mapsto \int_{\gamma} \omega$ continuous?

11h2 Proposition. Assume that $\gamma, \gamma_{1}, \gamma_{2}, \cdots \in C^{1}\left(\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n}\right)$, γ_{k} are bounded in C^{1} (that is, $\left.\sup _{k} \max _{t}\left|\gamma_{k}^{\prime}(t)\right|<\infty\right)$, and $\gamma_{k} \rightarrow \gamma$ in C^{0} (that is, $\max _{t}\left|\gamma_{k}(t)-\gamma(t)\right| \rightarrow 0$ as $\left.k \rightarrow \infty\right)$. Then

$$
\int_{\gamma_{k}} \omega \rightarrow \int_{\gamma} \omega \text { as } k \rightarrow \infty
$$

for every 1-form ω (of class C^{0}) on \mathbb{R}^{n}.
11h3 Remark. The condition that γ_{k} are bounded in C^{1} cannot be dropped. Here is a counterexample:

$$
\begin{gathered}
\gamma_{k}(t)=\frac{1}{\sqrt{k}}(\cos k t, \sin k t) \quad \text { for } t \in[0,2 \pi] \\
\gamma_{k} \rightarrow \gamma, \quad \gamma(t)=(0,0) \\
\omega=x d y-y d x \\
\int_{\gamma_{k}} \omega=\int_{0}^{2 \pi} \frac{1}{k}\left(\cos k t \cdot(\sin k t)^{\prime}-\sin k t \cdot(\cos k t)^{\prime}\right) \mathrm{d} t=2 \pi \quad \text { for all } k ; \\
\int_{\gamma} \omega=0
\end{gathered}
$$

Proof of Prop. 11h2. First, we may assume that ω is of class C^{1}. Otherwise we approximate it by 1 -forms ω_{j} of class C^{1};

$$
\omega=\sum_{i=1}^{n} f_{i} d x_{i} ; \quad \omega_{j}=\sum_{i=1}^{n} f_{i, j} d x_{i} ; \quad f_{i, j} \in C^{1}\left(\mathbb{R}^{n}\right)
$$

$f_{i, j} \rightarrow f_{i}$ as $j \rightarrow \infty$, uniformly on bounded sets (recall 11c5);

$$
\begin{aligned}
& \left|\int_{\gamma_{k}} \omega-\int_{\gamma} \omega\right| \leq\left|\int_{\gamma_{k}} \omega-\int_{\gamma_{k}} \omega_{j}\right|+\left|\int_{\gamma_{k}} \omega_{j}-\int_{\gamma} \omega_{j}\right|+\left|\int_{\gamma} \omega_{j}-\int_{\gamma} \omega\right| \\
& \left|\int_{\gamma} \omega_{j}-\int_{\gamma} \omega\right|=\left|\int_{t_{0}}^{t_{1}} \sum_{i=1}^{n} f_{i, j}(\gamma(t)) \gamma^{\prime}(t) \mathrm{d} t-\int_{t_{0}}^{t_{1}} \sum_{i=1}^{n} f_{i}(\gamma(t)) \gamma^{\prime}(t) \mathrm{d} t\right| \leq \\
& \leq \int_{t_{0}}^{t_{1}} \sum_{i=1}^{n}\left|f_{i, j}(\gamma(t))-f_{i}(\gamma(t))\right| \cdot\left|\gamma^{\prime}(t)\right| \mathrm{d} t \rightarrow 0 \quad \text { as } j \rightarrow \infty
\end{aligned}
$$

similarly, $\int_{\gamma_{k}} \omega-\int_{\gamma_{k}} \omega_{j} \rightarrow 0$ as $j \rightarrow \infty$, uniformly in k (since all $\gamma_{k}(t)$ are a bounded subset of \mathbb{R}^{n}, and all $\gamma_{k}^{\prime}(t)$ are bounded). Given $\varepsilon>0$, we take j such that the first and third terms are less than ε (irrespective of k), and then we take k such that the second term is less than ε.

So, ω is of class C^{1}. We take $\varepsilon_{k} \rightarrow 0$ such that $\left|\gamma_{k}(t)-\gamma(t)\right| \leq \varepsilon_{k}$ for all t. We introduce boxes $B_{k}=\left[t_{0}, t_{1}\right] \times\left[0, \varepsilon_{k}\right] \subset \mathbb{R}^{2}$ and define singular 2-boxes $\Gamma_{k}: B_{k} \rightarrow \mathbb{R}^{n}$ by

$$
\Gamma_{k}(t, u)=\left(1-\frac{u}{\varepsilon_{k}}\right) \gamma_{k}(t)+\frac{u}{\varepsilon_{k}} \gamma(t) .
$$

We have $\Gamma_{k}(\cdot, 0)=\gamma_{k}$ and $\Gamma_{k}\left(\cdot, \varepsilon_{k}\right)=\gamma$, thus,

$$
\partial \Gamma_{k}=\gamma_{k}-\gamma+\beta_{k}-\alpha_{k},
$$

where $\alpha_{k}, \beta_{k}:\left[0, \varepsilon_{k}\right] \rightarrow \mathbb{R}^{n}$,

$$
\alpha_{k}(u)=\left(1-\frac{u}{\varepsilon_{k}}\right) \gamma_{k}\left(t_{0}\right)+\frac{u}{\varepsilon_{k}} \gamma\left(t_{0}\right), \quad \beta_{k}(u)=\left(1-\frac{u}{\varepsilon_{k}}\right) \gamma_{k}\left(t_{1}\right)+\frac{u}{\varepsilon_{k}} \gamma\left(t_{1}\right) .
$$

We have

$$
\int_{\alpha_{k}} \omega=\int_{0}^{\varepsilon_{k}} \sum_{i=1}^{n} f_{i}\left(\alpha_{k}(u)\right) \alpha_{k}^{\prime}(u) \mathrm{d} u \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

since $\varepsilon_{k} \rightarrow 0,\left|\alpha_{k}^{\prime}(u)\right|=\frac{1}{\varepsilon_{k}}\left|\gamma_{k}\left(t_{0}\right)-\gamma\left(t_{0}\right)\right| \leq 1$, and $f_{i}(\cdot)$ is bounded. Similarly, $\int_{\beta_{k}} \omega \rightarrow 0$. In order to prove that $\int_{\gamma_{k}} \omega \rightarrow \int_{\gamma} \omega$ it remains to prove that $\int_{\partial \Gamma_{k}} \omega \rightarrow 0$.

By Theorem 11d3, $\int_{\partial \Gamma_{k}} \omega=\int_{\Gamma_{k}} d \omega$. We have $d \omega=\sum_{i<j} f_{i, j} d x_{i} \wedge d x_{j}$ (forget the $f_{i, j}$ used before); by 11e8,

$$
\int_{\Gamma_{k}} d \omega=\int_{B_{k}} \sum_{i<j} f_{i, j}(x) \frac{\partial\left(x_{i}, x_{j}\right)}{\partial(t, u)} \mathrm{d} t \mathrm{~d} u
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)=\Gamma_{k}(t, u)$. In order to prove that $\int_{\Gamma_{k}} d \omega \rightarrow 0$ it remains to check that the integrand is uniformly bounded (since $v\left(B_{k}\right)=$ $\left.\left(t_{1}-t_{0}\right) \varepsilon_{k} \rightarrow 0\right)$. We have $\left|\frac{\partial x_{i}}{\partial t}\right| \leq \max \left(\left|\gamma_{k}^{\prime}(t)\right|,\left|\gamma^{\prime}(t)\right|\right)$ and $\left|\frac{\partial x_{i}}{\partial u}\right| \leq 1$, thus $\frac{\partial\left(x_{i}, x_{j}\right)}{\partial(t, u)}$ is uniformly bounded. Also $f_{i, j}(x)$ is uniformly bounded (since all $\Gamma_{k}(t, u)$ are a bounded subset of $\left.\mathbb{R}^{n}\right)$.

11h4 Remark. Prop. 11h2 generalizes readily to paths γ_{k}, γ that are only piecewise continuously differentiable. To this end we split B_{k} as needed,

apply Stokes' theorem to each fragment, and sum up.

Index

boundary, 176,178
0-box, 176
chain, 175
0-chain, 176
change of variable, 184
equivalent chains, 175
exterior derivative, $179,180,182$
exterior product, 180
0-form, 176
pullback, 183

Stokes' theorem, 177,179
$\partial(\partial \Gamma), 179$
$\partial \gamma, 176$
$d(d \omega), 179$
$d(d f), 181$
$d \omega, 177-179,182$
$d f, 180$
$d x_{i}, 180$
$f \omega, 180$
$\int_{C} \omega, 175$
$\omega_{1} \wedge \omega_{2}, 180$
$\Gamma^{*} \omega, 183$
$\varphi^{*} \omega, 183$

[^0]: ${ }^{1}$ Well, more formally, it is $\{(0, x)\}$.

[^1]: ${ }^{1}$ Why $d x_{i} \wedge d x_{j}$ rather than $d x_{i} d x_{j}$? In fact, both notations are in use; the wedge symbol " \wedge " helps us remember that this operation is antisymmetric.

[^2]: ${ }^{1}$ Shurman, Ex. 9.5.1
 ${ }^{2}$ Shurman, Ex. 9.5.2

[^3]: ${ }^{1}$ Shurman, Sect. 9.7]

[^4]: ${ }^{1}$ The same argument gives a more general formula $(\varphi \circ \psi)^{*} \omega=\psi^{*}\left(\varphi^{*} \omega\right)$.

[^5]: ${ }^{1}$ Shurman, Sect. 9.9.
 ${ }^{2}$ Shurman, Sect. 9.9.
 ${ }^{3}$ Shurman, Ex. 9.9.4.

