# 11 From boundary to exterior derivative; Stokes' theorem

| 11a | What is the problem                                        | 173 |
|-----|------------------------------------------------------------|-----|
| 11b | Chains                                                     | 175 |
| 11c | Order $0$ and order $1 \ldots \ldots \ldots \ldots \ldots$ | 176 |
| 11d | Order 1 and order 2: exterior derivative                   | 178 |
| 11e | Algebra of differential forms                              | 180 |
| 11f | Change of variables                                        | 183 |
| 11g | Proving the theorem                                        | 185 |
| 11h | First implications                                         | 187 |

Terms "boundary" and "derivative" get new meaning, and become dual to each other.

# 11a What is the problem

A box  $B \subset \mathbb{R}^n$  may be treated as a special case of a singular *n*-box in  $\mathbb{R}^n$ :  $\Gamma: B \to \mathbb{R}^n$ ,  $\Gamma(u) = u$ . Thus every *n*-form  $\omega$  on  $\mathbb{R}^n$  leads to an additive box function

$$B \mapsto \int_B \omega = \int_B \omega(u, e_1, \dots, e_n) \,\mathrm{d}u$$

where  $(e_1, \ldots, e_n)$  is the usual orthonormal basis in  $\mathbb{R}^n$ . It is natural to define

(11a1) 
$$\int_E \omega = \int_E \omega(u, e_1, \dots, e_n) \, \mathrm{d}u$$

for all Jordan measurable sets  $E \subset \mathbb{R}^n$ . (In this sense, every *n*-form in  $\mathbb{R}^n$  is locally proportional to the volume.)

The singular 2-box  $\Gamma$  of 10e2 is *not* a homeomorphism between the box  $B = [0,1] \times [0,2\pi] \subset \mathbb{R}^2$  and the disk  $D = \{x : |x| \leq 1\} \subset \mathbb{R}^2$ . And nevertheless,

(11a2) 
$$\int_{\Gamma} \omega = \int_{D} \omega \quad \text{for every 2-form } \omega$$

 $Analysis \hbox{-} III, IV$ 

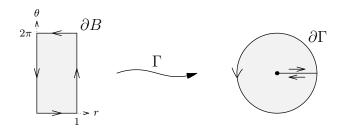
$$\int_{\Gamma} \omega = \int_{B} \omega \left( \Gamma(u), (D_{1}\Gamma)_{u}, (D_{2}\Gamma)_{u} \right) du = \int_{0}^{1} dr \int_{0}^{2\pi} d\theta \, \omega \left( \left( \begin{smallmatrix} r \cos \theta \\ r \sin \theta \end{smallmatrix} \right), \left( \begin{smallmatrix} \cos \theta \\ \sin \theta \end{smallmatrix} \right), \left( \begin{smallmatrix} -r \sin \theta \\ r \cos \theta \end{smallmatrix} \right) \right),$$
$$\int_{D} \omega = \int_{0}^{1} r \, dr \int_{0}^{2\pi} d\theta \, \omega \left( \left( \begin{smallmatrix} r \cos \theta \\ r \sin \theta \end{smallmatrix} \right), \left( \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right), \left( \begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right) \right),$$

and

$$L\left(\left(\begin{smallmatrix}\cos\theta\\\sin\theta\end{smallmatrix}\right), \left(\begin{smallmatrix}-r\sin\theta\\r\cos\theta\end{smallmatrix}\right)\right) = rL\left(\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right), \left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)\right)$$

for every antisymmetric bilinear form L on  $\mathbb{R}^2$  (think, why). The missing segment  $\{0\} \times [0, 1]$  does not matter for the 2-dimensional integral.

We may say that this singular box is equivalent to the disk (w.r.t. 2-forms). However, what happens to the boundary? The boundary  $\partial B$  of B is not a box but the union of four 1-dimensional boxes, and  $\Gamma|_{\partial B}$  may be treated as a path  $\partial \Gamma$  consisting of four singular 1-boxes (one degenerated to a point).

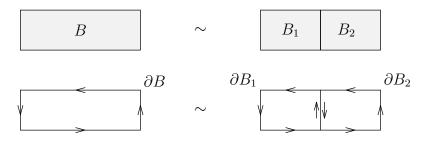


Interestingly,

(11a3) 
$$\int_{\partial \Gamma} \omega = \int_{S} \omega \quad \text{for every 1-form } \omega;$$

here  $\int_{S} \omega = \int_{0}^{2\pi} \omega\left(\left(\begin{array}{c}\cos\theta\\\sin\theta\end{array}\right), \left(\begin{array}{c}-\sin\theta\\\cos\theta\end{array}\right)\right) \mathrm{d}\theta$ . The segment  $\{0\} \times [0,1]$  does not harm since it occurs twice, with opposite signs. We may say that the boundary of this singular box is equivalent to the boundary of the disk.

Just a good luck? No! Rather, a manifestation of a deep and important relation between singular boxes and their boundaries. Another example:



# 11b Chains

**11b1 Definition.** A (singular) k-chain (in  $\mathbb{R}^n$ ) is a formal linear combination of singular k-boxes.

That is,

$$C = c_1 \Gamma_1 + \dots + c_p \Gamma_p,$$

where  $a_1, \ldots, a_p \in \mathbb{R}$  and  $\Gamma_1, \ldots, \Gamma_p$  are singular k-boxes. More formally, this is a real-valued function with finite support on the (huge!) set of all singular k-boxes;

$$c_1 = C(\Gamma_1), \ldots, c_p = C(\Gamma_p); \quad C(\Gamma) = 0 \text{ for all other } \Gamma.$$

Clearly, all k-chains are a (huge) vector space, with a basis indexed by all singular k-boxes. Less formally we say that the singular k-boxes are the basis, and each singular box is (a special case of) a chain:  $\Gamma = 1 \cdot \Gamma$ .

### 11b2 Definition.

$$\int_C \omega = c_1 \int_{\Gamma_1} \omega + \dots + c_p \int_{\Gamma_p} \omega$$

for every k-chain  $C = c_1 \Gamma_1 + \cdots + c_p \Gamma_p$  and every k-form  $\omega$ .

Note that the integral is bilinear;  $\int_C \omega$  is linear in C for every  $\omega$  (by construction), and linear in  $\omega$  for every C (since  $\int_{\Gamma} \omega$  evidently is linear in  $\omega$ ).

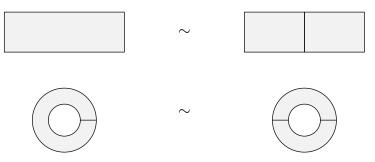
**11b3 Definition.** Two k-chains  $C_1, C_2$  are equivalent if

$$\int_{C_1} \omega = \int_{C_2} \omega \quad \text{for all } k \text{-forms } \omega \text{ (of class } C^0).$$

Let  $B \subset \mathbb{R}^k$  be a box, P its partition, and  $\Gamma : B \to \mathbb{R}^n$  a singular box. Then

$$\Gamma \sim \sum_{b \in P} \Gamma|_b \,,$$

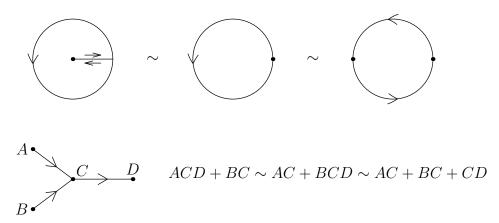
since  $\Gamma \mapsto \int_{\Gamma} \omega$  is an additive function of a singular box.



Recall that singular 1-boxes are  $C^1$ -paths.

By 10c12, equivalent paths are equivalent 1-chains.

By 10c10, the 1-chain  $\gamma + \gamma_{-1}$  is equivalent to 0; here  $\gamma_{-1}$  is the inverse path.



### **11c** Order 0 and order 1

The case k = 0 is included as follows. The space  $\mathbb{R}^0$  consists, by definition, of a single point 0. The only 0-dimensional box is  $\{0\}$ . A singular 0-box in  $\mathbb{R}^n$  is thus  $\{x\}$  for some  $x \in \mathbb{R}^{n,1}$  A 0-form on  $\mathbb{R}^n$  is a function  $\omega : \mathbb{R}^n \to \mathbb{R}$  (of class  $C^m$ ). And

$$\int_{\{x\}} \omega = \omega(x) \,,$$

of course. Accordingly,  $\int_C \omega = c_1 \omega(x_1) + \cdots + c_p \omega(x_p)$  for a 0-chain  $C = c_1\{x_1\} + \cdots + c_p\{x_p\}$ .

**11c1 Exercise.** If two 0-chains are equivalent then they are equal. Prove it.

The boundary of a singular 1-box  $\gamma : [t_0, t_1] \to \mathbb{R}^n$  is, by definition, the 0-chain

$$\partial \gamma = \{\gamma(t_1)\} - \{\gamma(t_0)\},\$$

a linear combination of two singular 0-boxes (not to be confused with  $\gamma(t_1) - \gamma(t_0)$ ). Thus,

$$\int_{\partial \gamma} \omega = \omega(\gamma(t_1)) - \omega(\gamma(t_0)) \quad \text{for a 0-form } \omega.$$

<sup>&</sup>lt;sup>1</sup>Well, more formally, it is  $\{(0, x)\}$ .

The boundary of a 1-chain  $C = c_1 \gamma_1 + \cdots + c_p \gamma_p$  is, by definition, the 0-chain  $\partial C = c_1 \partial \gamma_1 + \cdots + c_p \partial \gamma_p$ . For example,

the boundary of 
$$A \xrightarrow{C} D$$
 is  $-\{A\} - \{B\} + \{C\} + \{D\}$ ;  
the boundary of  $\sim$  is  $0$ .

Note that the map  $C \mapsto \partial C$  is linear (by construction).

Given a 0-form  $\omega$  of class  $C^1$  on  $\mathbb{R}^n$ , that is, a continuously differentiable function  $\omega : \mathbb{R}^n \to \mathbb{R}$ , its derivative  $D\omega$  may be thought of as a 1-form of class  $C^0$  on  $\mathbb{R}^n$ , denoted  $d\omega$ ;

(11c2) 
$$(d\omega)(x,h) = (D\omega)_x(h) = (D_h\omega)_x.$$

**11c3 Proposition.** (*Stokes' theorem for* k = 1)

Let C be a 1-chain in  $\mathbb{R}^n$ , and  $\omega$  a 0-form of class  $C^1$  on  $\mathbb{R}^n$ . Then

$$\int_C d\omega = \int_{\partial C} \omega \,.$$

*Proof.* By linearity in C it is sufficient to prove it for  $C = \gamma$  (a single 1-box, that is, a path  $\gamma : [t_0, t_1] \to \mathbb{R}^n$ ). We have

$$\int_{\gamma} d\omega = \int_{t_0}^{t_1} d\omega (\gamma(t), \gamma'(t)) dt = \int_{t_0}^{t_1} (D\omega)_{\gamma(t)} (\gamma'(t)) dt =$$
$$= \int_{t_0}^{t_1} \left( \frac{\mathrm{d}}{\mathrm{d}t} \omega(\gamma(t)) \right) dt = \omega(\gamma(t_1)) - \omega(\gamma(t_0)) = \int_{\partial \gamma} \omega .$$

### 11c4 Corollary.

 $C_1 \sim C_2$  implies  $\partial C_1 = \partial C_2$ 

for arbitrary 1-chains  $C_1, C_2$  in  $\mathbb{R}^n$ .

Indeed,  $\int_{\partial C_1} \omega = \int_{C_1} d\omega = \int_{C_2} d\omega = \int_{\partial C_2} \omega$  for every 0-form  $\omega$  of class  $C^1$ . Similarly to 11c1 it follows that  $\partial C_1 = \partial C_2$ .

The case k = 1 is special; for higher k we'll see that  $C_1 \sim C_2$  implies  $\partial C_1 \sim \partial C_2$  but not  $\partial C_1 = \partial C_2$ . Nothing like 11c1 exists for higher k.

Let us try to prove that  $C_1 \sim C_2 \implies \partial C_1 \sim \partial C_2$  for k = 1 without 11c1. The only problem is that  $C^1(\mathbb{R}^n) \neq C^0(\mathbb{R}^n)$ . However,  $C^1(\mathbb{R}^n)$  is dense in  $C^0(\mathbb{R}^n)$  in the following sense.

**11c5 Lemma.** For every  $f \in C^0(\mathbb{R}^n)$  there exist  $f_i \in C^1(\mathbb{R}^n)$  such that  $f_i \to f$  uniformly on bounded sets.

Proof (sketch, for n = 2). Define  $f_{\varepsilon}$  for  $\varepsilon > 0$  by

$$f_{\varepsilon}(x_1, x_2) = \frac{1}{\varepsilon^2} \int_{[x_1, x_1 + \varepsilon] \times [x_2, x_2 + \varepsilon]} f,$$

then the partial derivative

$$\frac{\partial}{\partial x_1} f_{\varepsilon}(x_1, x_2) = \frac{1}{\varepsilon^2} \int_{[x_2, x_2 + \varepsilon]} \left( f(x_1 + \varepsilon, \cdot) - f(x_1, \cdot) \right)$$

is continuous; similarly, the other partial derivative is continuous; thus,  $f_{\varepsilon} \in C^1(\mathbb{R}^n)$ . The uniform convergence to f (as  $\varepsilon \to 0$ ) follows from uniform continuity of f (on bounded sets).

**11c6 Exercise.** Complete the proof, and generalize it to all dimensions.

Thus,  $C^0$  may be replaced with  $C^1$  in Def. 11b3 for k = 0.

# **11d** Order 1 and order 2: exterior derivative

The boundary of a singular 2-box  $\Gamma$  is, by definition, the 1-chain

$$\Gamma|_{AB} + \Gamma|_{BC} + \Gamma|_{CD} + \Gamma|_{DA} = \Gamma|_{AB} + \Gamma|_{BC} - \Gamma|_{DC} - \Gamma|_{AD}.$$

This is not really a definition of a 1-chain, since I did not specify the four 1-dimensional boxes (which is very easy to do); but its equivalence class is well-defined, and this is all we need solving the following question.

Given a 1-form  $\omega$ , can we construct a 2-form, call it  $d\omega$ , such that  $\int_C d\omega = \int_{\partial C} \omega$  for all 2-chains C?

We have a function  $C \mapsto \int_{\partial C} \omega$  of a singular box; this is an additive function, since the map  $\Gamma \mapsto \partial \Gamma$  is additive (up to equivalence).



We want to differentiate this additive function in the hope that its derivative exists and is a 2-form  $d\omega$ .

 $Analysis \hbox{-} III, IV$ 

Note that

(11d1) 
$$\partial(\partial\Gamma) = 0$$
 for a singular 2-box  $\Gamma$ ;

by 11c3,  $\int_{\partial\Gamma} d\omega = \int_{\partial(\partial\Gamma)} \omega = 0$  for every 0-form  $\omega$ . It should be  $\int_{\Gamma} d(d\omega) = \int_{\partial\Gamma} d\omega = 0$  for all  $\Gamma$ , that is,  $d(d\omega) = 0$ . Indeed, this fact will be proved, see (11e4). A wonder: the second derivative of a 0-form is always zero, irrespective of the second derivatives of the function! Indeed, exterior derivative is very similar to the usual derivative for 0-forms, but very dissimilar for 1-forms.

For now we only need to guess a formula for  $d\omega$ ; having the formula, hopefully we'll be able to prove the equality.

Given a point  $x \in \mathbb{R}^n$  and two vectors  $h, k \in \mathbb{R}^n$ , we consider small singular boxes  $\Gamma_{\varepsilon} : [0, 1] \times [0, 1] \to \mathbb{R}^n$ ,

$$\Gamma_{\varepsilon}(u_1, u_2) = x + \varepsilon u_1 h + \varepsilon u_2 k;$$

an additive function on  $\Gamma_{\varepsilon}$  should be of order  $\varepsilon^2$  as  $\varepsilon \to 0+$ ; we divide it by  $\varepsilon^2$  and calculate the limit:

$$\frac{1}{\varepsilon^2} \int_{\partial \Gamma_{\varepsilon}} \omega = \frac{1}{\varepsilon^2} \int_0^1 \omega(x + \varepsilon u_1 h, \varepsilon h) \, \mathrm{d}u_1 + \frac{1}{\varepsilon^2} \int_0^1 \omega(x + \varepsilon h + \varepsilon u_2 k, \varepsilon k) \, \mathrm{d}u_2 - \frac{1}{\varepsilon^2} \int_0^1 \omega(x + \varepsilon u_1 h + \varepsilon k, \varepsilon h) \, \mathrm{d}u_1 - \frac{1}{\varepsilon^2} \int_0^1 \omega(x + \varepsilon u_2 k, \varepsilon k) \, \mathrm{d}u_2 = \int_0^1 \frac{\omega(x + \varepsilon u_1 h, h) - \omega(x + \varepsilon u_1 h + \varepsilon k, h)}{\varepsilon} \, \mathrm{d}u_1 + \int_0^1 \frac{\omega(x + \varepsilon h + \varepsilon u_2 k, k) - \omega(x + \varepsilon u_2 k, k)}{\varepsilon} \, \mathrm{d}u_2 \to -(D_k \omega(\cdot, h))_x + (D_h \omega(\cdot, k))_x.$$

Taking into account that

$$\frac{1}{\varepsilon^2}\int_{\Gamma_\varepsilon}d\omega\to (d\omega)(x,h,k)$$

(for arbitrary 2-form  $d\omega$ ) we see that the needed  $d\omega$  (if exists) is as follows.

**11d2 Definition.** The *exterior derivative* of a 1-form  $\omega$  of class  $C^1$  is a 2-form  $d\omega$  defined by

$$(d\omega)(\cdot, h, k) = D_h\omega(\cdot, k) - D_k\omega(\cdot, h)$$

**11d3 Theorem.** (*Stokes' theorem for* k = 2)

Let C be a 2-chain in  $\mathbb{R}^n$ , and  $\omega$  a 1-form of class  $C^1$  on  $\mathbb{R}^n$ . Then

~

$$\int_C d\omega = \int_{\partial C} \omega$$

The proof will be given in Sect. 11g.

#### 11eAlgebra of differential forms

For every k = 0, 1, ..., n all k-forms (of class  $C^m$ ) on  $\mathbb{R}^n$  are a vector space. For k = 0 this space is just  $C^m(\mathbb{R}^n)$ .

The product  $f\omega$  of a 0-form f and a k-form  $\omega$  is another k-form  $f\omega$ defined by

$$(f\omega)(x, h_1, \dots, h_k) = f(x)\omega(x, h_1, \dots, h_k) \text{ for } x, h_1, \dots, h_k \in \mathbb{R}^n;$$

it is of class  $C^m$  whenever f and  $\omega$  are; the mapping  $(f, \omega) \mapsto f\omega$  is bilinear; also,  $q(f\omega) = (qf)\omega$ .

The exterior derivative of a 0-form  $f \in C^1(\mathbb{R}^n)$  is a 1-form df defined by (recall (11c2))

(11e1) 
$$(df)(x,h) = (Df)_x(h) = (D_h f)_x;$$

the mapping  $f \mapsto df$  is linear; also, d(fg) = f dg + g df.

The exterior derivative of the *i*-th coordinate function  $x \mapsto x_i$  is traditionally denoted by  $dx_i$  (for  $i = 1, \ldots, n$ ); thus,

(11e2) 
$$(dx_i)(x,h) = h_i$$
 for all  $x \in \mathbb{R}^n$  and  $h = (h_1, \dots, h_n) \in \mathbb{R}^n$ .

A linear form L on  $\mathbb{R}^n$  is generally  $L(h) = \sum_{i=1}^n c_i h_i$  for some  $c_1, \ldots, c_n \in$  $\mathbb{R}$ ; thus, a 1-form  $\omega$  on  $\mathbb{R}^n$  is generally  $\omega(x,h) = \sum_{i=1}^n f_i(x)h_i$  for some  $f_1, \ldots, f_n : \mathbb{R}^n \to \mathbb{R}$ . That is (recall Sect. 10c),

$$\omega = \sum_{i=1}^{n} f_i \, dx_i \, ;$$

 $\omega$  is of class  $C^m$  if and only if all  $f_i$  are. In particular,

$$df = \sum_{i=1}^{n} D_i f \, dx_i = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \, dx_i \,,$$

since  $D_h f = \sum_{i=1}^n (D_i f) h_i$ . A 1-form on  $\mathbb{R}^1$  is  $f \, dx_1$ . Treating a box  $B \subset \mathbb{R}^1$  as a singular 1-box (id :  $B \to \mathbb{R}^1$ ) we have  $\int_B \omega = \int_B f(x_1) \, \mathrm{d}x_1$  for  $\omega = f \, dx_1$ , since  $(dx_1)(x, e_1) = 1$ (recall (11a1) and  $(\bar{11}e2)$ ).

The exterior (or wedge) product of two 1-forms  $\omega_1, \omega_2$  is a 2-form  $\omega_1 \wedge \omega_2$ defined  $by^1$ 

$$(\omega_1 \wedge \omega_2)(x,h,k) = \omega_1(x,h)\omega_2(x,k) - \omega_1(x,k)\omega_2(x,h);$$

<sup>&</sup>lt;sup>1</sup>Why  $dx_i \wedge dx_j$  rather than  $dx_i dx_j$ ? In fact, both notations are in use; the wedge symbol " $\wedge$ " helps us remember that this operation is antisymmetric.

it is of class  $C^m$  whenever  $\omega_1$  and  $\omega_2$  are; the mapping  $(\omega_1, \omega_2) \mapsto \omega_1 \wedge \omega_2$ is bilinear and antisymmetric:  $\omega_1 \wedge \omega_2 = -\omega_2 \wedge \omega_1$ . Also,  $(f\omega_1) \wedge (g\omega_2) = (fg)(\omega_1 \wedge \omega_2)$ . By (11e2),

(11e3) 
$$(dx_i \wedge dx_j)(x,h,k) = h_i k_j - k_i h_j = \begin{vmatrix} h_i & k_i \\ h_j & k_j \end{vmatrix}$$

A bilinear form L on  $\mathbb{R}^n$  is generally

$$L(h,k) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i,j} h_i k_j;$$

it is antisymmetric if and only if  $c_{i,j} = -c_{j,i}$ ; in this case  $L(h, k) = \sum_{i,j} c_{i,j} h_i k_j = \sum_{i < j} c_{i,j} (h_i k_j - h_j k_i)$ . Thus, by (11e3), a 2-form  $\omega$  on  $\mathbb{R}^n$  is generally

$$\omega = \sum_{i < j} f_{i,j} \, dx_i \wedge dx_j = \frac{1}{2} \sum_{i,j} f_{i,j} \, dx_i \wedge dx_j \,;$$

in the former notation  $f_{i,j}$  are given for i < j only, while in the latter notation  $f_{i,j} = -f_{j,i}$ ;  $\omega$  is of class  $C^m$  if and only if all  $f_{i,j}$  are. For example, the 2-form of 10e12 is  $x_1 dx_2 \wedge dx_3$ .

A 2-form on  $\mathbb{R}^2$  is  $f \, dx_1 \wedge dx_2$ . Treating a box  $B \subset \mathbb{R}^2$  as a singular 2-box (id :  $B \to \mathbb{R}^2$ ) we have  $\int_B f \, dx_1 \wedge dx_2 = \int_B f(x) \, dx_1 dx_2$ , since  $(dx_1 \wedge dx_2)(x, e_1, e_2) = 1$  (recall (11a1) and (11e3)).

We turn to Def. 11d2. Let  $\omega = df$ ,  $f \in C^2(\mathbb{R}^n)$ ; then, by (11e1) (and Sect. 2g),  $(d\omega)(\cdot, h, k) = D_h\omega(\cdot, k) - D_k\omega(\cdot, h) = D_h(D_kf) - D_k(D_hf) = 0$ , that is,

$$d(df) = 0,$$

as it should be (recall (11d1) and the paragraph after it).

Now consider  $d(f\omega)$  for  $f \in C^1(\mathbb{R}^n)$  and a 1-form  $\omega$  of class  $C^1$  on  $\mathbb{R}^n$ . We have

$$(d(f\omega))(\cdot,h,k) = D_h(f\omega(\cdot,k)) - D_k(f\omega(\cdot,h)) = = (D_hf)\omega(\cdot,k) + fD_h\omega(\cdot,k) - (D_kf)\omega(\cdot,h) - fD_k\omega(\cdot,h) = = fd\omega(\cdot,h,k) + (D_hf)\omega(\cdot,k) - (D_kf)\omega(\cdot,h) = = fd\omega(\cdot,h,k) + df(\cdot,h)\omega(\cdot,k) - df(\cdot,k)\omega(\cdot,h) = = fd\omega(\cdot,h,k) + (df \wedge \omega)(\cdot,h,k);$$

thus,

(11e5) 
$$d(f\omega) = df \wedge \omega + f \, d\omega$$

It follows via (11e4) that

(11e6) 
$$d(f \, dg) = df \wedge dg$$

for  $f \in C^1(\mathbb{R}^n)$ ,  $g \in C^2(\mathbb{R}^n)$ , and we get the following definition equivalent to 11d2.

**11e7 Definition.** The *exterior derivative* of a 1-form  $\omega$  of class  $C^1$  is a 2-form  $d\omega$  defined by

$$d\omega = \sum_{i=1}^{n} df_i \wedge dx_i$$
 for  $\omega = \sum_{i=1}^{n} f_i dx_i$ .

The 2-form  $d\omega$  is of class  $C^m$  whenever  $\omega$  is of class  $C^{m+1}$ ; the mapping  $\omega \mapsto d\omega$  is linear; and  $d(f\omega)$  is given by (11e5).

11e8 Exercise. Check that

$$\int_{\Gamma} \omega = \int_{B} \sum_{i < j} f_{i,j}(x) \frac{\partial(x_i, x_j)}{\partial(u_1, u_2)} \, \mathrm{d}u_1 \mathrm{d}u_2$$

for every 2-form  $\omega = \sum_{i < j} f_{i,j} dx_i \wedge dx_j$  on  $\mathbb{R}^n$  and singular 2-box  $\Gamma : B \to \mathbb{R}^n$ ; here  $x = (x_1, \ldots, x_n) = \Gamma(u_1, u_2)$  and

$$\frac{\partial(x_i, x_j)}{\partial(u_1, u_2)} = \begin{vmatrix} \frac{\partial x_i}{\partial u_1} & \frac{\partial x_i}{\partial u_2} \\ \frac{\partial x_j}{\partial u_1} & \frac{\partial x_j}{\partial u_2} \end{vmatrix}.$$

In particular,

$$\int_{\Gamma} dx_i \wedge dx_j = \int_B \frac{\partial(x_i, x_j)}{\partial(u_1, u_2)} \, \mathrm{d}u_1 \mathrm{d}u_2 \, .$$

**11e9 Exercise.** <sup>1</sup> (a) Let  $\Gamma : B \to \mathbb{R}^3$  be a singular 2-box in  $\mathbb{R}^3$ , and  $\Gamma_0 : B \to \mathbb{R}^3$  its projection onto the xy plane; that is,  $\Gamma(u) = (\Gamma_1(u), \Gamma_2(u), \Gamma_3(u))$ and  $\Gamma_0(u) = (\Gamma_1(u), \Gamma_2(u), 0)$  for  $u \in B$ . Prove that  $\int_{\Gamma} dx \wedge dy = \int_{\Gamma_0} dx \wedge dy$ .

(b) Consider  $\Gamma : [0, a] \times [0, \pi] \to \mathbb{R}^3$ ,  $\Gamma(r, \theta) = (r \cos \theta, r \sin \theta, r^2)$ . Sketch the surface noting that  $\theta$  varies from 0 to  $\pi$ , not from 0 to  $2\pi$ . Try to determine  $\int_{\Gamma} dx \wedge dy$  by geometrical reasoning, and then check your answer by integration. Do the same for  $dy \wedge dz$  and  $dz \wedge dx$ .

**11e10 Exercise.**<sup>2</sup> (a) Integrate a 2-form  $x \, dy \wedge dz + y \, dx \wedge dy$  on  $\mathbb{R}^3$  over the singular 2-box  $\Gamma : [0,1] \times [0,1] \to \mathbb{R}^3$ ,  $\Gamma(u,v) = (u+v, u^2 - v^2, uv)$ .

(b) The same for  $\Gamma : [0, 2\pi] \times [0, 1] \to \mathbb{R}^3$ ,  $\Gamma(u, v) = (v \cos u, v \sin u, u)$ .

<sup>&</sup>lt;sup>1</sup>Shurman, Ex. 9.5.1

 $<sup>^{2}</sup>$ Shurman, Ex. 9.5.2

### Analysis-III,IV

**11e11 Exercise.** <sup>1</sup> (a) Calculate  $(a_1 dx_1 + a_2 dx_2) \wedge (b_1 dx_1 + b_2 dx_2)$ , observe a 2 × 2 determinant;

(b) calculate  $(a_1 dx_1 + a_2 dx_2 + a_3 dx_3) \wedge (b_1 dx_1 + b_2 dx_2 + b_3 dx_3)$ , observe a cross product.

**11e12 Exercise.** Check that  $d(x \, dy - y \, dx) = 2 \, dx \wedge dy$ .

### 11f Change of variables

Given a mapping  $\varphi \in C^1(\mathbb{R}^\ell \to \mathbb{R}^n)$ , every singular k-box  $\Gamma : B \to \mathbb{R}^\ell$  leads to a singular k-box  $\varphi \circ \Gamma : B \to \mathbb{R}^n$ . Thus, every k-form  $\omega$  on  $\mathbb{R}^n$  leads to a box function  $\Gamma \mapsto \int_{\varphi \circ \Gamma} \omega$ ; it is additive (since the mapping  $\Gamma \mapsto \varphi \circ \Gamma$  is). Can we find a k-form  $\varphi^*\omega$  on  $\mathbb{R}^\ell$  such that  $\int_{\varphi \circ \Gamma} \omega = \int_{\Gamma} \varphi^*\omega$  for all  $\Gamma$ ?

**11f1 Definition.** Given a k-form  $\omega$  on  $\mathbb{R}^n$  and a mapping  $\varphi \in C^1(\mathbb{R}^\ell \to \mathbb{R}^n)$ , the *pullback* of  $\omega$  along  $\varphi$  is a k-form  $\varphi^*\omega$  on  $\mathbb{R}^\ell$  defined by

$$(\varphi^*\omega)(x,h_1,\ldots,h_k) = \omega(\varphi(x),(D\varphi)_x(h_1),\ldots,(D\varphi)_x(h_k)) =$$
  
=  $\omega(\varphi(x),(D_{h_1}\varphi)_x,\ldots,(D_{h_k}\varphi)_x)$  for  $x,h_1,\ldots,h_k \in \mathbb{R}^{\ell}$ .

The form  $\varphi^*\omega$  is of class  $C^m$  whenever  $\omega$  is of class  $C^m$  and  $\varphi$  is of class  $C^{m+1}$ . The mapping  $\omega \mapsto \varphi^*\omega$  is linear. For k = 0 the pullback is just the composition:  $(\varphi^*f)(x) = f(\varphi(x)); \ \varphi^*f = f \circ \varphi$  (no need in  $C^{m+1}$  in this case). And  $\varphi^*(f\omega) = (\varphi^*f)(\varphi^*\omega) = (f \circ \varphi)\varphi^*\omega$  for  $f \in C^1(\mathbb{R}^n)$ .

A singular k-box  $\Gamma$  in  $\mathbb{R}^n$  is a  $C^1$ -mapping  $B \to \mathbb{R}^n$  on a box  $B \subset \mathbb{R}^k$ rather than the whole  $\mathbb{R}^k$ , but still, the pullback  $\Gamma^* \omega$  is well-defined (on B),

$$(\Gamma^*\omega)(u,h_1,\ldots,h_k) = \omega\big(\Gamma(u),(D_{h_1}\Gamma)_u,\ldots,(D_{h_k}\Gamma)_u\big)$$

for  $u \in B$  and  $h_1, \ldots, h_k \in \mathbb{R}^k$ . In particular, for the usual basis  $e_1, \ldots, e_k$ of  $\mathbb{R}^k$  we have  $(\Gamma^*\omega)(u, e_1, \ldots, e_k) = \omega(\Gamma(u), (D_1\Gamma)_u, \ldots, (D_k\Gamma)_u)$ . Thus, the definition of  $\int_{\Gamma} \omega$  given in Sect. 10e may be rewritten as  $\int_{\Gamma} \omega = \int_{B} (\Gamma^*\omega)(u, e_1, \ldots, e_k) \, \mathrm{d}u$ . Using (11a1) we get

(11f2) 
$$\int_{\Gamma} \omega = \int_{B} \Gamma^* \omega \,.$$

We see that it was the integral of the pullback, from the very beginning! By the chain rule 2b12,

$$(D(\varphi \circ \Gamma))_u = (D\varphi)_{\Gamma(u)} \circ (D\Gamma)_u;$$

<sup>&</sup>lt;sup>1</sup>Shurman, Sect. 9.7]

Analysis-III,IV

thus,

$$((\varphi \circ \Gamma)^* \omega)(u, h_1, \dots, h_k) = \omega ((\varphi \circ \Gamma)(u), (D(\varphi \circ \Gamma))_u(h_1), \dots, (D(\varphi \circ \Gamma))_u(h_k)) = = \omega (\varphi(\Gamma(u)), (D\varphi)_{\Gamma(u)}(D\Gamma)_u h_1, \dots, (D\varphi)_{\Gamma(u)}(D\Gamma)_u h_k) = = (\varphi^* \omega) (\Gamma(u), (D\Gamma)_u h_1, \dots, (D\Gamma)_u h_k) = (\Gamma^*(\varphi^* \omega))(u, h_1, \dots, h_k),$$

that is, $^1$ 

$$(\varphi \circ \Gamma)^* \omega = \Gamma^*(\varphi^* \omega) \,,$$

which leads to the change of variable formula

$$\int_{\varphi \circ \Gamma} \omega = \int_B (\varphi \circ \Gamma)^* \omega = \int_B \Gamma^*(\varphi^* \omega) = \int_{\Gamma} \varphi^* \omega$$

for singular boxes, and therefore (by linearity in C), also for k-chains C is  $\mathbb{R}^n$ :

(11f3) 
$$\int_{\varphi \circ C} \omega = \int_C \varphi^* \omega \,,$$

where  $\varphi \circ C = c_1(\varphi \circ \Gamma_1) + \dots + c_p(\varphi \circ \Gamma_p)$  for  $c = c_1\Gamma_1 + \dots + c_p\Gamma_p$ . **11f4 Lemma.** For every 0-form  $f \in C^1(\mathbb{R}^n)$  and  $\varphi \in C^1(\mathbb{R}^\ell \to \mathbb{R}^n)$ ,

$$\varphi^*(df) = d(\varphi^*f)$$
.

Proof.

$$(\varphi^*(df))(x,h) = (df)(\varphi(x), (D\varphi)_x h) =$$
  
=  $(Df)_{\varphi(x)}(D\varphi)_x h \stackrel{2b12}{=} D(f \circ \varphi)_x h = d(\varphi^*f)(x,h) .$ 

**11f5 Lemma.** For all 1-forms  $\omega_1, \omega_2$  on  $\mathbb{R}^n$  and  $\varphi \in C^1(\mathbb{R}^\ell \to \mathbb{R}^n)$ ,

$$\varphi^*(\omega_1 \wedge \omega_2) = (\varphi^* \omega_1) \wedge (\varphi^* \omega_2).$$

Proof.

$$(\varphi^*(\omega_1 \wedge \omega_2))(x, h, k) = (\omega_1 \wedge \omega_2)(\varphi(x), (D\varphi)_x h, (D\varphi)_x k) = = \omega_1(\varphi(x), (D\varphi)_x h)\omega_2(\varphi(x), (D\varphi)_x k) - \omega_1(\varphi(x), (D\varphi)_x k)\omega_2(\varphi(x), (D\varphi)_x h) = = (\varphi^*\omega_1)(x, h)(\varphi^*\omega_2)(x, k) - (\varphi^*\omega_1)(x, k)(\varphi^*\omega_2)(x, h) = = ((\varphi^*\omega_1) \wedge (\varphi^*\omega_2))(x, h, k).$$

<sup>&</sup>lt;sup>1</sup>The same argument gives a more general formula  $(\varphi \circ \psi)^* \omega = \psi^*(\varphi^* \omega)$ .

Analysis-III,IV

**11f6 Lemma.** For every 1-form  $\omega$  of class  $C^1$  on  $\mathbb{R}^n$  and  $\varphi \in C^2(\mathbb{R}^\ell \to \mathbb{R}^n)$ ,

$$\varphi^*(d\omega) = d(\varphi^*\omega) \,.$$

*Proof.* We have  $\omega = \sum_{i=1}^{n} f_i dx_i$  and  $d\omega = \sum_{i=1}^{n} df_i \wedge dx_i$ . It is sufficient to prove that  $\varphi^*(df_i \wedge dx_i) = d(\varphi^*(f_i dx_i))$ . We have

$$\varphi^*(df_i \wedge dx_i) \stackrel{11f^5}{=} \varphi^*(df_i) \wedge \varphi^*(dx_i) \stackrel{11f^4}{=} \\ = d(\varphi^*f_i) \wedge d(\varphi^*x_i) \stackrel{11e^6}{=} d(\varphi^*(f_i) d\varphi^*(x_i)) \stackrel{11f^4}{=} d(\varphi^*(f_i)\varphi^*(dx_i)) = d(\varphi^*(f_i dx_i))$$

A differential form may be defined on an open subset of  $\mathbb{R}^n$  (rather than the whole  $\mathbb{R}^n$ ; everything generalizes readily to this case. Below, in some exercises, some forms are defined on  $\mathbb{R}^2 \setminus \{(0,0)\}$ .

**11f7 Exercise.** <sup>1</sup> (a)  $(x, y) = \varphi(r, \theta) = (r \cos \theta, r \sin \theta)$ ; find  $\varphi^* \omega$  for  $\omega =$  $dx \wedge dy;$ 

(b) the same  $\varphi$ , but  $\omega = \frac{x \, dy - y \, dx}{x^2 + y^2}$ ; (c) the same  $\omega$  as in (b), but  $(x, y) = \varphi(u, v) = (u^2 - v^2, 2uv)$ .

**11f8 Exercise.** <sup>2</sup> Consider mappings:  $\varphi(r,\theta) = (r\cos\theta, r\sin\theta), \ \psi(u,v) = (u^2 - v^2, 2uv), \text{ and } \xi(r,\theta) = (r^2, 2\theta).$  For  $\omega = \frac{x \, dy - y \, dx}{x^2 + y^2}$  find  $\varphi^* \omega, \ \xi^*(\varphi^* \omega),$  $\psi^*\omega$ , and  $\varphi^*(\psi^*\omega)$ . Explain the result.

**11f9 Exercise.** <sup>3</sup> For a given r > 0 consider a singular 2-box  $\Gamma : [0, 2\pi] \times$  $[0,\pi] \to \mathbb{R}^3$ ,  $\Gamma(\theta,\varphi) = (r\cos\theta\sin\varphi, r\sin\theta\sin\varphi, r\cos\varphi)$  and a 2-form  $\omega =$  $-\frac{x}{r} dy \wedge dz - \frac{y}{r} dz \wedge dx - \frac{z}{r} dx \wedge dy$ . Find the pullback  $\Gamma^* \omega$ .

#### 11g Proving the theorem

**11g1 Exercise.** Let  $\Gamma, \Gamma_1, \Gamma_2, \dots : B \to \mathbb{R}^n$  be singular k-boxes such that  $\Gamma_i \to \Gamma$  in  $C^1$ , that is,

 $\Gamma_i \to \Gamma$ ,  $D_1 \Gamma_i \to D_1 \Gamma$ , ...,  $D_k \Gamma_i \to D_k \Gamma$  uniformly on B.

Then

$$\int_{\Gamma_i} \omega \to \int_{\Gamma} \omega \quad \text{for every } k \text{-form } \omega \text{ on } \mathbb{R}^n.$$

Prove it.

<sup>&</sup>lt;sup>1</sup>Shurman, Sect. 9.9.

<sup>&</sup>lt;sup>2</sup>Shurman, Sect. 9.9.

<sup>&</sup>lt;sup>3</sup>Shurman, Ex. 9.9.4.

**11g2 Exercise.** Let  $\Gamma, \Gamma_1, \Gamma_2, \cdots : B \to \mathbb{R}^n$  be singular 2-boxes such that  $\Gamma_i \to \Gamma$  in  $C^1$ . Then

$$\int_{\partial \Gamma_i} \omega \to \int_{\partial \Gamma} \omega \quad \text{for every 1-form } \omega \text{ on } \mathbb{R}^n.$$

Prove it.

**11g3 Lemma.** For every  $\Gamma \in C^1(B \to \mathbb{R}^n)$  there exist  $\Gamma_i \in C^2(B \to \mathbb{R}^n)$ such that  $\Gamma_i \to \Gamma$  in  $C^1$ .

Proof (sketch, for  $B = [0, 1] \times [0, 1] \subset \mathbb{R}^2$ ). The argument of 11c5 needs only a slight modification. We define  $\Gamma_{\varepsilon}$  for  $\varepsilon > 0$  by

$$\Gamma_{\varepsilon}(u_1, u_2) = \frac{1}{\varepsilon^2} \int_{[u_1, u_1 + \varepsilon] \times [u_2, u_2 + \varepsilon]} \Gamma\left(\frac{v_1}{1 + \varepsilon}, \frac{v_2}{1 + \varepsilon}\right),$$

then the partial derivative

$$\frac{\partial}{\partial u_1}\Gamma_{\varepsilon}(u_1, u_2) = \frac{1}{\varepsilon} \int_{[u_2, u_2 + \varepsilon]} \frac{1}{\varepsilon} \left( \Gamma\left(\frac{u_1 + \varepsilon}{1 + \varepsilon}, \frac{v_2}{1 + \varepsilon}\right) - \Gamma\left(\frac{u_1}{1 + \varepsilon}, \frac{v_2}{1 + \varepsilon}\right) \right) dv_2$$

is of class  $C^1$  and converges (uniformly) to  $\frac{\partial}{\partial u_1} \Gamma(u_1, u_2)$ .

Proof of Theorem 11d3. It is sufficient to prove the equality  $\int_{\Gamma} d\omega = \int_{\partial \Gamma} \omega$  for every singular 2-box  $\Gamma$ . Applying (11f2) to the 2-box B and the four 1-boxes constituting  $\partial B$  we transform the needed equality into  $\int_B \Gamma^*(d\omega) = \int_{\partial B} \Gamma^*\omega$ . By 11g1, 11g2 and 11g3 we may assume that  $\Gamma$  is of class  $C^2$ . Thus, 11f6 applies, and the needed equality becomes

$$\int_B d(\Gamma^*\omega) = \int_{\partial B} \Gamma^*\omega$$

Now we may forget the singular 2-box  $\Gamma$  in  $\mathbb{R}^n$  and the 1-form  $\omega$  on  $\mathbb{R}^n$ ; it remains to prove the equality  $\int_B d\omega = \int_{\partial B} \omega$  for every 1-form  $\omega$  of class  $C^1$ on the square  $B = [0, 1] \times [0, 1] \subset \mathbb{R}^2$ .

In general  $\omega = f_1 du_1 + f_2 du_2$ ; by linearity in  $\omega$  we may consider two 1-forms separately,  $f_1 du_1$  and  $f_2 du_2$ ; we consider only  $\omega = f(u_1, u_2) du_1$ , since the other case is similar.

We have  $d\omega = df \wedge du_1 = \left(\frac{\partial f}{\partial u_1} du_1 + \frac{\partial f}{\partial u_2} du_2\right) \wedge du_1 = -\frac{\partial f}{\partial u_2} du_1 \wedge du_2$ , thus

$$\int_{B} d\omega = -\int_{[0,1]\times[0,1]} \frac{\partial f}{\partial u_{2}} du_{1} du_{2} = -\int_{0}^{1} du_{1} \int_{0}^{1} du_{2} \frac{\partial f}{\partial u_{2}} =$$

$$= -\int_{0}^{1} du_{1} \left( f(u_{1},1) - f(u_{1},0) \right) = -\int_{0}^{1} f(u_{1},1) du_{1} + \int_{0}^{1} f(u_{1},0) du_{1} .$$
In the other hand,  $\int_{\partial B} \omega = \int_{0}^{1} f(u_{1},0) du_{1} - \int_{0}^{1} f(u_{1},1) du_{1} .$ 

On the other hand,  $\int_{\partial B} \omega = \int_0^1 f(u_1, 0) du_1 - \int_0^1 f(u_1, 1) du_1.$ 

# 11h First implications

Here is a counterpart of 11c4.

### 11h1 Corollary.

 $C_1 \sim C_2$  implies  $\partial C_1 \sim \partial C_2$ 

for arbitrary 2-chains  $C_1, C_2$  in  $\mathbb{R}^n$ .

Indeed,  $\int_{\partial C_1} \omega = \int_{C_1} d\omega = \int_{C_2} d\omega = \int_{\partial C_2} \omega$  for every 1-form  $\omega$  of class  $C^1$ , and therefore also for every 1-form of class  $C^0$ , since 11c5 generalizes readily to 1-forms.

Now we return to a question posed in Sect. 10c (after 10c11): is the path function  $\gamma \mapsto \int_{\gamma} \omega$  continuous?

**11h2 Proposition.** Assume that  $\gamma, \gamma_1, \gamma_2, \dots \in C^1([t_0, t_1] \to \mathbb{R}^n)$ ,  $\gamma_k$  are bounded in  $C^1$  (that is,  $\sup_k \max_t |\gamma'_k(t)| < \infty$ ), and  $\gamma_k \to \gamma$  in  $C^0$  (that is,  $\max_t |\gamma_k(t) - \gamma(t)| \to 0$  as  $k \to \infty$ ). Then

$$\int_{\gamma_k} \omega \to \int_{\gamma} \omega \quad \text{as } k \to \infty$$

for every 1-form  $\omega$  (of class  $C^0$ ) on  $\mathbb{R}^n$ .

**11h3 Remark.** The condition that  $\gamma_k$  are bounded in  $C^1$  cannot be dropped. Here is a counterexample:

$$\gamma_k(t) = \frac{1}{\sqrt{k}} (\cos kt, \sin kt) \quad \text{for } t \in [0, 2\pi],$$
  

$$\gamma_k \to \gamma, \quad \gamma(t) = (0, 0);$$
  

$$\omega = x \, dy - y \, dx;$$
  

$$\int_{\gamma_k} \omega = \int_0^{2\pi} \frac{1}{k} (\cos kt \cdot (\sin kt)' - \sin kt \cdot (\cos kt)') \, dt = 2\pi \quad \text{for all } k;$$
  

$$\int_{\gamma} \omega = 0.$$

*Proof of Prop. 11h2.* First, we may assume that  $\omega$  is of class  $C^1$ . Otherwise we approximate it by 1-forms  $\omega_j$  of class  $C^1$ ;

$$\omega = \sum_{i=1}^{n} f_i \, dx_i \, ; \quad \omega_j = \sum_{i=1}^{n} f_{i,j} \, dx_i \, ; \quad f_{i,j} \in C^1(\mathbb{R}^n) \, ;$$

 $f_{i,j} \to f_i$  as  $j \to \infty$ , uniformly on bounded sets (recall 11c5);

$$\left| \int_{\gamma_{k}} \omega - \int_{\gamma} \omega \right| \leq \left| \int_{\gamma_{k}} \omega - \int_{\gamma_{k}} \omega_{j} \right| + \left| \int_{\gamma_{k}} \omega_{j} - \int_{\gamma} \omega_{j} \right| + \left| \int_{\gamma} \omega_{j} - \int_{\gamma} \omega \right|;$$
$$\left| \int_{\gamma} \omega_{j} - \int_{\gamma} \omega \right| = \left| \int_{t_{0}}^{t_{1}} \sum_{i=1}^{n} f_{i,j}(\gamma(t)) \gamma'(t) \, \mathrm{d}t - \int_{t_{0}}^{t_{1}} \sum_{i=1}^{n} f_{i}(\gamma(t)) \gamma'(t) \, \mathrm{d}t \right| \leq \\ \leq \int_{t_{0}}^{t_{1}} \sum_{i=1}^{n} \left| f_{i,j}(\gamma(t)) - f_{i}(\gamma(t)) \right| \cdot |\gamma'(t)| \, \mathrm{d}t \to 0 \quad \text{as } j \to \infty;$$

similarly,  $\int_{\gamma_k} \omega - \int_{\gamma_k} \omega_j \to 0$  as  $j \to \infty$ , uniformly in k (since all  $\gamma_k(t)$  are a bounded subset of  $\mathbb{R}^n$ , and all  $\gamma'_k(t)$  are bounded). Given  $\varepsilon > 0$ , we take j such that the first and third terms are less than  $\varepsilon$  (irrespective of k), and then we take k such that the second term is less than  $\varepsilon$ .

So,  $\omega$  is of class  $C^1$ . We take  $\varepsilon_k \to 0$  such that  $|\gamma_k(t) - \gamma(t)| \leq \varepsilon_k$  for all t. We introduce boxes  $B_k = [t_0, t_1] \times [0, \varepsilon_k] \subset \mathbb{R}^2$  and define singular 2-boxes  $\Gamma_k : B_k \to \mathbb{R}^n$  by

$$\Gamma_k(t,u) = \left(1 - \frac{u}{\varepsilon_k}\right)\gamma_k(t) + \frac{u}{\varepsilon_k}\gamma(t).$$

We have  $\Gamma_k(\cdot, 0) = \gamma_k$  and  $\Gamma_k(\cdot, \varepsilon_k) = \gamma$ , thus,

$$\partial \Gamma_k = \gamma_k - \gamma + \beta_k - \alpha_k \,,$$

where  $\alpha_k, \beta_k : [0, \varepsilon_k] \to \mathbb{R}^n$ ,

$$\alpha_k(u) = \left(1 - \frac{u}{\varepsilon_k}\right)\gamma_k(t_0) + \frac{u}{\varepsilon_k}\gamma(t_0), \quad \beta_k(u) = \left(1 - \frac{u}{\varepsilon_k}\right)\gamma_k(t_1) + \frac{u}{\varepsilon_k}\gamma(t_1).$$

We have

$$\int_{\alpha_k} \omega = \int_0^{\varepsilon_k} \sum_{i=1}^n f_i(\alpha_k(u)) \alpha'_k(u) \, \mathrm{d}u \to 0 \quad \text{as } k \to \infty \,,$$

since  $\varepsilon_k \to 0$ ,  $|\alpha'_k(u)| = \frac{1}{\varepsilon_k} |\gamma_k(t_0) - \gamma(t_0)| \le 1$ , and  $f_i(\cdot)$  is bounded. Similarly,  $\int_{\beta_k} \omega \to 0$ . In order to prove that  $\int_{\gamma_k} \omega \to \int_{\gamma} \omega$  it remains to prove that  $\int_{\partial \Gamma_k} \omega \to 0$ .

By Theorem 11d3,  $\int_{\partial \Gamma_k} \omega = \int_{\Gamma_k} d\omega$ . We have  $d\omega = \sum_{i < j} f_{i,j} dx_i \wedge dx_j$  (forget the  $f_{i,j}$  used before); by 11e8,

$$\int_{\Gamma_k} d\omega = \int_{B_k} \sum_{i < j} f_{i,j}(x) \frac{\partial(x_i, x_j)}{\partial(t, u)} \, \mathrm{d}t \mathrm{d}u \,,$$

where  $x = (x_1, \ldots, x_n) = \Gamma_k(t, u)$ . In order to prove that  $\int_{\Gamma_k} d\omega \to 0$  it remains to check that the integrand is uniformly bounded (since  $v(B_k) = (t_1 - t_0)\varepsilon_k \to 0$ ). We have  $\left|\frac{\partial x_i}{\partial t}\right| \leq \max(|\gamma'_k(t)|, |\gamma'(t)|)$  and  $\left|\frac{\partial x_i}{\partial u}\right| \leq 1$ , thus  $\frac{\partial(x_i, x_j)}{\partial(t, u)}$  is uniformly bounded. Also  $f_{i,j}(x)$  is uniformly bounded (since all  $\Gamma_k(t, u)$  are a bounded subset of  $\mathbb{R}^n$ ).  $\Box$ 

**11h4 Remark.** Prop. 11h2 generalizes readily to paths  $\gamma_k, \gamma$  that are only *piecewise* continuously differentiable. To this end we split  $B_k$  as needed,



apply Stokes' theorem to each fragment, and sum up.

# Index

boundary, 176, 178 0-box, 176

chain, 175 0-chain, 176 change of variable, 184

equivalent chains, 175 exterior derivative, 179, 180, 182 exterior product, 180

0-form, 176

pullback, 183

Stokes' theorem, 177, 179  $\partial(\partial\Gamma)$ , 179  $\partial\gamma$ , 176  $d(d\omega)$ , 179 d(df), 181  $d\omega$ , 177–179, 182 df, 180  $dx_i$ , 180  $f\omega$ , 180  $f_{\omega}$ , 180  $f_{\omega}$ , 175  $\omega_1 \wedge \omega_2$ , 180  $\Gamma^*\omega$ , 183  $\varphi^*\omega$ , 183