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In three (or two) dimensions, differential forms correspond to vector fields,
and exterior derivative corresponds to operations of vector calculus.

12a Vector fields in three dimensions

Bad news: a 5-form in R10 is specified by
(

10
5

)
= 252 functions R10 → R;

surely not easy to visualize!
Good news: we are especially interested in three dimensions (n = 3), and

in this case
(
n
k

)
≤ n for all k. In other words: the cases k = 0, 1, n− 1, n are

relatively simple, and exhaust all cases in three dimensions.
For an arbitrary 2-form ω on R3 we have

ω =
∑
i<j

fi,j dxi ∧ dxj ;

ω(x, h, k) =
∑
i<j

fi,j(x)

∣∣∣∣hi ki
hj kj

∣∣∣∣ =

∣∣∣∣∣∣
f2,3(x) h1 k1

−f1,3(x) h2 k2

f1,2(x) h3 k3

∣∣∣∣∣∣ = det
(
H(x), h, k

)
where

H(x) =
(
f2,3(x),−f1,3(x), f1,2(x)

)
=
(
f2,3(x), f3,1(x), f1,2(x)

)
.

That is, we use a linear one-to-one correspondence between antisymmetric
bilinear forms L on R3 and vectors x ∈ R3 given by

L(h, k) = det(x, h, k) .

This duality (between L and x, or between ω and H), defined via determi-
nant, may be called the determinant duality.

If H is dual to ω then fH is dual to fω, for arbitrary f ∈ C0(R3).
For every singular 2-box Γ : B → R3,∫

Γ

ω =

∫
B

ω
(
Γ(u), (D1Γ)u, (D2Γ)u

)
du =

∫
B

det
(
H(Γ(u)), (D1Γ)u, (D2Γ)u

)
du .
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The latter integral is called the (total) flux of a vector field H through Γ (or
across Γ).

The word “field” in “vector field” is not related to the algebraic notion of a
field. Rather, it is related to the physical notion of a force field (gravitational,
for example), or the velocity field of a moving matter (usually liquid or gas).
Mathematically, a vector field formally is just a mapping R3 → R3; less
formally, a vector is attached to each point.1 Rather easy to visualize!

If a vector field F on R3 is the velocity field of a fluid2 (that is, F (x)
is the velocity of the fluid at the point x) then the flux of F through a
surface is the amount3 of fluid flowing through the surface (per unit time).
If the fluid is flowing parallel to the surface then the flux is zero (since
F (Γ(u)), (D1Γ)u, (D2Γ)u are linearly dependent).

On the other hand, for an arbitrary 1-form ω on R3 we have

ω =
∑
i

fi dxi ;

ω(x, h) =
∑
i

fi(x)hi = 〈E(x), h〉

where
E(x) =

(
f1(x), f2(x), f3(x)

)
.

Here we use a linear one-to-one correspondence between linear forms L on
R3 and vectors x ∈ R3 given by

L(h) = 〈x, h〉 .

This duality (between L and x, or between ω and E), defined via the Eu-
clidean metric (namely, inner product), may be called the Euclidean duality.4

If E is dual to ω then fE is dual to fω, for arbitrary f ∈ C0(R3).
For every path γ : [t0, t1]→ R3,∫

γ

ω =

∫ t1

t0

ω
(
γ(t), γ′(t)

)
dt =

∫ t1

t0

〈E(γ(t)), γ′(t)〉 dt .

1A vector field on an affine space is a mapping from this space to its difference space.
2See also mathinsight.
3The volume is meant, not the mass. However, these are proportional if the density

(kg/m3) of the matter is constant (which often holds for fluids).
4The notation “E” may be interpreted as “Euclidean”, and “H” as “Hodge”, since the

well-known Hodge duality is (in particular) the relation between a 1-form ω1 and a 2-form
ω2 on R3 such that the vector field E corresponding to ω1 is equal to the vector field H
corresponding to ω2.

http://mathinsight.org/vector_field_fluid_flow
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The latter integral is called the integral1 of a vector field E along a path
γ. In some sense it measures how much the vector field is aligned with the
path.2 (If E is orthogonal to γ then this integral vanishes.) If the path γ is
closed then this integral is called circulation of E around γ; it indicates how
much the vector field tends to circulate around γ.

12a1 Exercise. If ω = ω1 ∧ ω2 is the exterior product of two 1-forms ω1, ω2

on R3, then
(a) H = E1×E2 is the cross product; here H is dual to ω, E1 to ω1, and

E2 to ω2;
(b) ω1

(
x,H(x)

)
= 0 and ω2

(
x,H(x)

)
= 0.

Prove it.

If a 1-form ω on R3 is the exterior derivative dg of a 0-form g ∈ C1(R3),
then clearly the vector field E dual to ω is the gradient,

E = ∇g .
12a2 Exercise. Let ω1 be a 1-form (of class C1) on R3, ω2 = dω1 its exterior
derivative, E the vector field dual to ω1, and H the vector field dual to ω2.
Then

H = curlE ,

that is,

H1 = D2E3 −D3E2 , H2 = D3E1 −D1E3 , H3 = D1E2 −D2E1 ;

here H = (H1, H2, H3) and E = (E1, E2, E3).
Prove it.

We summarize it by a commutative diagram [Sh:Ex.9.8.5]

(12a3)

0-form oo id //

d
��

function

∇
��

1-form oo Euclidean duality //

d
��

vector field (E)

curl
��

2-form oo determinant duality // vector field (H)

By the way, the relation (11e4) d(df) = 0 becomes

(12a4) curl(∇f) = 0 .

By Stokes’ theorem 11d3,
∫

Γ
dω =

∫
∂Γ
ω for every singular 2-box3 Γ in

1Also “line integral” or “flow integral”.
2Nice formulation from mathinsight.
3The same holds for 2-chains, of course.

http://mathinsight.org/line_integral_circulation
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R3; in terms of the vector fields E,H dual to ω and dω we get∫
B

det
(
H(Γ(u)), (D1Γ)u, (D2Γ)u

)
du =

∫ t1

t0

〈E(γ(t)), γ′(t)〉 dt

where γ = ∂Γ. This is the “classical Stokes’ theorem” (also known as
“Kelvin-Stokes theorem”, “curl theorem” and “Stokes’ formula”):

(12a5) the circulation of E around γ = ∂Γ

is equal to the flux of H = curlE through Γ

for every1 vector field E (of class C1) on R3 and every singular 2-box Γ in R3.
In this sense, the curl is the circulation density, called also “vor-
ticity” (and its flux is called also the net vorticity of E through-
out Γ). A small paddle-wheel in the flow spins the fastest when
its axle points in the direction of the curl vector, and in this
case its angular speed is half the length of the curl vector.2

Relation (12a5) is only half-classical; differential forms are already re-
placed with vector fields, but singular boxes are not yet replaced with man-
ifolds (curves and surfaces). The transition to manifolds needs much more
effort than the transition to vector fields; wait for the second half of this
course. For now, in order to write relations like (12a5) in symbols rather
than words we introduce notation for integral along a path,

(12a6)

∫
γ

E =

∫ t1

t0

〈E(γ(t)), γ′(t)〉 dt ,

and through a singular 2-box,

(12a7)

∫
Γ

H =

∫
B

det
(
H(Γ(u)), (D1Γ)u, (D2Γ)u

)
du ;

now (12a5) becomes

(12a8)

∫
∂Γ

E =

∫
Γ

curlE .

No danger of confusion, since all one-dimensional integrals must be “along”
(rather than “through”), while all two-dimensional integrals must be “through”
(rather than “along”).

1Since every E is dual to some ω.
2Shifrin p. 394.
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12b Examples and exercises

12b1 Exercise. Let a vector field E (of class C1) on R3 satisfy〈
curlE

(
x
y
z

)
,
(
x
y
z

)〉
= 0 whenever x2 + y2 + z2 = 1, z > −0.9 ;

prove that
∫
γz
E = 0 for all z ∈ (−0.9, 1), where γz(t) =

(√
1−z2 cos t√
1−z2 sin t

z

)
for

t ∈ [0, 2π].

12b2 Exercise. Let a vector field E (of class C1) on R3 satisfy〈
curlE

(
x
y
z

)
,
(
x
y
z

)〉
= 0 whenever x2 + y2 + z2 = 1, −0.9 < z < 0.9 ;

prove that
∫
γz
E does not depend on z ∈ (−0.9, 0.9); here γz is the same as

in 12b1.

12b3 Exercise. Consider a vector field

E
(
x
y
z

)
=
( −yf(√x2+y2)

xf(
√
x2+y2)
0

)
, that is, E

(
r cos θ
r sin θ
z

)
=
( rf(r) cos(θ+π

2
)

rf(r) sin(θ+π
2

)
0

)
for a function f : [0,∞)→ R of class C1.

(a) Check that E is of class C1, and

curlE
(
x
y
z

)
=
( 0

0√
x2+y2f ′(

√
x2+y2)+2f(

√
x2+y2)

)
, that is,

curlE
(
r cos θ
r sin θ
z

)
=
(

0
0

rf ′(r)+2f(r)

)
.

(b) Given ε > 0, construct f such that

rf ′(r) + 2f(r) > 0 for r ∈ (0, ε) ,

rf ′(r) + 2f(r) = 0 for r ∈ [ε,∞) .

(c) Conclude that
∫
γz
E in 12b2 need not vanish.

12b4 Exercise. Let a vector field E (of class C1) on R3 satisfy

curlE
(
r cos θ
r sin θ
1/r

)
= 0 for all r > 0, θ ∈ [0, 2π] ,

and in addition, |E(x, y, z)| = o
(√

x2 + y2 + z2
)

as x2 +y2 +z2 →∞. Prove

that
∫
γr
E = 0 for all r > 0; here γr(t) =

(
r cos t
r sin t
1/r

)
for t ∈ [0, 2π].
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A Möbius strip may be defined as such a surface:{( (R+rs cos θ
2

) cos θ

(R+rs cos θ
2

) sin θ

rs sin θ
2

)
: s ∈ [−1, 1], θ ∈ [0, 2π]

}
,

for given R > r > 0.1 Its boundary is a curve {γ(t) : t ∈ [0, 4π]},

γ(t) =

(
(R+r cos t

2
) cos t

(R+r cos t
2

) sin t

r sin t
2

)
.

12b5 Exercise. For γ as above and E of 12b3,
(a) check that

〈E(γ(t)), γ′(t)〉 = (R + r cos t
2
)f(R + r cos t

2
) ;

(b) choose f such that curlE = 0 on the Möbius strip, but
∫
γ
E > 0;

(c) does it contradict (12a5), (12a8)? Explain.

12c Vector fields in two dimensions

Dimension 2 is even more special than dimension 3, since the two cases k = 1
and k = n− 1 coincide for n = 2.

A linear form L on R2 can be represented by a vector in both ways:

L(h) = c1h1 + c2h2 = det(x, h) = 〈y, h〉 ,
x = (c2,−c1) , y = (c1, c2) ;

the rotation by π/2 turns x into y.
Thus, a 1-form ω on R2 corresponds to two vector fields:

ω = f1 dx1 + f2 dx2 ,

ω(x, h) = det(H(x), h) = 〈E(x), h〉 ,
H = (f2,−f1) , E = (f1, f2) ;

the rotation by π/2 turns H(x) into E(x).

1Images from Wikipedia.
Compare the Möbius strip with the torus (discussed in Sect. 8b),{(

(R+r cosϕ) cos θ
(R+r cosϕ) sin θ

r sinϕ

)
: ϕ ∈ [0, 2π], θ ∈ [0, 2π]

}
.
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Accordingly,∫
γ

ω =

∫ t1

t0

ω
(
γ(t), γ′(t)

)
dt =

∫ t1

t0

det
(
H(γ(t)), γ′(t)

)
dt

is the (total) flux of a vector field H through a path γ : [t0, t1] → R2. As
before, if H is parallel to γ then the flux is zero.

On the other hand,∫
γ

ω =

∫ t1

t0

ω
(
γ(t), γ′(t)

)
dt =

∫ t1

t0

〈E(γ(t)), γ′(t)〉 dt

is the integral of a vector field E along a path γ. As before, if E is orthogonal
to γ then this integral is zero.

In contrast to Sect. 12a, now we have two types of one-dimensional inte-
grals, and must bother to avoid confusion. We introduce such notation:∫

along γ

E =

∫ t1

t0

〈E(γ(t)), γ′(t)〉 dt ,(12c1) ∫
through γ

H =

∫ t1

t0

det
(
H(γ(t)), γ′(t)

)
dt .(12c2)

Let ω1 be a 1-form (of class C1) on R2 and ω2 = dω1 its exterior derivative.
Then

ω1 = f1 dx1 + f2 dx2 = E1 dx1 + E2 dx2 ,

ω2 = (curlE) dx1 ∧ dx2 ,

curlE = D1E2 −D2E1 .

By Stokes’ theorem 11d3,
∫

Γ
dω1 =

∫
∂Γ
ω1 for every singular 2-box Γ in R2;

that is, ∫
Γ

(curlE) dx1 ∧ dx2 =

∫ t1

t0

〈E(γ(t)), γ′(t)〉 dt

where γ = ∂Γ. This is Green’s theorem: [Sh:9.16]

(12c3) the circulation of E around γ = ∂Γ

is equal to the integral of curlE over Γ

for every vector field E (of class C1) on R2 and every singular 2-box Γ in R2.
As before, the curl is the circulation density (or “vorticity”).
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In order to write it in symbols rather than words we introduce a notation
for a two-dimensional integral:

(12c4)

∫
Γ

f =

∫
Γ

f dx1 ∧ dx2 ;

the right-hand side is the integral of a 2-form defined long ago; the left-hand
side is just a short notation for it; similarly, in Sect. 6 we wrote

∫
E
f rather

than
∫
E
f(x) dx. No danger of confusion, since we have no other integral of

a function over a singular 2-box. Now (12c3) becomes

(12c5)

∫
along ∂Γ

E =

∫
Γ

curlE .

If Γ : B → R2 is such that Γ|B◦ is a diffeomorphism between B◦ and an
open set G = Γ(B◦) ⊂ R2 then∫

Γ

f(x) dx1 ∧ dx2 =

∫
B

f
(
Γ(u)

)
det
(
(D1Γ)u, (D2Γ)u

)
du =

=

∫
B◦

(f ◦ Γ) detDΓ = ±
∫
G

f

by Theorem 9f5, for every f ∈ C0(R2); the “±” is the sign of detDΓ on B◦ (it
is constant, since detDΓ does not vanish on the connected set B◦). Assuming
that the determinant is positive we get

∫
Γ
(curlE) dx1 ∧ dx2 =

∫
G

curlE, and
Green’s theorem becomes

(12c6)

∫
along ∂Γ

E =

∫
G

curlE .

12c7 Exercise. (a) Let E be a vector field on R3 such that the third coor-
dinate is dummy, that is,1

E(x, y, z) =
(
E1(x, y), E2(x, y), 0

)
.

Then
(curlE)(x, y, z) =

(
0, 0, curl Ẽ(x, y)

)
,

where Ẽ : (x, y) 7→
(
E1(x, y), E2(x, y)

)
is the corresponding vector field on

R2.
(b) Let Γ : B → R3 be a singular 2-box such that the third coordinate is

dummy, that is,
Γ(u) =

(
Γ1(u),Γ2(u), 0

)
.

1Recall 12b3.
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Then

the flux of curlE through Γ is equal to the integral of curl Ẽ over Γ̃

where Γ̃ : u 7→
(
Γ1(u),Γ2(u)

)
is the corresponding singular 2-box on R2.

Prove it.

And what about the other vector field H (that corresponds to the same
ω1 via the other duality)? Can we reformulate the equality

∫
Γ
dω1 =

∫
∂Γ
ω1

in terms of H? Yes, easily. First, we know that
∫
∂Γ
ω1 is not only the integral

of E along γ but also the flux of H through γ. Second,

curlE = D1E2 −D2E1 = divH ,

divH = D1H1 +D2H2

(since H1 = E2 and H2 = −E1), the divergence of H. Thus,∫
Γ

(divH) dx1 ∧ dx2 =

∫ t1

t0

det
(
H(γ(t)), γ′(t)

)
dt

where γ = ∂Γ. This is the two-dimensional divergence theorem: [Sh:9.16]

(12c8)

∫
through ∂Γ

H =

∫
Γ

divH

for every vector field H (of class C1) on R2 and every singular 2-box Γ in R2.
If a vector field F is the velocity field of a flow, then every point x flows

to another point y during a time t, and for small t we have

y = x+ tF (x) + o(t) ,

∂y

∂x
= I + t(DF )x + o(t)

(it is generally wrong to differentiate o(t) this way, but for a smooth flow this
can be justified); thus, the Jacobian

det
(∂y
∂x

)
=

∣∣∣∣1 + tD1F1 + o(t) tD2F1 + o(t)
tD1F2 + o(t) 1 + tD2F2 + o(t)

∣∣∣∣ = 1 + t divF + o(t) .

We see that a small drop of the flowing matter inflates if divF > 0 and
deflates if divF < 0.

Divergence is often explained in terms of sources and sinks (of a moving
matter). But be careful; the flux of a velocity field is the amount (per unit
time) as long as “amount” means “volume”. If by “amount” you mean
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“mass”, then you need the vector field of momentum, not velocity; multiply
the velocity by the density of the matter. However, the problem disappears
if the density is constant (which often holds for fluids).

We summarize it by another commutative diagram
(12c9)

0-form oo id //

d

��

function

∇

))
vector field (E)
66

rotation
vv

curl

��

1-form pp
Euclidean duality

00

mm
determinant duality --

d

��

vector field (H)

div

))
2-form oo

ω = f dx1 ∧ dx2 // function

12d Examples and exercises

12d1 Exercise. (a) Treating R2 as the complex plane C,

R2 3 (a, b)←→ a+ bi ∈ C ,

check that
zw = 〈z, w〉+ i det(z, w) for z, w ∈ C .

(b) A mapping f ∈ C1(C→ C) leads to 1-forms

Re (f dz) : (z, dz) 7→ Re
(
f(z) dz

)
= 〈f(z), dz〉 ,

Im (f dz) : (z, dz) 7→ Im
(
f(z) dz

)
= det(f(z), dz) .

Writing f(x+ iy) = u(x, y) + iv(x, y) we get

Re (f dz) = u dx− v dy , Im (f dz) = v dx+ u dy .

Check it.
(c) Rewrite the Cauchy-Riemann equations

ux = vy , uy = −vx

as
dRe (f dz) = 0 , d Im (f dz) = 0 .
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(d) Treating f as a vector field (x, y) 7→ (u,−v) rewrite the Cauchy-
Riemann equations as

curl f = 0 , div f = 0 .

(e) If f is analytic, then∫
γ

Re (f dz) = 0 ,

∫
γ

Im (f dz) = 0

whenever γ is a boundary of a singular 2-box (or 2-chain) in C. Prove it.
(f) Is (e) a necessary and sufficient condition for analyticity?

12d2 Exercise. Continuing 12d1, for an analytic f ,
(a) introduce 1-forms Re (f dz), Im (f dz) and prove that1

d(f dz) = −2if ′ dx ∧ dy

in the sense that real parts are equal and imaginary parts are equal, that is,

dRe (f dz) = 2(Im f ′) dx ∧ dy ,
d Im (f dz) = −2(Re f ′) dx ∧ dy ;

here f ′ is the derivative as defined in complex analysis;
(b) prove that ∫

∂Γ

f dz = −2i

∫
Γ

f ′ dx ∧ dy

(in the sense that real and imaginary parts are equal) for every singular 2-box
Γ in C;

(c) deduce that∫ 2π

0

f(eit)e−it dt = 2

∫ 1

0

r dr

∫ 2π

0

dθf ′(reiθ) ;

calculate both sides separately for f(z) = zn, n = 0, 1, 2, . . . .

12d3 Exercise. Continuing 12d1 and 12d2, for an analytic f , check that
(a) df = f ′ dz in the sense that dRe f = Re (f ′ dz), d Im f = Im (f ′ dz);

also, ∇Re f = f ′, ∇Im f = if ′;
(b) div∇Re f = 0, div∇Im f = 0.

1In some sense, −2i dx ∧ dy = dz ∧ dz.
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Functions f ∈ C2(R2) such that div∇f = 0 are called harmonic. By
12d3(b), the real (as well as imaginary) part of an analytic function is har-
monic. The same applies to a function on an open subset of R2. For example,
the four functions θi from Sect. 10d are harmonic on their domains Ui, since
they are z 7→ Im log z. Their (common) gradient vector field E(z) = iz

|z|2

has divergence zero (and curl zero1) on C \ {0}. The function z 7→ log |z|
is harmonic on C \ {0}, since it is z 7→ Re log z. Its gradient vector field
H(z) = z

|z|2 also has divergence zero2 (and curl zero) on C\{0}. Both vector

fields are dual to the 1-form 1
z
dz (that is, −y dx+x dy

x2+y2
).

In general,

div∇f = div(D1f,D2f) = D1D1f +D2D2f = ∆f ,

∆ = D1D1 +D2D2 =
∂2

∂x2
1

+
∂2

∂x2
2

is the so-called Laplace operator, or Laplacian. Thus, f is harmonic if and
only if ∆f = 0.

The mean value property3 of a harmonic function u on C:

(12d4) u(z) =
1

2π

∫ 2π

0

u(z + reiθ) dθ

for all z ∈ C and r > 0. The same holds for u harmonic on an open set
provided that this open set contains the closed r-disk around z.

In order to prove the mean value property we need Green formulas.
Applying (12c8) to H = ∇u we get the first Green formula

(12d5)

∫
through ∂Γ

∇u =

∫
Γ

∆u for all u ∈ C2(R2) .

12d6 Exercise. Check that
(a) div(fH) = f divH + 〈∇f,H〉 for all f ∈ C1(R2) and H ∈ C1(R2 →

R2);
(b) div(f∇g) = f∆g + 〈∇f,∇g〉 for all f ∈ C1(R2) and g ∈ C2(R2);
(c) f∆g − g∆f = div(f∇g − g∇f) for all f, g ∈ C2(R2).

1Can you believe that this evidently rotating vector field has curl zero? Think about
it! Also, recall 12b3.

2Can you believe that this evidently divergent vector field has divergence zero? Think
about it!

3Not to be confused with the mean value theorem. . .
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Now we get the second Green formula
(12d7)∫

through ∂Γ

u∇v =

∫
Γ

(u∆v + 〈∇u,∇v〉) for all u ∈ C1(R2) and v ∈ C2(R2) ,

and the third Green formula

(12d8)

∫
through ∂Γ

(u∇v − v∇u) =

∫
Γ

(u∆v − v∆u) for all u, v ∈ C2(R2) .

12d9 Exercise. (a) Let u and v be harmonic functions on an annulus {z ∈
C : a < |z| < b}; prove that

∫
through γr

(u∇v − v∇u) does not depend on

r ∈ (a, b); here γr(t) = reit for t ∈ [0, 2π].
(b) In particular, taking v(z) = log |z|, prove that∫

through γr

u∇v =

∫ 2π

0

u(reiθ) dθ ;∫
through γr

v∇u = (log r)

∫
through γr

∇u .

(c) Assuming in addition that u is harmonic on the disk {z ∈ C : |z| < b}
prove that

∫ 2π

0
u(reiθ) dθ does not depend on r ∈ (0, b) and is equal to 2πu(0),

which proves (12d4).
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