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Mathematics and physics help each other to understand and use different
behavior of differential forms in simply connected and multiply connected
domains.

13a Path functions and loop functions

A closed path is also called a loop. By a loop function we mean a (real-valued)
function on the set of all loops (in Rn or a given subset of Rn). Every path
function leads to a loop function (just restriction).

In particular, every 1-form leads to (a path function and) a loop function.
For example, the winding number (recall Sect. 10d) is a loop function over
R2 \ {0}; it corresponds to the 1-form −y dx+x dy

x2+y2
(and many others, as we’ll

see soon). Another interesting loop function (over R2) corresponds to the
1-form −y dx+ x dy (also discussed in Sect. 10d).

We restrict ourselves to additive stationary antisymmetric (ASA, for
short) path functions.

Every function f : Rn → R (that is, point function) leads to an ASA path
function Ωf defined by Ωf (γ) = f(γ(t1))−f(γ(t0)) whenever γ : [t0, t1]→ Rn.
If f is continuous, we may treat it as a 0-form and write Ωf (γ) =

∫
∂γ
f . If

f ∈ C1 then Ωf (γ) =
∫
γ
df (recall 11c3). But for now f is arbitrary. We

have a diagram of linear mappings between vector spaces:

point

functions

f 7→ Ωf // ASA path

functions

restriction // loop

functions

The composition of these two mappings is zero (just because γ(t1) = γ(t0)
implies f(γ(t1)) = f(γ(t0))). That is, the image of the first mapping is
contained in the kernel of the second mapping. Interestingly, they are equal.
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13a1 Lemma. An ASA path function Ω over Rn vanishes on all loops if and
only if Ω = Ωf for some f .

Proof. “If”: see above. “Only if”: we define f(x) = Ω(γx) where γx(t) = tx
for t ∈ [0, 1]. Given γ : [t0, t1]→ Rn, γ(t0) = x, γ(t1) = y, the concatenation1

γx · γ · (γy)−1 is a loop, thus 0 = Ω(γx · γ · (γy)−1) = Ω(γx) + Ω(γ) − Ω(γy),
whence Ω(γ) = f(y)− f(x).

Our choice of the paths γx does not really matter; any path γx from 0 to
x works equally well, and gives the same result (think, why).

The same holds over a connected open subset of Rn (for instance, Rn \
{0}).2

Given Ω, the function f is unique up to an additive constant. Proof: if
f(γ(t1))− f(γ(t0)) = g(γ(t1))− g(γ(t0)) for all γ, then f(γ(t1))− g(γ(t1)) =
f(γ(t0))− g(γ(t0)) for all γ, that is, f − g = const.

We specialize 13a1 to “good” path functions that correspond to 1-forms,
Ω(γ) =

∫
γ
ω (they all are ASA, of course).

13a2 Lemma. A 1-form ω on Rn satisfies
∫
γ
ω = 0 for all loops γ if and

only if ω = df for some f ∈ C1.

Proof. “If”: for f ∈ C1 we have
∫
γ
df = Ωf (γ) = 0 for all loops γ.

“Only if”: Lemma 13a1 applied to the path function Ω : γ 7→
∫
γ
ω gives f

such that
∫
γ
ω = Ωf (γ) for all paths γ. We take a straight path from x to x+h

(for arbitrary x, h ∈ Rn) and get f(x + εh) − f(x) =
∫ ε

0
ω(x + th, h) dt =

εω(x, h) + o(ε), that is, (Dhf)x = ω(x, h), which shows that f ∈ C1 and
df = ω.

The same holds over an open subset of Rn.

13b Exact forms and closed forms

13b1 Definition. A 1-form ω on an open set G ⊂ Rn is exact, if ω = df for
some f ∈ C1(G).

Here is a reformulation of Lemma 13a2.

13b2 Corollary. A 1-form ω on G is exact if and only if
∫
γ
ω = 0 for all

loops γ in G.

1Take the stationarity into account. . .
2Also, over arbitrary open set, and moreover, arbitrary set; just choose a point in every

path connected component. In this case f is unique up to a function constant on every
component.
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13b3 Exercise. (a) A 1-form ω = f
(√

x2 + y2 + z2
)
(x dx+ y dy+ z dz) on

R3 \ {(0, 0, 0)} is exact for every continuous f : (0,∞)→ R. Prove it.
(b) Prove that∫

γ

x dx+ y dy + z dz√
x2 + y2 + z2

=

∫
γ

(x dx+ y dy + z dz)

for every γ : [t0, t1] → R3 \ {(0, 0, 0)} such that γ(t0) =
(

3
10
, 0,−2

5

)
and

γ(t1) =
(
0, 6

5
, 9

10

)
.

13b4 Definition. A 1-form ω of class C1 on an open set G ⊂ Rn is closed,
if dω = 0.

Every exact 1-form (of class C1) is closed, since d(df) = 0 by (11e4).
The form −y dx+x dy

x2+y2
is closed (since its restriction to Ui is exact for i =

1, 2, 3, 4, recall 10d) but not exact (by 13b2).

13b5 Exercise. 1 Let ω = f1 dx + f2 dy + f3 dz be a closed 1-form on
R3\{(0, 0, 0)}, whose coefficient functions f1, f2, f3 are homogeneous of degree
k 6= −1 (that is, fi(tx, ty, tz) = tkf(x, y, z)). Prove that ω = dg where
g = 1

k+1
(xf1 + yf2 + zf3).2

13b6 Lemma. A 1-form ω of class C1 on G is closed if and only if
∫
∂Γ
ω = 0

for all singular 2-boxes Γ in G.

Proof. “Only if”:
∫
∂Γ
ω =

∫
Γ
dω = 0; “if”:

∫
Γ
dω =

∫
∂Γ
ω = 0 for all Γ,

therefore dω = 0 by the argument on page 179: 1
ε2

∫
Γε
dω → (dω)(x, h, k).

We have again a diagram of linear mappings between vector spaces:

0-forms

of class C2

d // 1-forms

of class C1

d // 2-forms

of class C0

The composition of these two mappings is zero. That is, the image of the
first mapping (exact forms) is contained in the kernel of the second mapping
(closed forms). They are equal for some G, not for all G.

Homotopy

It was noted (in Sect. 10e) that a singular 2-box may be thought of as a
path in the space of paths. And now we need a path in the space of loops.

1Shurman, Ex. 9.11.1.
2Hint: first check the dx term of dg, remembering that ω is closed; a homogeneous

function must satisfy Euler’s identity xD1f + yD2f + zD3f = kf .
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13b7 Definition. Let γ1, γ2 ∈ C1([t0, t1] → G) be loops in an open set
G ⊂ Rn.

(a) A homotopy1 between γ1 and γ2 (in G) is a mapping Γ ∈ C1([t0, t1]×
[0, 1]→ G) such that

Γ(t, 0) = γ1(t) , Γ(t, 1) = γ2(t) for all t ∈ [t0, t1] ;

Γ(t0, u) = Γ(t1, u) for all u ∈ [0, 1] ;

(b) γ1 and γ2 are homotopic, if there exists a homotopy between them;
(c) γ1 is null homotopic, if it is homotopic to a trivial γ2 (that is, γ2(·) =

const).

13b8 Exercise. Prove that “homotopic” is an equivalence relation.2

13b9 Proposition. If loops γ1, γ2 in an open set G ⊂ Rn are homotopic in
G then

∫
γ1
ω =

∫
γ2
ω for all closed 1-forms ω on G.

Proof. We take a homotopy Γ between γ1

and γ2;
∫
∂Γ
ω = 0 by 13b6. It remains

to note that
∫
∂Γ
ω =

∫
γ1
ω −

∫
γ2
ω, since

Γ|[t0,t1]×{0} ∼ γ1, Γ|[t0,t1]×{1} ∼ γ2, and
Γ|{t0}×[0,1] ∼ Γ|{t1}×[0,1].

A B

CD

Γ(A)=Γ(B)

Γ(C)=Γ(D)

13b10 Exercise. Let G = C \ {0} be the punctured complex plane. Prove
that

(a) every loop γ ∈ C1([0, 1] → G) may be written as γ(t) = r(t)eiθ(t),
r ∈ C1([0, 1]→ (0,∞)), ϕ ∈ C1([0, 1]→ R);3

(b) the loop t 7→ r(t)eiθ(t) is homotopic (in G) to the loop t 7→ eiθ(t);
(c) the loop t 7→ eiθ(t) is homotopic (in G) to the loop t 7→ e2πiNt, N =

(θ(1)− θ(0))/(2π);
(c) two loops t 7→ e2πiN1t, t 7→ e2πiN2t are homotopic if and only ifN1 = N2.

13b11 Exercise. Let G be R3 without the (union of the) three coordinate

1Namely, a homotopy of class C1.
2Beware of C1 when proving transitivity; try

Γ(t, u) =

{
Γ1(t, 1− (1− 2u)2) for u ≤ 1/2,

Γ2(t, (2u− 1)2) for u ≥ 1/2.
.

3Hint: θ(t)− θ(0) =
∫
γ|[0,t]

−y dx+x dy
x2+y2 .
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axes, and ω a closed 1-form on G. Prove that

∫
γ1

ω + · · ·+
∫
γ6

ω = 0

where γ1, . . . , γ6 are the circles shown on the picture.1

13b12 Exercise. Let us define a circle (in R3) as such a path: γ : [0, 2π]→
R3, γ(t) = a+ b cos t+ c sin t, where a, b, c ∈ R3, |b| = |c| > 0 and 〈b, c〉 = 0.
Let G be R3 without the three coordinate axes (as in the previous exercise).
Classify circles in G up to homotopy (in G). (Intuitive explanation is enough;
no need to prove it.)

Answer: 2 · (33 − 1) + 1 = 53 homotopy classes.2

13b13 Exercise. (a) Let G ⊂ R2 be such that R2 \ G is a finite set, of m
points. Consider simple loops in G and their homotopy classes. Count these
classes. (Intuitive explanation is enough; no need to prove it.)
Answer: 2m+1 − 1 homotopy classes.

(b) The same for G ⊂ S2.
Answer: 2m − 1 homotopy classes (for m > 0).

(c) The same for G ⊂ R3 such that R3 \ G is the union of m (pairwise
different) rays from the origin.
Answer: 2m − 1 homotopy classes (for m > 0).

13b14 Corollary. (to 13b9) If γ is null homotopic in G then
∫
γ
ω = 0 for

all closed 1-forms ω on G.

13b15 Definition. A connected open set G ⊂ Rn is simply connected, if
every loop (of class C1) in G is null homotopic.

1Hint: .

2Hint: maybe it is easier to do the next exercise first; also, 33 means:
{x-axis, y-axis, z-axis} → {negative part,positive part,neither}.
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13b16 Proposition. Every closed 1-form ω on a simply connected G is
exact.

Proof. By 13b14,
∫
γ
ω = 0 for all loops γ in G; by 13b2, ω is exact.

If G is convex, then it is simply connected (think, why).
Simple connectivity is preserved by diffeomorphisms1 (think, why).
The punctured space Rn \ {0} is simply connected for n > 2 (since a

punctured sphere is diffeomorphic to a vector space) but not for n = 2 (by
13b14).

A 1-form (of class C1) on G is closed if and only if it is locally exact (since
every point of G has a convex neighborhood in G).

Homology and cohomology

Let G ⊂ Rn be an open set. Two closed 1-forms on G are called coho-
mologous, if their difference is exact.

All closed 1-forms on G are a vector space; all exact 1-forms (of class C1)
are its subspace; the quotient space (closed)/(exact) consists of all equiva-
lence classes [ω] = {ω + α : α exact} = {ω + df : f ∈ C1(G)}; these classes
are called cohomology classes2 of G.

A 1-chain in G is called 1-boundary (in G), if it is the boundary of some
2-chain (in G).

A 1-cycle in G is, by definition, a 1-chain in G whose boundary is zero.
Every 1-boundary is a 1-cycle by (11d1).
Again, a diagram of linear mappings between vector spaces:

2-chains ∂ // 1-chains ∂ // 0-chains

The composition of these two mappings is zero. That is, the image of the
first mapping (1-boundaries) is contained in the kernel of the second mapping
(1-cycles). They are equal for some G, not for all G.

Two 1-cycles on G are called homologous, if their difference is 1-boundary.
All 1-cycles in G are a vector space; all 1-boundaries are its subspace;

the quotient space (cycles)/(boundaries) consists of all equivalence classes
[C] = {C +B : B boundary}; these classes are called homology classes3 of G.

If ω is closed, α is exact, C is a cycle and B is a boundary then∫
C+B

ω + α =

∫
C

ω +

∫
C

α +

∫
B

ω +

∫
B

α =

∫
C

ω ,

1Also by homeomorphisms; I do not prove it.
2De Rham cohomology classes of dimension 1.
3Singular homology classes of dimension 1.
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since
∫
C
α =

∫
C
df =

∫
∂C
f = 0, and

∫
B
ω = 0 by 13b6 (and

∫
B
α = 0 by

both reasons). Thus,
∫

[C]
[ω] is well-defined, and is a bilinear function of a

homology class [C] and a cohomology class [ω].
By 13b2,

[ω] = [0] ⇐⇒ ∀[C]

∫
[C]

[ω] = 0

(think, why). The numbers
∫

[C]
[ω] are traditionally called periods of ω. We

see that a closed 1-form is exact if and only if all its periods are zero. This is
a special case of the first part of De Rham theorem.1 Its second part states,
in particular, that

[C] = [0] ⇐⇒ ∀[ω]

∫
[C]

[ω] = 0 .

For example, the punctured plane G = R2 \ {0} has a one-dimensional
space of homology classes and one-dimensional space of cohomology classes.
Deleting m points from the plane we get m-dimensional spaces of homologies
and cohomologies. But for R3 \ {0} they are trivial (0-dimensional).

Exact 2-forms and loop functions

13b17 Definition. A 2-form ω on an open set G ⊂ Rn is exact, if ω = dα
for some 1-form α of class C1 on G.

13b18 Exercise. If α is a closed 1-form and β is an exact 1-form then the
2-form α ∧ β is exact.

Prove it.

If ω is exact then
∫

Γ
ω depends only on ∂Γ; that is,

∫
Γ1
ω =

∫
Γ2
ω whenever

singular 2-boxes Γ1,Γ2 satisfy ∂Γ1 = ∂Γ2. And more generally,
∫
C1
ω =∫

C2
ω whenever 2-chaines C1, C2 satisfy ∂C1 = ∂C2. The proof is immediate:∫

C1
ω =

∫
C1
dα =

∫
∂C1

α =
∫
∂C2

α =
∫
C2
dα =

∫
C2
ω.2

Every 1-form ω on G leads to a loop function γ 7→
∫
γ
ω. By 13b2, this

loop function is trivial (zero) if and only if ω is exact. Thus, each equivalence
class {ω + α : α exact} = {ω + df : f ∈ C1(G)} leads to a loop function.
(Not a cohomology class, unless ω is closed.)

If two loops γ1, γ2 are homotopic inG, then the 1-chain γ1−γ2 is equivalent
to some 1-boundary ∂Γ by the argument of the proof of 13b9. Thus, the
difference

∫
γ1
ω −

∫
γ2
ω =

∫
∂Γ
ω =

∫
Γ
dω is uniquely determined by the exact

1If you want to know more about this deep theorem, see Nicolaescu, Wikipedia.
2The converse holds by (the first part of) De Rham theorem for 2-forms.

http://www3.nd.edu/~lnicolae/shape.pdf
http://en.wikipedia.org/wiki/De_Rham_cohomology
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2-form dω. In particular, dω determines uniquely the loop function on all
null homotopic loops. We see that an exact 2-form leads to a loop function,
provided that G is simply connected; here is a formal statement.

13b19 Proposition. If ω is an exact 2-form on a simply connected open set
G ⊂ Rn, then for every loop γ in G,

∫
γ
α does not depend on the choice of α

such that dα = ω.

A different situation appears when G is not simply connected. For exam-
ple, the 1-form ω = 1

2π
−y dx+x dy
x2+y2

on G = R2 \ {0} leads to the loop function

called the winding number (recall 10d). In this case dω = 0; accordingly, ho-
motopic loops have equal winding numbers, and null homotopic loops have
winding number zero. In order to know the whole loop function we need also
the period of ω.

In this example G = G1∪G2 = (U1∪U2)∪ (U3∪U4) (Ui being as in 10d);
restrictions ω|G1 , ω|G2 are exact, but ω|G1∪G2 = ω is not. The corresponding
loop function (winding number) is trivial on G1 and G2 but nontrivial on
G1 ∪G2 (which never happens to usual functions).

13c Electrostatics

Greatness of the electromagnetic theory cannot be overestimated. It unites
many seemingly unrelated phenomena, such as these:

∗ amber attracts lightweight particles;

∗ magnetic compass points to the north;

∗ solid body stiffness (and Lorentz contraction. . . );

∗ light;

∗ radio waves (radio, TV, WiFi, . . . );

∗ X-rays (computed tomography. . . ).

Still, mechanics and optics are (more or less) separate branches of physics;
and moreover, electrostatics, magnetostatics and electromagnetic waves are
branches of electromagnetism, which is quite practical, especially for engi-
neers. However, the situation is changing; engineers reconsider such notions
as potential difference and electromotive force1 and try the language of differ-
ential forms;2 philosophers discuss the ontological status of loop functions.3

We begin with electrostatics.

1Kirk T. McDonald (2012) “Voltage drop, potential difference and EMF”.
2G.A. Deschamps (1981) “Electromagnetics and differential forms”.
3A. Afriat (2013) “Is the world made of loops?”

http://www.hep.princeton.edu/~mcdonald/examples/volt.pdf
http://fenix.tecnico.ulisboa.pt/downloadFile/3779571248365/
http://arxiv.org/abs/1311.0745
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Electrostatics is mathematically very similar to Newtonian gravitation
treated in Sect. 9g. By Coulomb’s law, the electrostatic force exerted by a
particle of charge q at point ξ on a particle of charge q0 at point x is q0q

ε0
Eξ(x),

and q
ε0
Eξ(·) is the electric field generated by q,

(13c1) Eξ(x) = E0(x− ξ) =
1

4π

x− ξ
|x− ξ|3 = − 1

4π
∇U0(x− ξ) ;

here the function U0 : x 7→ 1
|x| is proportional to the electrostatic potential

(energy), and ε0 is the electric constant.1 For a charge distribution with
continuous density ρ(ξ) the potential is

Uρ(x) =

∫
ρ(ξ) dξ

|ξ − x| .

For the homogeneous charge distribution (that is, ρ(ξ) = 1) within the ball
BR of radius R centered at the origin, the potential is

(13c2) U(x) =

∫
BR

dξ

|x− ξ| =

{
4πR3

3|x| for |x| ≥ R,
2π
3

(3R2 − |x|2) for |x| ≤ R;

4πR3/3 is the total charge of the ball BR. Once again, the potential, and
hence the force exerted by the homogeneous ball on a particle is the same as
if the whole charge of the ball were concentrated at its center, if the point
is outside the ball. Also, the potential of the homogeneous sphere does not
depend on the point x when x is inside the sphere.

13c3 Exercise. For a radial vector field F on Rn,

F (x) = f(|x|)x , f ∈ C1[0,∞) , f ′(0) = 0 ,

prove that F ∈ C1(Rn → Rn) and

divF (x) = f ′(|x|)|x|+ nf(|x|) ;

here
divF (x) = D1F1 + · · ·+DnFn for F = (F1, . . . , Fn) .

13c4 Exercise. For a radial function g : Rn 3 x 7→ f(|x|) ∈ R, f ∈
C2[0,∞), f ′(0) = 0, prove that g ∈ C2(Rn) and

div∇g(x) = f ′′(|x|) +
n− 1

|x| f
′(|x|) .

13c5 Exercise. For U of (13c2) check that

div∇U(x) =

{
0 for |x| > R,

−4π for |x| < R.

1ε0 ≈ 8.854 · 10−12 s4A2

m3kg .
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13d Magnetostatics, and linking number

Consider a steady electric current I that flows along a loop γ in R3 (maybe
a wire). By the Biot-Savart law, this current generates a magnetic field B,

(13d1) B(x) = µ0IBγ(x) , Bγ(x) =
1

4π

∫ t1

t0

γ′(t)× (x− γ(t))

|x− γ(t)|3 dt ;

here µ0 is the magnetic constant.1

13d2 Exercise. Consider a loop γR in the x, z plane, consisting of a straight
path from (0, 0,−R) to (0, 0, R) and half of a circle x2 +z2 = R2. Prove that2

BγR(x, y, z)→ Bγ∞(x, y, z) =
1

2π

( −y
x2 + y2

,
x

x2 + y2
, 0
)

as R→∞ .

In the limit we have a current on the whole z axis; not really a loop, of
course, but anyway, the integral converges, and gives a well-known vector field
(recall 12b3, 12c7 and the paragraph after 12d3); its curl vanishes outside
the z axis. And its circulation around a loop is the winding number of the
projection of the loop to the x, y plane, known also as the linking number of
the loop and the axis.

What about a non-closed path? This case is beyond magnetostatics;
it may seem steady, but it is not: charges accumulate at the endpoints.
Nevertheless, let us try a half γ−∞,0 of the z axis, from −∞ to 0.

13d3 Exercise. Check that

Bγ−∞,0(x, y, z) =
1

4π

(
1− z√

x2 + y2 + z2

)( −y
x2 + y2

,
x

x2 + y2
, 0
)
.

We wonder, does the curl vanish outside the axis? The circulation of
Bγ−∞,0 around a circle x2 + y2 = r2, z = const is easy to calculate, it is
1
2

(
1 − z√

z2+r2

)
. As r → 0, the circulation converges to 1 for z < 0 and to 0

for z > 0. This is natural; but if the curl vanishes outside the axis then the
circulation must be constant, and it is not!

Let us calculate the curl. To this end we need an equality

(13d4) curl(fE) = f curlE +∇f × E
1µ0 = 4π · 10−7 m·kg

s2·A2 . In fact, ε0µ0c
2 = 1, where c is the speed of light!

2Hint: (z2 + a2)3/2 = a−2 d
dz

z√
z2+a2

.
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for all f ∈ C1(R3) and E ∈ C1(R3 → R3); this is the equality (11e5) d(fω) =
df ∧ ω + f dω translated into the language of vector fields,

ω oo //

d
��

E

curl
��

dω oo // curlE

fω oo //

d
��

fE

curl
��

d(fω) oo // curl(fE)

since df ∧ ω corresponds to ∇f × E by 12a1(a), and df corresponds to ∇f ,
of course.

We apply (13d4) to

f(x, y, z) =
z√

x2 + y2 + z2
, E(x, y, z) =

( −y
x2 + y2

,
x

x2 + y2
, 0
)

;

here curl(fE) = ∇f × E (outside the z axis), since curlE = 0.

13d5 Exercise. Check that

∇f(x, y, z) =
(−xz,−yz, x2 + y2)

(x2 + y2 + z2)3/2
,

(∇f × E)(x, y, z) = − (x, y, z)

(x2 + y2 + z2)3/2
.

That is, (∇f × E)(x) = − x
|x|3 , and we get

curl(Bγ−∞,0)(x) =
1

4π

x

|x|3

outside the z axis.
Interestingly, the curl of this magnetic field is proportional to the electric

field E0 (recall (13c1)) of a charge at 0,

(13d6) curl(Bγ−∞,0) = E0 .

This is not a coincidence but a manifestation of an important relation be-
tween electric and magnetic fields in dynamics (rather than statics); we’ll
return to it later.

It is worth to try a short non-closed straight path, since an arbitrary
path may be thought of as consisting of infinitesimal elements of this kind.
It is sufficient to consider an interval [0, ε] of the z axis, since all opera-
tions of vector analysis are invariant under shifts and rotations (that is, are
well-defined on a 3-dimensional affine Euclidean space rather than just R3).
Here is why. First, operations on differential forms are invariant under all
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diffeomorphisms (recall 11f5, 11f6). Second, the correspondence between dif-
ferential forms and vector fields is invariant under shifts and rotations (recall
Sect. 12a).

By shift, curl(Bγ−∞,ε)(x, y, z) = E0(x, y, z − ε), thus,

curl(Bγ0,ε)(x, y, z) = E0(x, y, z − ε)− E0(x, y, z) = −(D3E0)(x,y,z)ε+ o(ε)

(since Bγ0,ε = Bγ−∞,ε −Bγ−∞,0). On the other hand,

Bγ0,ε =
1

4π

∫ ε

0

(0, 0, 1)× (x− (0, 0, t))

|x− (0, 0, t)|3 dt =
ε

4π

(0, 0, 1)× x
|x|3 + o(ε) ;

we see that

(13d7)
1

4π
curlx

(0, 0, 1)× x
|x|3 = −(D3E0)x .

Our argument fails on the z axis, but (13d7) holds on R3 \ {0}, since both
sides are continuous on R3\{0}. By the invariance under shifts and rotations,

(13d8)
1

4π
curlx

h× (x− ξ)
|x− ξ|3 = −(DhE0)x−ξ

for all ξ, h ∈ R3. Thus,

curlBγ(x) =
1

4π
curl

∫ t1

t0

γ′(t)× (x− γ(t))

|x− γ(t)|3 dt =

=
1

4π

∫ t1

t0

curlx
γ′(t)× (x− γ(t))

|x− γ(t)|3 dt = −
∫ t1

t0

(
Dγ′(t)E0

)
x−γ(t) dt =

=

∫ t1

t0

d

dt
E0(x− γ(t)) dt = E0(x− γ(t1))− E0(x− γ(t0))

for all x ∈ R3 \ γ([t0, t1]).

13d9 Exercise. Prove that the curl of the integral (above) is indeed equal
to the integral of the curl.1

Thus, for every loop γ,

curlBγ = 0 on R3 \ γ([t0, t1]) .

1Hint: use Theorem 7e1.
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Let γ : [t0, t1] → R3 be a loop, t0 < 0 < t1, γ(0) = (0, 0, 0), γ′(0) = (0, 0, 1),
and γ(t) 6= (0, 0, 0) for t 6= 0. Then it appears that

εBγ(εx, εy, εz)→ 1

2π

( −y
x2 + y2

,
x

x2 + y2

)
as ε→ 0+

and the circulation of Bγ around a circle x2 + y2 = ε2, z = 0 converges to 1
as ε→ 0+. (I do not prove these facts.) It follows that the circulation equals
1 for all ε small enough (such that γ crosses the closed ε-disk only once).

For two loops γ1, γ2 that do not cross themselves, nor one another, the
circulation of Bγ1 around γ2 is always an integer, the famous linking number,
given by the Gauss linking integral (Gauss 1833)1

Lk(γ1, γ2) =
1

4π

∫∫
det(γ′1(s), γ′2(t), γ1(s)− γ2(t))

|γ1(s)− γ2(t)|3 dsdt .

13e Electrodynamics

From a long view of the history of mankind – seen from, say, ten
thousand years from now – there can be little doubt that the most
significant event of the 19th century will be judged as Maxwell’s
discovery of the laws of electrodynamics. The American Civil
War will pale into provincial insignificance in comparison with
this important scientific event of the same decade.

Richard Feynman.2

Electrodynamics describes electromagnetism by a pair of vector fields, E
(electric) and B (magnetic), on R3, depending also on time,

E : R3 × R→ R3 , B : R3 × R→ R3 ,

satisfying the famous Maxwell equations:3

divE =
1

ε0

ρ , divB = 0 ,

curlE = −∂B
∂t

, curlB = µ0j + ε0µ0︸︷︷︸
1/c2

∂E

∂t
;

1See also Wikipedia,
De Zela, “Linking Maxwell, Helmholtz and Gauss through the Linking Integral”,
Ricca, Nipoti “Gauss’ linking number revisited”.

2“The Feynman Lectures on Physics” (1964) Volume II, Sect. 1-6.
3Coefficients in Maxwell equations depend on the system of units; the form given here

fits SI.

http://en.wikipedia.org/wiki/Linking_number#Gauss.27s_integral_definition
http://arxiv.org/abs/physics/0406037
http://www.maths.ed.ac.uk/~aar/papers/ricca.pdf
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here ε0 is the electric constant (see 13c), µ0 is the magnetic constant (see
13d), ρ : R3 × R → R is the charge density, and j : R3 × R → R3 is the
current density. Significantly, ε0µ0c

2 = 1, where c is the speed of light.
Surely, this monumental physical law could not be discovered at once in

an insight of genius. See Fitzpatrick1 for its instructive history and meaning.
Here are few remarks.

The equality divE = 1
ε0
ρ (in a special case) was observed in 13c5.

The equation curlB = µ0j + ε0µ0
∂E
∂t

means that the circulation of B
around a loop must be equal to the flux of µ0j+ ε0µ0

∂E
∂t

through any surface
bounded by this loop. In magnetostatics ∂E

∂t
= 0; the flux of µ0j remains.

And indeed, such equality was observed in Sect. 13d for a current along the
z axis; the circulation of Bγ = 1

µ0I
B is the linking number of the loop and

the axis.
Beyond magnetostatics, a current along a half of the z axis, from −∞ to

0, was also treated in Sect. 13d. In this case a charge q(t) = It accumulates
at the origin, and generates2 the electric field E(x, t) = 1

ε0
ItE0(x) (recall

(13c1)). Thus, ε0µ0
∂E
∂t

= µ0IE0; this is indeed the curl of B = µ0IBγ−∞,0

observed in (13d6).
Now you may wonder, why divB = 0 and why curlE = −∂B

∂t
. But do

you wonder, why at all the 6 functions (on R3 × R)? Because 6 = 3 + 3,
really? But why just two vector fields? Why not one, or three, or four? Why
not one scalar field and one vector field?

You may say: these are questions to the Great Architect of the Universe. . .
Well, but He/She “begins to appear as a pure mathematician”.3 And indeed,
mathematics answers:

6 =

(
4

2

)
.

It means: not a pair of 3-dimensional vector fields, but a 2-form in the
4-dimensional space-time!

You may say: but does it help to understand, why divB = 0 and why
curlE = −∂B

∂t
? Oh yes, it does! Here is the 2-form on R4 = {(x1, x2, x3, t)}:

ω = (E1 dx1+E2 dx2+E3 dx3)∧dt+B1 dx2∧dx3+B2 dx3∧dx1+B3 dx1∧dx2 .

And here is the answer: since ω is exact! That is,

ω = dA
1Fitzpatrick, “Classical electromagnetism”.
2Really, “generates”? Well, at least, this charge and this field are compatible. . .
3“. . . from the intrinsic evidence of his creation, the Great Architect of the Universe

now begins to appear as a pure mathematician.” James Hopwood Jeans, in his book “The
Mysterious Universe”.

http://farside.ph.utexas.edu/teaching/em/lectures/lectures.html
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for some 1-form A on R4 = {(x1, x2, x3, t)}. We have

A = A1 dx1 + A2 dx2 + A3 dx3 + A0 dt ;

dA =

(D1A2 −D2A1)︸ ︷︷ ︸
B3

dx1∧dx2+(D2A3 −D3A2)︸ ︷︷ ︸
B1

dx2∧dx3+(D3A1 −D1A3)︸ ︷︷ ︸
B2

dx3∧dx1+

(D1A0 −D0A1)︸ ︷︷ ︸
E1

dx1∧dt+(D2A0 −D0A2)︸ ︷︷ ︸
E2

dx2∧dt+(D3A0 −D0A3)︸ ︷︷ ︸
E3

dx3∧dt ;

divB = D1B1 +D2B2 +D3B3 =

(D2D3 −D3D2)A1 + (D3D1 −D1D3)A2 + (D1D2 −D2D1)A3 = 0 ;

curlE = (D2E3 −D3E2, D3E1 −D1E3, D1E2 −D2E1) =

= (D2D3A0 −D2D0A3 −D3D2A0 +D3D0A2, . . . , . . . ) =

=
(
D0(D3A2 −D2A3), . . . , . . .

)
= −D0B .

Magically, all questions are answered! In addition, the next exercise explains
why ε0µ0c

2 = 1, where c is the speed of light.

13e1 Exercise. 1 Consider such a special case:

A = A2(x1 − ct) dx2 + A3(x1 − ct) dx3 .

Check that in this case

E =

 0
cA′2(x1 − ct)
cA′3(x1 − ct)

 , B =

 0
−A′3(x1 − ct)
A′2(x1 − ct)

 ,

divE = 0 , curlB =
1

c2

∂E

∂t
.

Such solutions are called electromagnetic waves. Explain, why. In what
direction do these waves travel, and how fast?

13e2 Exercise. Explain the pictures below; insert the missing ε, 1/ε, 1/ε2

and limε→0+ as needed.

1Sjamaar, Ex. 2.18(v).
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Magnetic field as a loop function in space

x2

A2

x2

x1

D1A2

x2

x1

B3 = D1A2 −D2A1

x2

x1

x3

D3B3 divB = 0

Electric field as a loop function in space-time

x2

A2

x2

t

D0A2

x2

t

E2 = D2A0 −D0A2

D1E2 D2E1-

x2

x1

t

−D0B3=

Should we treat A as a physical field that underlies E and B? No, we
should not, since A cannot be measured (neither in practice nor in principle).
According to the so-called gauge field theory,1 all measurable quantities are
invariant under the gauge transformation

A 7→ A+ df , f ∈ C1(R4) .

1See also Wikipedia (English, Hebrew).

http://en.wikipedia.org/wiki/ Gauge_theory
http://he.wikipedia.org/wiki/%D7%AA%D7%95%D7%A8%D7%AA_%D7%9B%D7%99%D7%95%D7%9C
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Thus, A cannot be measured; only its equivalence class {A+df : f ∈ C1(R4)
can.

We have several mathematically equivalent descriptions of the same phys-
ical object:

∗ a pair of vector fields;

∗ an exact 2-form;

∗ an equivalence class of 1-forms;

∗ a loop function.

The latter is equivalent to others, since R4 is simply connected (recall 13b19).
We cannot try a different, multiply connected Universe; but we can try a mul-
tiply connected region of the given space-time. Can it happen that electro-
magnetic field is absent in two regions but present in their union?1 Classical
physics gives negative answer; charged particles interact only locally with the
electromagnetic field. Amazingly, quantum physics gives affirmative answer;
true, the interaction is local, but a particle has its wave function, spread
in space! The relevant physical phenomenon is the famous Aharonov-Bohm
effect.2 3

1Recall the end of Sect. 13b.
2Images from: Edward Sternin, Bartosz Milewski.
3See also Wikipedia (English, Hebrew).

http://www.physics.brocku.ca/faculty/Sternin/teaching/mirrors/qm/abe/index.html
http://bartoszmilewski.com/category/homotopy-type-theory/
https://en.wikipedia.org/wiki/Aharonov%E2%80%93Bohm_effect
https://he.wikipedia.org/wiki/%D7%90%D7%A4%D7%A7%D7%98_%D7%90%D7%94%D7%A8%D7%95%D7%A0%D7%95%D7%91-%D7%91%D7%95%D7%94%D7%9D
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