13 Exact forms, closed forms, loops and electromagnetism

13a Path functions and loop functions 203
13b Exact forms and closed forms 204
13c Electrostatics 210
13d Magnetostatics, and linking number 212
13e Electrodynamics 215

Mathematics and physics help each other to understand and use different behavior of differential forms in simply connected and multiply connected domains.

13a Path functions and loop functions

A closed path is also called a loop. By a loop function we mean a (real-valued) function on the set of all loops (in \mathbb{R}^{n} or a given subset of \mathbb{R}^{n}). Every path function leads to a loop function (just restriction).

In particular, every 1-form leads to (a path function and) a loop function. For example, the winding number (recall Sect. 10d) is a loop function over $\mathbb{R}^{2} \backslash\{0\}$; it corresponds to the 1-form $\frac{-y d x+x d y}{x^{2}+y^{2}}$ (and many others, as we'll see soon). Another interesting loop function (over \mathbb{R}^{2}) corresponds to the 1 -form $-y d x+x d y$ (also discussed in Sect. 10d).

We restrict ourselves to additive stationary antisymmetric (ASA, for short) path functions.

Every function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (that is, point function) leads to an ASA path function Ω_{f} defined by $\Omega_{f}(\gamma)=f\left(\gamma\left(t_{1}\right)\right)-f\left(\gamma\left(t_{0}\right)\right)$ whenever $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n}$. If f is continuous, we may treat it as a 0 -form and write $\Omega_{f}(\gamma)=\int_{\partial \gamma} f$. If $f \in C^{1}$ then $\Omega_{f}(\gamma)=\int_{\gamma} d f$ (recall 11c3). But for now f is arbitrary. We have a diagram of linear mappings between vector spaces:

The composition of these two mappings is zero (just because $\gamma\left(t_{1}\right)=\gamma\left(t_{0}\right)$ implies $\left.f\left(\gamma\left(t_{1}\right)\right)=f\left(\gamma\left(t_{0}\right)\right)\right)$. That is, the image of the first mapping is contained in the kernel of the second mapping. Interestingly, they are equal.

13a1 Lemma. An ASA path function Ω over \mathbb{R}^{n} vanishes on all loops if and only if $\Omega=\Omega_{f}$ for some f.

Proof. "If": see above. "Only if": we define $f(x)=\Omega\left(\gamma_{x}\right)$ where $\gamma_{x}(t)=t x$ for $t \in[0,1]$. Given $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n}, \gamma\left(t_{0}\right)=x, \gamma\left(t_{1}\right)=y$, the concatenation ${ }^{1}$ $\gamma_{x} \cdot \gamma \cdot\left(\gamma_{y}\right)_{-1}$ is a loop, thus $0=\Omega\left(\gamma_{x} \cdot \gamma \cdot\left(\gamma_{y}\right)_{-1}\right)=\Omega\left(\gamma_{x}\right)+\Omega(\gamma)-\Omega\left(\gamma_{y}\right)$, whence $\Omega(\gamma)=f(y)-f(x)$.

Our choice of the paths γ_{x} does not really matter; any path γ_{x} from 0 to x works equally well, and gives the same result (think, why).

The same holds over a connected open subset of \mathbb{R}^{n} (for instance, $\mathbb{R}^{n} \backslash$ $\{0\}) .{ }^{2}$

Given Ω, the function f is unique up to an additive constant. Proof: if $f\left(\gamma\left(t_{1}\right)\right)-f\left(\gamma\left(t_{0}\right)\right)=g\left(\gamma\left(t_{1}\right)\right)-g\left(\gamma\left(t_{0}\right)\right)$ for all γ, then $f\left(\gamma\left(t_{1}\right)\right)-g\left(\gamma\left(t_{1}\right)\right)=$ $f\left(\gamma\left(t_{0}\right)\right)-g\left(\gamma\left(t_{0}\right)\right)$ for all γ, that is, $f-g=$ const.

We specialize 13a1 to "good" path functions that correspond to 1-forms, $\Omega(\gamma)=\int_{\gamma} \omega$ (they all are ASA, of course).

13a2 Lemma. A 1-form ω on \mathbb{R}^{n} satisfies $\int_{\gamma} \omega=0$ for all loops γ if and only if $\omega=d f$ for some $f \in C^{1}$.

Proof. "If": for $f \in C^{1}$ we have $\int_{\gamma} d f=\Omega_{f}(\gamma)=0$ for all loops γ.
"Only if": Lemma 13a1 applied to the path function $\Omega: \gamma \mapsto \int_{\gamma} \omega$ gives f such that $\int_{\gamma} \omega=\Omega_{f}(\gamma)$ for all paths γ. We take a straight path from x to $x+h$ (for arbitrary $x, h \in \mathbb{R}^{n}$) and get $f(x+\varepsilon h)-f(x)=\int_{0}^{\varepsilon} \omega(x+t h, h) d t=$ $\varepsilon \omega(x, h)+o(\varepsilon)$, that is, $\left(D_{h} f\right)_{x}=\omega(x, h)$, which shows that $f \in C^{1}$ and $d f=\omega$.

The same holds over an open subset of \mathbb{R}^{n}.

13b Exact forms and closed forms

13b1 Definition. A 1-form ω on an open set $G \subset \mathbb{R}^{n}$ is exact, if $\omega=d f$ for some $f \in C^{1}(G)$.

Here is a reformulation of Lemma 13 a 2
13b2 Corollary. A 1-form ω on G is exact if and only if $\int_{\gamma} \omega=0$ for all loops γ in G.

[^0]13b3 Exercise. (a) A 1-form $\omega=f\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)(x d x+y d y+z d z)$ on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$ is exact for every continuous $f:(0, \infty) \rightarrow \mathbb{R}$. Prove it.
(b) Prove that

$$
\int_{\gamma} \frac{x d x+y d y+z d z}{\sqrt{x^{2}+y^{2}+z^{2}}}=\int_{\gamma}(x d x+y d y+z d z)
$$

for every $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3} \backslash\{(0,0,0)\}$ such that $\gamma\left(t_{0}\right)=\left(\frac{3}{10}, 0,-\frac{2}{5}\right)$ and $\gamma\left(t_{1}\right)=\left(0, \frac{6}{5}, \frac{9}{10}\right)$.

13b4 Definition. A 1 -form ω of class C^{1} on an open set $G \subset \mathbb{R}^{n}$ is closed, if $d \omega=0$.

Every exact 1-form (of class C^{1}) is closed, since $d(d f)=0$ by (11e 4).
The form $\frac{-y d x+x d y}{x^{2}+y^{2}}$ is closed (since its restriction to U_{i} is exact for $i=$ $1,2,3,4$, recall 10 d) but not exact (by 13 b 2).

13b5 Exercise. ${ }^{1}$ Let $\omega=f_{1} d x+f_{2} d y+f_{3} d z$ be a closed 1-form on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$, whose coefficient functions f_{1}, f_{2}, f_{3} are homogeneous of degree $k \neq-1$ (that is, $\left.f_{i}(t x, t y, t z)=t^{k} f(x, y, z)\right)$. Prove that $\omega=d g$ where $g=\frac{1}{k+1}\left(x f_{1}+y f_{2}+z f_{3}\right) .{ }^{2}$

13 b 6 Lemma. A 1-form ω of class C^{1} on G is closed if and only if $\int_{\partial \Gamma} \omega=0$ for all singular 2-boxes Γ in G.

Proof. "Only if": $\int_{\partial \Gamma} \omega=\int_{\Gamma} d \omega=0$; "if": $\int_{\Gamma} d \omega=\int_{\partial \Gamma} \omega=0$ for all Γ, therefore $d \omega=0$ by the argument on page 179: $\frac{1}{\varepsilon^{2}} \int_{\Gamma_{\varepsilon}} d \omega \rightarrow(d \omega)(x, h, k)$.

We have again a diagram of linear mappings between vector spaces:

The composition of these two mappings is zero. That is, the image of the first mapping (exact forms) is contained in the kernel of the second mapping (closed forms). They are equal for some G, not for all G.

Номотору

It was noted (in Sect. 10e) that a singular 2-box may be thought of as a path in the space of paths. And now we need a path in the space of loops.

[^1]13b7 Definition. Let $\gamma_{1}, \gamma_{2} \in C^{1}\left(\left[t_{0}, t_{1}\right] \rightarrow G\right)$ be loops in an open set $G \subset \mathbb{R}^{n}$.
(a) A homotopy ${ }^{1}$ between γ_{1} and $\gamma_{2}($ in $G)$ is a mapping $\Gamma \in C^{1}\left(\left[t_{0}, t_{1}\right] \times\right.$ $[0,1] \rightarrow G)$ such that

$$
\begin{gathered}
\Gamma(t, 0)=\gamma_{1}(t), \quad \Gamma(t, 1)=\gamma_{2}(t) \quad \text { for all } t \in\left[t_{0}, t_{1}\right] ; \\
\Gamma\left(t_{0}, u\right)=\Gamma\left(t_{1}, u\right) \quad \text { for all } u \in[0,1] ;
\end{gathered}
$$

(b) γ_{1} and γ_{2} are homotopic, if there exists a homotopy between them;
(c) γ_{1} is null homotopic, if it is homotopic to a trivial γ_{2} (that is, $\gamma_{2}(\cdot)=$ const).

13b8 Exercise. Prove that "homotopic" is an equivalence relation. ${ }^{2}$
13b9 Proposition. If loops γ_{1}, γ_{2} in an open set $G \subset \mathbb{R}^{n}$ are homotopic in G then $\int_{\gamma_{1}} \omega=\int_{\gamma_{2}} \omega$ for all closed 1-forms ω on G.

Proof. We take a homotopy Γ between γ_{1} and $\gamma_{2} ; \int_{\partial \Gamma} \omega=0$ by 13b6. It remains to note that $\int_{\partial \Gamma} \omega=\int_{\gamma_{1}} \omega-\int_{\gamma_{2}} \omega$, since $\left.\Gamma\right|_{\left[t_{0}, t_{1}\right] \times\{0\}} \sim \gamma_{1},\left.\Gamma\right|_{\left[t_{0}, t_{1}\right] \times\{1\}} \sim \gamma_{2}$, and $\left.\left.\Gamma\right|_{\left\{t_{0}\right\} \times[0,1]} \sim \Gamma\right|_{\left\{t_{1}\right\} \times[0,1]}$.

13b10 Exercise. Let $G=\mathbb{C} \backslash\{0\}$ be the punctured complex plane. Prove that
(a) every loop $\gamma \in C^{1}([0,1] \rightarrow G)$ may be written as $\gamma(t)=r(t) \mathrm{e}^{\mathrm{i} \theta(t)}$, $r \in C^{1}([0,1] \rightarrow(0, \infty)), \varphi \in C^{1}([0,1] \rightarrow \mathbb{R}) ;^{3}$
(b) the loop $t \mapsto r(t) \mathrm{e}^{\mathrm{i} \theta(t)}$ is homotopic (in G) to the loop $t \mapsto \mathrm{e}^{\mathrm{i} \theta(t)}$;
(c) the loop $t \mapsto \mathrm{e}^{\mathrm{i} \theta(t)}$ is homotopic (in G) to the loop $t \mapsto \mathrm{e}^{2 \pi \mathrm{i} N t}, N=$ ($\theta(1)-\theta(0)) /(2 \pi)$;
(c) two loops $t \mapsto \mathrm{e}^{2 \pi \mathrm{i} N_{1} t}, t \mapsto \mathrm{e}^{2 \pi \mathrm{i} N_{2} t}$ are homotopic if and only if $N_{1}=N_{2}$.

13b11 Exercise. Let G be \mathbb{R}^{3} without the (union of the) three coordinate

[^2]axes, and ω a closed 1-form on G. Prove that
$$
\int_{\gamma_{1}} \omega+\cdots+\int_{\gamma_{6}} \omega=0
$$

where $\gamma_{1}, \ldots, \gamma_{6}$ are the circles shown on the picture. ${ }^{1}$
13b12 Exercise. Let us define a circle (in \mathbb{R}^{3}) as such a path: $\gamma:[0,2 \pi] \rightarrow$ $\mathbb{R}^{3}, \gamma(t)=a+b \cos t+c \sin t$, where $a, b, c \in \mathbb{R}^{3},|b|=|c|>0$ and $\langle b, c\rangle=0$. Let G be \mathbb{R}^{3} without the three coordinate axes (as in the previous exercise). Classify circles in G up to homotopy (in G). (Intuitive explanation is enough; no need to prove it.)

Answer: $2 \cdot\left(3^{3}-1\right)+1=53$ homotopy classes. ${ }^{2}$
13b13 Exercise. (a) Let $G \subset \mathbb{R}^{2}$ be such that $\mathbb{R}^{2} \backslash G$ is a finite set, of m points. Consider simple loops in G and their homotopy classes. Count these classes. (Intuitive explanation is enough; no need to prove it.)
Answer: $2^{m+1}-1$ homotopy classes.
(b) The same for $G \subset S^{2}$.

Answer: $2^{m}-1$ homotopy classes (for $m>0$).
(c) The same for $G \subset \mathbb{R}^{3}$ such that $\mathbb{R}^{3} \backslash G$ is the union of m (pairwise different) rays from the origin.
Answer: $2^{m}-1$ homotopy classes (for $m>0$).
13b14 Corollary. (to 13b9) If γ is null homotopic in G then $\int_{\gamma} \omega=0$ for all closed 1 -forms ω on G.

13 b 15 Definition. A connected open set $G \subset \mathbb{R}^{n}$ is simply connected, if every loop (of class C^{1}) in G is null homotopic.

${ }^{2}$ Hint: maybe it is easier to do the next exercise first; also, 3^{3} means: $\{x$-axis, y-axis, z-axis $\} \rightarrow$ \{negative part, positive part, neither $\}$.

13b16 Proposition. Every closed 1 -form ω on a simply connected G is exact.

Proof. By 13b14. $\int_{\gamma} \omega=0$ for all loops γ in G; by 13b2, ω is exact.
If G is convex, then it is simply connected (think, why).
Simple connectivity is preserved by diffeomorphisms ${ }^{1}$ (think, why).
The punctured space $\mathbb{R}^{n} \backslash\{0\}$ is simply connected for $n>2$ (since a punctured sphere is diffeomorphic to a vector space) but not for $n=2$ (by 13b14).

A 1-form (of class C^{1}) on G is closed if and only if it is locally exact (since every point of G has a convex neighborhood in G).

Homology and cohomology

Let $G \subset \mathbb{R}^{n}$ be an open set. Two closed 1-forms on G are called cohomologous, if their difference is exact.

All closed 1-forms on G are a vector space; all exact 1-forms (of class C^{1}) are its subspace; the quotient space (closed)/(exact) consists of all equivalence classes $[\omega]=\{\omega+\alpha: \alpha$ exact $\}=\left\{\omega+d f: f \in C^{1}(G)\right\}$; these classes are called cohomology classes ${ }^{2}$ of G.

A 1-chain in G is called 1-boundary (in G), if it is the boundary of some 2-chain (in G).

A 1 -cycle in G is, by definition, a 1 -chain in G whose boundary is zero.
Every 1-boundary is a 1 -cycle by (11d1).
Again, a diagram of linear mappings between vector spaces:

The composition of these two mappings is zero. That is, the image of the first mapping (1-boundaries) is contained in the kernel of the second mapping (1-cycles). They are equal for some G, not for all G.

Two 1-cycles on G are called homologous, if their difference is 1-boundary.
All 1-cycles in G are a vector space; all 1-boundaries are its subspace; the quotient space (cycles)/(boundaries) consists of all equivalence classes $[C]=\{C+B: B$ boundary $\}$; these classes are called homology classes ${ }^{3}$ of G.

If ω is closed, α is exact, C is a cycle and B is a boundary then

$$
\int_{C+B} \omega+\alpha=\int_{C} \omega+\int_{C} \alpha+\int_{B} \omega+\int_{B} \alpha=\int_{C} \omega
$$

[^3]since $\int_{C} \alpha=\int_{C} d f=\int_{\partial C} f=0$, and $\int_{B} \omega=0$ by 13b6 (and $\int_{B} \alpha=0$ by both reasons). Thus, $\int_{[C]}[\omega]$ is well-defined, and is a bilinear function of a homology class $[C]$ and a cohomology class $[\omega]$.

By 13b2,

$$
[\omega]=[0] \quad \Longleftrightarrow \quad \forall[C] \int_{[C]}[\omega]=0
$$

(think, why). The numbers $\int_{[C]}[\omega]$ are traditionally called periods of ω. We see that a closed 1-form is exact if and only if all its periods are zero. This is a special case of the first part of De Rham theorem. ${ }^{1}$ Its second part states, in particular, that

$$
[C]=[0] \quad \Longleftrightarrow \quad \forall[\omega] \int_{[C]}[\omega]=0
$$

For example, the punctured plane $G=\mathbb{R}^{2} \backslash\{0\}$ has a one-dimensional space of homology classes and one-dimensional space of cohomology classes. Deleting m points from the plane we get m-dimensional spaces of homologies and cohomologies. But for $\mathbb{R}^{3} \backslash\{0\}$ they are trivial (0-dimensional).

Exact 2-FORMS and loop functions

13 b17 Definition. A 2-form ω on an open set $G \subset \mathbb{R}^{n}$ is exact, if $\omega=d \alpha$ for some 1-form α of class C^{1} on G.

13 b 18 Exercise. If α is a closed 1 -form and β is an exact 1 -form then the 2 -form $\alpha \wedge \beta$ is exact.

Prove it.
If ω is exact then $\int_{\Gamma} \omega$ depends only on $\partial \Gamma$; that is, $\int_{\Gamma_{1}} \omega=\int_{\Gamma_{2}} \omega$ whenever singular 2-boxes Γ_{1}, Γ_{2} satisfy $\partial \Gamma_{1}=\partial \Gamma_{2}$. And more generally, $\int_{C_{1}} \omega=$ $\int_{C_{2}} \omega$ whenever 2-chaines C_{1}, C_{2} satisfy $\partial C_{1}=\partial C_{2}$. The proof is immediate: $\int_{C_{1}} \omega=\int_{C_{1}} d \alpha=\int_{\partial C_{1}} \alpha=\int_{\partial C_{2}} \alpha=\int_{C_{2}} d \alpha=\int_{C_{2}} \omega .^{2}$

Every 1-form ω on G leads to a loop function $\gamma \mapsto \int_{\gamma} \omega$. By 13b2, this loop function is trivial (zero) if and only if ω is exact. Thus, each equivalence class $\{\omega+\alpha: \alpha$ exact $\}=\left\{\omega+d f: f \in C^{1}(G)\right\}$ leads to a loop function. (Not a cohomology class, unless ω is closed.)

If two loops γ_{1}, γ_{2} are homotopic in G, then the 1-chain $\gamma_{1}-\gamma_{2}$ is equivalent to some 1-boundary $\partial \Gamma$ by the argument of the proof of 13 b 9 . Thus, the difference $\int_{\gamma_{1}} \omega-\int_{\gamma_{2}} \omega=\int_{\partial \Gamma} \omega=\int_{\Gamma} d \omega$ is uniquely determined by the exact

[^4]2 -form $d \omega$. In particular, $d \omega$ determines uniquely the loop function on all null homotopic loops. We see that an exact 2 -form leads to a loop function, provided that G is simply connected; here is a formal statement.

13b19 Proposition. If ω is an exact 2 -form on a simply connected open set $G \subset \mathbb{R}^{n}$, then for every loop γ in $G, \int_{\gamma} \alpha$ does not depend on the choice of α such that $d \alpha=\omega$.

A different situation appears when G is not simply connected. For example, the 1-form $\omega=\frac{1}{2 \pi} \frac{-y d x+x d y}{x^{2}+y^{2}}$ on $G=\mathbb{R}^{2} \backslash\{0\}$ leads to the loop function called the winding number (recall 10d). In this case $d \omega=0$; accordingly, homotopic loops have equal winding numbers, and null homotopic loops have winding number zero. In order to know the whole loop function we need also the period of ω.

In this example $G=G_{1} \cup G_{2}=\left(U_{1} \cup U_{2}\right) \cup\left(U_{3} \cup U_{4}\right)\left(U_{i}\right.$ being as in 10d); restrictions $\left.\omega\right|_{G_{1}},\left.\omega\right|_{G_{2}}$ are exact, but $\left.\omega\right|_{G_{1} \cup G_{2}}=\omega$ is not. The corresponding loop function (winding number) is trivial on G_{1} and G_{2} but nontrivial on $G_{1} \cup G_{2}$ (which never happens to usual functions).

13c Electrostatics

Greatness of the electromagnetic theory cannot be overestimated. It unites many seemingly unrelated phenomena, such as these:

* amber attracts lightweight particles;
* magnetic compass points to the north;
* solid body stiffness (and Lorentz contraction...);
* light;
* radio waves (radio, TV, WiFi, ...);
* X-rays (computed tomography...).

Still, mechanics and optics are (more or less) separate branches of physics; and moreover, electrostatics, magnetostatics and electromagnetic waves are branches of electromagnetism, which is quite practical, especially for engineers. However, the situation is changing; engineers reconsider such notions as potential difference and electromotive force ${ }^{1}$ and try the language of differential forms; ${ }^{2}$ philosophers discuss the ontological status of loop functions. ${ }^{3}$

We begin with electrostatics.

[^5]Electrostatics is mathematically very similar to Newtonian gravitation treated in Sect. 9g. By Coulomb's law, the electrostatic force exerted by a particle of charge q at point ξ on a particle of charge q_{0} at point x is $\frac{q_{0} q}{\varepsilon_{0}} E_{\xi}(x)$, and $\frac{q}{\varepsilon_{0}} E_{\xi}(\cdot)$ is the electric field generated by q,

$$
\begin{equation*}
E_{\xi}(x)=E_{0}(x-\xi)=\frac{1}{4 \pi} \frac{x-\xi}{|x-\xi|^{3}}=-\frac{1}{4 \pi} \nabla U_{0}(x-\xi) \tag{13c1}
\end{equation*}
$$

here the function $U_{0}: x \mapsto \frac{1}{|x|}$ is proportional to the electrostatic potential (energy), and ε_{0} is the electric constant. ${ }^{1}$ For a charge distribution with continuous density $\rho(\xi)$ the potential is

$$
U_{\rho}(x)=\int \frac{\rho(\xi) \mathrm{d} \xi}{|\xi-x|}
$$

For the homogeneous charge distribution (that is, $\rho(\xi)=1$) within the ball B_{R} of radius R centered at the origin, the potential is

$$
U(x)=\int_{B_{R}} \frac{\mathrm{~d} \xi}{|x-\xi|}= \begin{cases}\frac{4 \pi R^{3}}{3|x|} & \text { for }|x| \geq R \tag{13c2}\\ \frac{2 \pi}{3}\left(3 R^{2}-|x|^{2}\right) & \text { for }|x| \leq R\end{cases}
$$

$4 \pi R^{3} / 3$ is the total charge of the ball B_{R}. Once again, the potential, and hence the force exerted by the homogeneous ball on a particle is the same as if the whole charge of the ball were concentrated at its center, if the point is outside the ball. Also, the potential of the homogeneous sphere does not depend on the point x when x is inside the sphere.
13c3 Exercise. For a radial vector field F on \mathbb{R}^{n},

$$
F(x)=f(|x|) x, \quad f \in C^{1}[0, \infty), \quad f^{\prime}(0)=0,
$$

prove that $F \in C^{1}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$ and

$$
\operatorname{div} F(x)=f^{\prime}(|x|)|x|+n f(|x|) ;
$$

here

$$
\operatorname{div} F(x)=D_{1} F_{1}+\cdots+D_{n} F_{n} \quad \text { for } F=\left(F_{1}, \ldots, F_{n}\right) .
$$

13c4 Exercise. For a radial function $g: \mathbb{R}^{n} \ni x \mapsto f(|x|) \in \mathbb{R}, f \in$ $C^{2}[0, \infty), f^{\prime}(0)=0$, prove that $g \in C^{2}\left(\mathbb{R}^{n}\right)$ and

$$
\operatorname{div} \nabla g(x)=f^{\prime \prime}(|x|)+\frac{n-1}{|x|} f^{\prime}(|x|)
$$

13c5 Exercise. For U of 13c22 check that

$$
\operatorname{div} \nabla U(x)= \begin{cases}0 & \text { for }|x|>R, \\ -4 \pi & \text { for }|x|<R .\end{cases}
$$

[^6]
13d Magnetostatics, and linking number

Consider a steady electric current I that flows along a loop γ in \mathbb{R}^{3} (maybe a wire). By the Biot-Savart law, this current generates a magnetic field B,

$$
\begin{equation*}
B(x)=\mu_{0} I B_{\gamma}(x), \quad B_{\gamma}(x)=\frac{1}{4 \pi} \int_{t_{0}}^{t_{1}} \frac{\gamma^{\prime}(t) \times(x-\gamma(t))}{|x-\gamma(t)|^{3}} \mathrm{~d} t \tag{13d1}
\end{equation*}
$$

here μ_{0} is the magnetic constant. ${ }^{1}$
13d2 Exercise. Consider a loop γ_{R} in the x, z plane, consisting of a straight path from $(0,0,-R)$ to $(0,0, R)$ and half of a circle $x^{2}+z^{2}=R^{2}$. Prove that ${ }^{2}$

$$
B_{\gamma_{R}}(x, y, z) \rightarrow B_{\gamma_{\infty}}(x, y, z)=\frac{1}{2 \pi}\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, 0\right) \quad \text { as } R \rightarrow \infty
$$

In the limit we have a current on the whole z axis; not really a loop, of course, but anyway, the integral converges, and gives a well-known vector field (recall 12b3, 12c7 and the paragraph after 12d3); its curl vanishes outside the z axis. And its circulation around a loop is the winding number of the projection of the loop to the x, y plane, known also as the linking number of the loop and the axis.

What about a non-closed path? This case is beyond magnetostatics; it may seem steady, but it is not: charges accumulate at the endpoints. Nevertheless, let us try a half $\gamma_{-\infty, 0}$ of the z axis, from $-\infty$ to 0 .

13d3 Exercise. Check that

$$
B_{\gamma-\infty, 0}(x, y, z)=\frac{1}{4 \pi}\left(1-\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, 0\right) .
$$

We wonder, does the curl vanish outside the axis? The circulation of $B_{\gamma-\infty, 0}$ around a circle $x^{2}+y^{2}=r^{2}, z=$ const is easy to calculate, it is $\frac{1}{2}\left(1-\frac{z}{\sqrt{z^{2}+r^{2}}}\right)$. As $r \rightarrow 0$, the circulation converges to 1 for $z<0$ and to 0 for $z>0$. This is natural; but if the curl vanishes outside the axis then the circulation must be constant, and it is not!

Let us calculate the curl. To this end we need an equality

$$
\begin{equation*}
\operatorname{curl}(f E)=f \operatorname{curl} E+\nabla f \times E \tag{13d4}
\end{equation*}
$$

[^7]for all $f \in C^{1}\left(\mathbb{R}^{3}\right)$ and $E \in C^{1}\left(\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\right)$; this is the equality (11e5) $d(f \omega)=$ $d f \wedge \omega+f d \omega$ translated into the language of vector fields,

since $d f \wedge \omega$ corresponds to $\nabla f \times E$ by 12a1(a), and $d f$ corresponds to ∇f, of course.

We apply (13d4) to

$$
f(x, y, z)=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}, \quad E(x, y, z)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, 0\right) ;
$$

here $\operatorname{curl}(f E)=\nabla f \times E$ (outside the z axis), since curl $E=0$.
13d5 Exercise. Check that

$$
\begin{gathered}
\nabla f(x, y, z)=\frac{\left(-x z,-y z, x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \\
(\nabla f \times E)(x, y, z)=-\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} .
\end{gathered}
$$

That is, $(\nabla f \times E)(x)=-\frac{x}{|x|^{3}}$, and we get

$$
\operatorname{curl}\left(B_{\gamma-\infty, 0}\right)(x)=\frac{1}{4 \pi} \frac{x}{|x|^{3}}
$$

outside the z axis.
Interestingly, the curl of this magnetic field is proportional to the electric field E_{0} (recall 13c11) of a charge at 0 ,

$$
\begin{equation*}
\operatorname{curl}\left(B_{\gamma_{-\infty}, 0}\right)=E_{0} . \tag{13d6}
\end{equation*}
$$

This is not a coincidence but a manifestation of an important relation between electric and magnetic fields in dynamics (rather than statics); we'll return to it later.

It is worth to try a short non-closed straight path, since an arbitrary path may be thought of as consisting of infinitesimal elements of this kind. It is sufficient to consider an interval $[0, \varepsilon]$ of the z axis, since all operations of vector analysis are invariant under shifts and rotations (that is, are well-defined on a 3 -dimensional affine Euclidean space rather than just \mathbb{R}^{3}). Here is why. First, operations on differential forms are invariant under all
diffeomorphisms (recall 11f5, 11f6). Second, the correspondence between differential forms and vector fields is invariant under shifts and rotations (recall Sect. 12a).

By shift, $\operatorname{curl}\left(B_{\gamma-\infty, \varepsilon}\right)(x, y, z)=E_{0}(x, y, z-\varepsilon)$, thus,

$$
\operatorname{curl}\left(B_{\gamma_{0, \varepsilon}}\right)(x, y, z)=E_{0}(x, y, z-\varepsilon)-E_{0}(x, y, z)=-\left(D_{3} E_{0}\right)_{(x, y, z)} \varepsilon+o(\varepsilon)
$$

(since $B_{\gamma_{0, \varepsilon}}=B_{\gamma-\infty, \varepsilon}-B_{\gamma-\infty, 0}$). On the other hand,

$$
B_{\gamma_{0, \varepsilon}}=\frac{1}{4 \pi} \int_{0}^{\varepsilon} \frac{(0,0,1) \times(x-(0,0, t))}{|x-(0,0, t)|^{3}} \mathrm{~d} t=\frac{\varepsilon}{4 \pi} \frac{(0,0,1) \times x}{|x|^{3}}+o(\varepsilon) ;
$$

we see that

$$
\begin{equation*}
\frac{1}{4 \pi} \operatorname{curl}_{x} \frac{(0,0,1) \times x}{|x|^{3}}=-\left(D_{3} E_{0}\right)_{x} \tag{13d7}
\end{equation*}
$$

Our argument fails on the z axis, but (13d7) holds on $\mathbb{R}^{3} \backslash\{0\}$, since both sides are continuous on $\mathbb{R}^{3} \backslash\{0\}$. By the invariance under shifts and rotations,

$$
\begin{equation*}
\frac{1}{4 \pi} \operatorname{curl}_{x} \frac{h \times(x-\xi)}{|x-\xi|^{3}}=-\left(D_{h} E_{0}\right)_{x-\xi} \tag{13d8}
\end{equation*}
$$

for all $\xi, h \in \mathbb{R}^{3}$. Thus,

$$
\begin{aligned}
& \operatorname{curl} B_{\gamma}(x)=\frac{1}{4 \pi} \operatorname{curl}_{\int_{t_{0}}^{t_{1}}} \frac{\gamma^{\prime}(t) \times(x-\gamma(t))}{|x-\gamma(t)|^{3}} \mathrm{~d} t= \\
& \qquad \begin{aligned}
=\frac{1}{4 \pi} \int_{t_{0}}^{t_{1}} & \operatorname{curl}_{x} \frac{\gamma^{\prime}(t) \times(x-\gamma(t))}{|x-\gamma(t)|^{3}} \mathrm{~d} t=-\int_{t_{0}}^{t_{1}}\left(D_{\gamma^{\prime}(t)} E_{0}\right)_{x-\gamma(t)} \mathrm{d} t= \\
& =\int_{t_{0}}^{t_{1}} \frac{\mathrm{~d}}{\mathrm{~d} t} E_{0}(x-\gamma(t)) \mathrm{d} t=E_{0}\left(x-\gamma\left(t_{1}\right)\right)-E_{0}\left(x-\gamma\left(t_{0}\right)\right)
\end{aligned}
\end{aligned}
$$

for all $x \in \mathbb{R}^{3} \backslash \gamma\left(\left[t_{0}, t_{1}\right]\right)$.
13d9 Exercise. Prove that the curl of the integral (above) is indeed equal to the integral of the curl. ${ }^{1}$

Thus, for every loop γ,

$$
\operatorname{curl} B_{\gamma}=0 \quad \text { on } \mathbb{R}^{3} \backslash \gamma\left(\left[t_{0}, t_{1}\right]\right)
$$

[^8]Let $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{3}$ be a loop, $t_{0}<0<t_{1}, \gamma(0)=(0,0,0), \gamma^{\prime}(0)=(0,0,1)$, and $\gamma(t) \neq(0,0,0)$ for $t \neq 0$. Then it appears that

$$
\varepsilon B_{\gamma}(\varepsilon x, \varepsilon y, \varepsilon z) \rightarrow \frac{1}{2 \pi}\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right) \quad \text { as } \varepsilon \rightarrow 0+
$$

and the circulation of B_{γ} around a circle $x^{2}+y^{2}=\varepsilon^{2}, z=0$ converges to 1 as $\varepsilon \rightarrow 0+$. (I do not prove these facts.) It follows that the circulation equals 1 for all ε small enough (such that γ crosses the closed ε-disk only once).

For two loops γ_{1}, γ_{2} that do not cross themselves, nor one another, the circulation of $B_{\gamma_{1}}$ around γ_{2} is always an integer, the famous linking number, given by the Gauss linking integral (Gauss 1833) ${ }^{1}$

$$
\operatorname{Lk}\left(\gamma_{1}, \gamma_{2}\right)=\frac{1}{4 \pi} \iint \frac{\operatorname{det}\left(\gamma_{1}^{\prime}(s), \gamma_{2}^{\prime}(t), \gamma_{1}(s)-\gamma_{2}(t)\right)}{\left|\gamma_{1}(s)-\gamma_{2}(t)\right|^{3}} \mathrm{~d} s \mathrm{~d} t
$$

13e Electrodynamics

From a long view of the history of mankind - seen from, say, ten thousand years from now - there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electrodynamics. The American Civil War will pale into provincial insignificance in comparison with this important scientific event of the same decade. Richard Feynman. ${ }^{2}$

Electrodynamics describes electromagnetism by a pair of vector fields, E (electric) and B (magnetic), on \mathbb{R}^{3}, depending also on time,

$$
E: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad B: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}^{3}
$$

satisfying the famous Maxwell equations: ${ }^{3}$

$$
\begin{array}{rlrl}
\operatorname{div} E & =\frac{1}{\varepsilon_{0}} \rho, & \operatorname{div} B=0, \\
\operatorname{curl} E=-\frac{\partial B}{\partial t}, & \operatorname{curl} B=\mu_{0} j+\underbrace{\varepsilon_{0} \mu_{0}}_{1 / c^{2}} \frac{\partial E}{\partial t} ;
\end{array}
$$

[^9]here ε_{0} is the electric constant (see 13c), μ_{0} is the magnetic constant (see 13 d , $\rho: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}$ is the charge density, and $j: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ is the current density. Significantly, $\varepsilon_{0} \mu_{0} c^{2}=1$, where c is the speed of light.

Surely, this monumental physical law could not be discovered at once in an insight of genius. See Fitzpatrick ${ }^{1}$ for its instructive history and meaning. Here are few remarks.

The equality $\operatorname{div} E=\frac{1}{\varepsilon_{0}} \rho$ (in a special case) was observed in 13c5.
The equation curl $B=\mu_{0} j+\varepsilon_{0} \mu_{0} \frac{\partial E}{\partial t}$ means that the circulation of B around a loop must be equal to the flux of $\mu_{0} j+\varepsilon_{0} \mu_{0} \frac{\partial E}{\partial t}$ through any surface bounded by this loop. In magnetostatics $\frac{\partial E}{\partial t}=0$; the flux of $\mu_{0} j$ remains. And indeed, such equality was observed in Sect. 13 d for a current along the z axis; the circulation of $B_{\gamma}=\frac{1}{\mu_{0} I} B$ is the linking number of the loop and the axis.

Beyond magnetostatics, a current along a half of the z axis, from $-\infty$ to 0 , was also treated in Sect. 13d. In this case a charge $q(t)=I t$ accumulates at the origin, and generates ${ }^{2}$ the electric field $E(x, t)=\frac{1}{\varepsilon_{0}} I t E_{0}(x)$ (recall (13c1)). Thus, $\varepsilon_{0} \mu_{0} \frac{\partial E}{\partial t}=\mu_{0} I E_{0}$; this is indeed the curl of $B=\mu_{0} I B_{\gamma-\infty, 0}$ observed in (13d6).

Now you may wonder, why $\operatorname{div} B=0$ and why $\operatorname{curl} E=-\frac{\partial B}{\partial t}$. But do you wonder, why at all the 6 functions (on $\mathbb{R}^{3} \times \mathbb{R}$)? Because $6=3+3$, really? But why just two vector fields? Why not one, or three, or four? Why not one scalar field and one vector field?

You may say: these are questions to the Great Architect of the Universe. . . Well, but He/She "begins to appear as a pure mathematician". ${ }^{3}$ And indeed, mathematics answers:

$$
6=\binom{4}{2}
$$

It means: not a pair of 3-dimensional vector fields, but a 2-form in the 4-dimensional space-time!

You may say: but does it help to understand, why $\operatorname{div} B=0$ and why curl $E=-\frac{\partial B}{\partial t}$? Oh yes, it does! Here is the 2-form on $\mathbb{R}^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, t\right)\right\}$: $\omega=\left(E_{1} d x_{1}+E_{2} d x_{2}+E_{3} d x_{3}\right) \wedge d t+B_{1} d x_{2} \wedge d x_{3}+B_{2} d x_{3} \wedge d x_{1}+B_{3} d x_{1} \wedge d x_{2}$.

And here is the answer: since ω is exact! That is,

$$
\omega=d A
$$

[^10]for some 1-form A on $\mathbb{R}^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, t\right)\right\}$. We have
$$
A=A_{1} d x_{1}+A_{2} d x_{2}+A_{3} d x_{3}+A_{0} d t
$$
\[

$$
\begin{aligned}
& \quad d A= \\
& \underbrace{\left(D_{1} A_{2}-D_{2} A_{1}\right)}_{B_{3}} d x_{1} \wedge d x_{2}+\underbrace{\left(D_{2} A_{3}-D_{3} A_{2}\right)}_{B_{1}} d x_{2} \wedge d x_{3}+\underbrace{\left(D_{3} A_{1}-D_{1} A_{3}\right)}_{B_{2}} d x_{3} \wedge d x_{1}+ \\
& \underbrace{\left(D_{1} A_{0}-D_{0} A_{1}\right)}_{E_{2}} d x_{1} \wedge d t+\underbrace{\left(D_{2} A_{0}-D_{0} A_{2}\right)}_{E_{3}} d x_{2} \wedge d t+\underbrace{\left(D_{3} A_{0}-D_{0} A_{3}\right)}_{E_{3}} d x_{3} \wedge d t
\end{aligned}
$$
\]

$\operatorname{div} B=D_{1} B_{1}+D_{2} B_{2}+D_{3} B_{3}=$

$$
\left(D_{2} D_{3}-D_{3} D_{2}\right) A_{1}+\left(D_{3} D_{1}-D_{1} D_{3}\right) A_{2}+\left(D_{1} D_{2}-D_{2} D_{1}\right) A_{3}=0 ;
$$

$$
\begin{aligned}
& \operatorname{curl} E=\left(D_{2} E_{3}-D_{3} E_{2}, D_{3} E_{1}-D_{1} E_{3}, D_{1} E_{2}-D_{2} E_{1}\right)= \\
& =\left(D_{2} D_{3} A_{0}-D_{2} D_{0} A_{3}-D_{3} D_{2} A_{0}+D_{3} D_{0} A_{2}, \ldots, \ldots\right)= \\
& \quad=\left(D_{0}\left(D_{3} A_{2}-D_{2} A_{3}\right), \ldots, \ldots\right)=-D_{0} B .
\end{aligned}
$$

Magically, all questions are answered! In addition, the next exercise explains why $\varepsilon_{0} \mu_{0} c^{2}=1$, where c is the speed of light.

13e1 Exercise. ${ }^{1}$ Consider such a special case:

$$
A=A_{2}\left(x_{1}-c t\right) d x_{2}+A_{3}\left(x_{1}-c t\right) d x_{3} .
$$

Check that in this case

$$
\begin{aligned}
E & =\left(\begin{array}{c}
0 \\
c A_{2}^{\prime}\left(x_{1}-c t\right) \\
c A_{3}^{\prime}\left(x_{1}-c t\right)
\end{array}\right), & B & =\left(\begin{array}{c}
0 \\
-A_{3}^{\prime}\left(x_{1}-c t\right) \\
A_{2}^{\prime}\left(x_{1}-c t\right)
\end{array}\right), \\
\operatorname{div} E & =0, & \operatorname{curl} B & =\frac{1}{c^{2}} \frac{\partial E}{\partial t} .
\end{aligned}
$$

Such solutions are called electromagnetic waves. Explain, why. In what direction do these waves travel, and how fast?

13e2 Exercise. Explain the pictures below; insert the missing $\varepsilon, 1 / \varepsilon, 1 / \varepsilon^{2}$ and $\lim _{\varepsilon \rightarrow 0+}$ as needed.

[^11]Magnetic field as a loop function in space

Electric field as a loop function in space-time

Should we treat A as a physical field that underlies E and B ? No, we should not, since A cannot be measured (neither in practice nor in principle). According to the so-called gauge field theory, ${ }^{1}$ all measurable quantities are invariant under the gauge transformation

$$
A \mapsto A+d f, \quad f \in C^{1}\left(\mathbb{R}^{4}\right) .
$$

[^12]Thus, A cannot be measured; only its equivalence class $\left\{A+d f: f \in C^{1}\left(\mathbb{R}^{4}\right)\right.$ can.

We have several mathematically equivalent descriptions of the same physical object:

* a pair of vector fields;
* an exact 2-form;
* an equivalence class of 1-forms;
* a loop function.

The latter is equivalent to others, since \mathbb{R}^{4} is simply connected (recall 13b19). We cannot try a different, multiply connected Universe; but we can try a multiply connected region of the given space-time. Can it happen that electromagnetic field is absent in two regions but present in their union? ${ }^{1}$ Classical physics gives negative answer; charged particles interact only locally with the electromagnetic field. Amazingly, quantum physics gives affirmative answer; true, the interaction is local, but a particle has its wave function, spread in space! The relevant physical phenomenon is the famous Aharonov-Bohm effect. ${ }^{2}{ }^{3}$

[^13]
Index

Aharonov-Bohm effect, 219
Biot-Savart law, 212
boundary, 208
closed 1-form, 205
cohomologous, 208
cohomology class, 208
Coulomb's law, 211
cycle, 208
De Rham theorem, 209
electric constant, 211
exact 1-form, 204
exact 2-form, 209
gauge, 218
homologous, 208
homology class, 208
homotopic, 206
homotopy, 206
linking number, 215
loop, 203
loop function, 203
magnetic constant, 212
Maxwell equations, 215
null homotopic, 206
simply connected, 207
$B_{\gamma}, 212$
c, 212
$E_{\xi}, 211$
$\varepsilon_{0}, 211$
I, 212
$\int_{[C]}[\omega], 209$
$\operatorname{Lk}\left(\gamma_{1}, \gamma_{2}\right), 215$
$\mu_{0}, 212$
$U_{0}, 211$

[^0]: ${ }^{1}$ Take the stationarity into account. . .
 ${ }^{2}$ Also, over arbitrary open set, and moreover, arbitrary set; just choose a point in every path connected component. In this case f is unique up to a function constant on every component.

[^1]: ${ }^{1}$ Shurman, Ex. 9.11.1.
 ${ }^{2}$ Hint: first check the $d x$ term of $d g$, remembering that ω is closed; a homogeneous function must satisfy Euler's identity $x D_{1} f+y D_{2} f+z D_{3} f=k f$.

[^2]: ${ }^{1}$ Namely, a homotopy of class C^{1}.
 ${ }^{2}$ Beware of C^{1} when proving transitivity; try
 $\Gamma(t, u)=\left\{\begin{array}{ll}\Gamma_{1}\left(t, 1-(1-2 u)^{2}\right) & \text { for } u \leq 1 / 2, \\ \Gamma_{2}\left(t,(2 u-1)^{2}\right) & \text { for } u \geq 1 / 2 .\end{array}\right.$.
 ${ }^{3}$ Hint: $\theta(t)-\theta(0)=\int_{\gamma \mid[0, t]} \frac{-y d x+x d y}{x^{2}+y^{2}}$.

[^3]: ${ }^{1}$ Also by homeomorphisms; I do not prove it.
 ${ }^{2}$ De Rham cohomology classes of dimension 1.
 ${ }^{3}$ Singular homology classes of dimension 1.

[^4]: ${ }^{1}$ If you want to know more about this deep theorem, see Nicolaescu, Wikipedia.
 ${ }^{2}$ The converse holds by (the first part of) De Rham theorem for 2-forms.

[^5]: ${ }^{1}$ Kirk T. McDonald (2012) "Voltage drop, potential difference and $\mathcal{E M F}$ "
 ${ }^{2}$ G.A. Deschamps (1981) "Electromagnetics and differential forms".
 ${ }^{3}$ A. Afriat (2013) "Is the world made of loops?"

[^6]: ${ }^{1} \varepsilon_{0} \approx 8.854 \cdot 10^{-12} \frac{\mathrm{~s}^{4} \mathrm{~A}^{2}}{\mathrm{~m}^{3} \mathrm{~kg}}$.

[^7]: ${ }^{1} \mu_{0}=4 \pi \cdot 10^{-7} \frac{\mathrm{~m} \cdot \mathrm{~kg}}{\mathrm{~s}^{2} \mathrm{~A}^{2}}$. In fact, $\varepsilon_{0} \mu_{0} c^{2}=1$, where c is the speed of light!
 ${ }^{2}$ Hint: $\left(z^{2}+a^{2}\right)^{3 / 2}=a^{-2} \frac{\mathrm{~d}}{\mathrm{~d} z} \frac{z}{\sqrt{z^{2}+a^{2}}}$.

[^8]: ${ }^{1}$ Hint: use Theorem 7e1.

[^9]: ${ }^{1}$ See also Wikipedia, De Zela, "Linking Maxwell, Helmholtz and Gauss through the Linking Integral" Ricca, Nipoti "Gauss' linking number revisited"
 ${ }^{2}$ "The Feynman Lectures on Physics" (1964) Volume II, Sect. 1-6.
 ${ }^{3}$ Coefficients in Maxwell equations depend on the system of units; the form given here fits SI.

[^10]: ${ }^{1}$ Fitzpatrick, "Classical electromagnetism"
 ${ }^{2}$ Really, "generates"? Well, at least, this charge and this field are compatible...
 3 "... from the intrinsic evidence of his creation, the Great Architect of the Universe now begins to appear as a pure mathematician." James Hopwood Jeans, in his book "The Mysterious Universe".

[^11]: ${ }^{1}$ Sjamaar, Ex. 2.18(v).

[^12]: ${ }^{1}$ See also Wikipedia (English, Hebrew)

[^13]: ${ }^{1}$ Recall the end of Sect. 13 b
 ${ }^{2}$ Images from: Edward Sternin, Bartosz Milewski
 ${ }^{3}$ See also Wikipedia (English, Hebrew).

