14 Higher order forms; divergence theorem

14a	Forms of order three	221
14b	Divergence theorem in three dimensions	225
14c	Order four, and higher	231

Boundary and derivative are generalized to 3-chains and 2-forms, and higher. Stokes' theorem and divergence theorem are generalized accordingly.

14a Forms of order three

Similarly to the boundary of a singular 2-box, defined in Sect. 11d as

$$\Gamma|_{AB} + \Gamma|_{BC} + \Gamma|_{CD} + \Gamma|_{DA} = \Gamma|_{AB} + \Gamma|_{BC} - \Gamma|_{DC} - \Gamma|_{AD}, \qquad \bigwedge_{A \longrightarrow B} \bigcap_{B \longrightarrow B} \bigcap_{B \longrightarrow B} \bigcap_{B \longrightarrow B} \bigcap_{A \longrightarrow B} \bigcap_{A \longrightarrow B} \bigcap_{B \longrightarrow B} \bigcap_{A \longrightarrow B} \bigcap_{A \longrightarrow B} \bigcap_{B \longrightarrow B} \bigcap_{A \longrightarrow B} \bigcap_{$$

we define the boundary of a singular 3-box as follows:¹

(14a1)

$$\Gamma|_{ADCB} + \Gamma|_{EFGH} + \Gamma|_{ABFE} + \Gamma|_{DHGC} + \Gamma|_{AEHD} + \Gamma|_{BCGF} = \Gamma|_{ABCD} + \Gamma|_{EFGH} - \Gamma|_{AEFB} + \Gamma|_{DHGC} - \Gamma|_{ADHE} + \Gamma|_{BCGF}.$$

Similarly to (11d1),

(14a2)
$$\partial(\partial\Gamma) = 0$$
 for a singular 3-box Γ .

14a3 Exercise. Similarly to Sect. 11d, find

$$\lim_{\varepsilon \to 0+} \frac{1}{\varepsilon^3} \int_{\partial \Gamma_{\varepsilon}} \omega$$

where $\Gamma_{\varepsilon} : [0,1]^3 \to \mathbb{R}^n$, $\Gamma_{\varepsilon}(u_1, u_2, u_3) = x + \varepsilon u_1 h_1 + \varepsilon u_2 h_2 + \varepsilon u_3 h_3$, and ω is an arbitrary 2-form (of class C^1) on \mathbb{R}^n .

Answer: $(D_{h_1}\omega(\cdot,h_2,h_3))_x + (D_{h_2}\omega(\cdot,h_3,h_1))_x + (D_{h_3}\omega(\cdot,h_1,h_2))_x$.

We proceed similarly to Def. 11d2.

¹Here we rely on our geometric intuition; for a formal approach see Sect. 14c.

14a4 Definition. The *exterior derivative* of a 2-form ω of class C^1 is a 3-form $d\omega$ defined by

$$(d\omega)(\cdot, h_1, h_2, h_3) = D_{h_1}\omega(\cdot, h_2, h_3) + D_{h_2}\omega(\cdot, h_3, h_1) + D_{h_3}\omega(\cdot, h_1, h_2) + D_{h_3}\omega(\cdot, h_2, h_3) + D_{h_3}\omega(\cdot, h_3, h_3) + D_{$$

Wedge product was defined in Sect. 11e for two 1-forms. Now we extend it.

14a5 Definition. (a) Let L_1, L_2 be linear forms on \mathbb{R}^n . Their wedge product $L_1 \wedge L_2$ is an antisymmetric bilinear form $L^{(2)}$ on \mathbb{R}^n defined by

$$L^{(2)}(a,b) = L_1(a)L_2(b) - L_1(b)L_2(a)$$
 for all $a, b \in \mathbb{R}^n$.

(b) Let $L^{(1)}$ be a linear form on \mathbb{R}^n , and $L^{(2)}$ an antisymmetric bilinear form on \mathbb{R}^n . Their wedge product $L^{(1)} \wedge L^{(2)} = L^{(2)} \wedge L^{(1)}$ is an antisymmetric trilinear form $L^{(3)}$ on \mathbb{R}^n defined by

$$L^{(3)}(a,b,c) = L^{(1)}(a)L^{(2)}(b,c) + L^{(1)}(b)L^{(2)}(c,a) + L^{(1)}(c)L^{(2)}(a,b)$$

for all $a, b, c \in \mathbb{R}^n$.

(Check the antisymmetry.) This definition is suggested by determinants, as follows.

A trilinear form L on \mathbb{R}^n is generally $L(a, b, c) = \sum_{i,j,k} c_{i,j,k} a_i b_j c_k$. If L is antisymmetric then

$$L = \sum_{i < j < k} c_{i,j,k} L_{i,j,k} \quad \text{where} \quad L_{i,j,k}(a,b,c) = \begin{vmatrix} a_i & b_i & c_i \\ a_j & b_j & c_j \\ a_k & b_k & c_k \end{vmatrix}$$

(think, why). Introducing also L_i and $L_{i,j}$ by

$$L_i(a) = a_i, \quad L_{i,j}(a,b) = \begin{vmatrix} a_i & b_i \\ a_j & b_j \end{vmatrix}$$

we observe that $L_i \wedge L_j = L_{i,j}$ and $L_i \wedge L_{j,k} = L_{i,j,k}$ (think, why). Thus, $(L_i \wedge L_j) \wedge L_k = L_i \wedge (L_j \wedge L_k)$ (since $L_{k,i,j} = L_{i,j,k}$). Associativity follows by taking linear combinations:

 $(L_1 \wedge L_2) \wedge L_3 = L_1 \wedge (L_2 \wedge L_3)$ for all linear forms L_1, L_2, L_3 on \mathbb{R}^n .

Wedge product of differential forms is defined pointwise:

$$(\omega_1 \wedge \omega_2)(x) = \omega_1(x) \wedge \omega_2(x).$$

It follows that $(f\omega_1) \wedge (g\omega_2) = (fg)(\omega_1 \wedge \omega_2)$ for $f, g \in C^0(\mathbb{R}^n)$. Note that $\omega_2 \wedge \omega_1 = \pm \omega_1 \wedge \omega_2$; the sign is minus for two 1-forms, but plus for a 1-form and 2-form. By associativity, $\omega_1 \wedge \omega_2 \wedge \omega_3$ is well-defined for three 1-forms. In particular,

$$(dx_i \wedge dx_j \wedge dx_k)(x, h_1, h_2, h_3) = L_{i,j,k}(h_1, h_2, h_3)$$

is the 3×3 determinant.

A 2-form (of class C^1) is called *closed*, if its derivative is zero. The 2-form $dx_i \wedge dx_j$ is closed, since $(dx_i \wedge dx_j)(x, h, k)$ does not depend on x.

The following two exercises are similar to (11e4) and (11e5).

14a6 Exercise. Prove that

$$d(d\omega) = 0$$

for all 1-forms ω of class C^2 on \mathbb{R}^n .

Thus, all exact 2-forms of class C^1 are closed. By the way, the 2-form $dx_i \wedge dx_j$ is exact by 13b18, or just because $d(x_i dx_j) = dx_i \wedge dx_j$ by (11e6). Moreover,

(14a7) $df \wedge dg$ is exact, therefore closed, for all $f, g \in C^1(\mathbb{R}^n)$.

14a8 Exercise. Prove that

$$d(f\omega) = df \wedge \omega + f \, d\omega$$

for all $f \in C^1(\mathbb{R}^n)$ and all 2-forms ω of class C^1 on \mathbb{R}^n .

Therefore

(14a9)
$$d(f\omega) = df \wedge \omega$$
 whenever ω is closed.

In particular, $d(f \, dx_i \wedge dx_j) = df \wedge dx_i \wedge dx_j$ for all $f \in C^1(\mathbb{R}^n)$. Similarly to 11e7 we get the following definition equivalent to 14a4.

14a10 Definition. The *exterior derivative* of a 2-form ω of class C^1 is a 3-form $d\omega$ defined by

$$d\omega = \sum_{i < j} df_{i,j} \wedge dx_i \wedge dx_j \quad \text{for } \omega = \sum_{i < j} f_{i,j} \, dx_i \wedge dx_j \,.$$

We turn to change of variables, treated in Sect. 11f for 2-forms (and 1-forms, and 0-forms). Let $\varphi \in C^1(\mathbb{R}^\ell \to \mathbb{R}^n)$. Recall the pullback $\varphi^* \omega$ defined by 11f1 for all k-forms ω on \mathbb{R}^n . We generalize 11f5 and 11f6 as follows.

Analysis-III,IV

14a11 Exercise. Prove that

$$\varphi^*(\omega_1 \wedge \omega_2 \wedge \omega_3) = (\varphi^*\omega_1) \wedge (\varphi^*\omega_2) \wedge (\varphi^*\omega_3)$$

for all 1-forms $\omega_1, \omega_2, \omega_3$ on \mathbb{R}^n .¹

14a12 Lemma. For every 2-form ω of class C^1 on \mathbb{R}^n and $\varphi \in C^2(\mathbb{R}^\ell \to \mathbb{R}^n)$,

$$\varphi^*(d\omega) = d(\varphi^*\omega) \,.$$

Proof. We have $\omega = \sum_{i < j} f_{i,j} dx_i \wedge dx_j$ and $d\omega = \sum_{i < j} df_{i,j} \wedge dx_i \wedge dx_j$. It is sufficient to prove that $\varphi^*(df_{i,j} \wedge dx_i \wedge dx_j) = d(\varphi^*(f_{i,j} dx_i \wedge dx_j))$. We denote

$$g_{i,j} = \varphi^* f_{i,j}, \quad y_i = \varphi^* x_i, \quad y_j = \varphi^* x_j.$$

By 11f4, $\varphi^*(dx_i) = dy_i$, $\varphi^*(dx_j) = dy_j$ and $\varphi^*(df_{i,j}) = dg_{i,j}$. By 11f5, $\varphi^*(dx_i \land dx_j) = dy_i \land dy_j$. By 14a11, $\varphi^*(df_{i,j} \land dx_i \land dx_j) = dg_{i,j} \land dy_i \land dy_j$. On the other hand, $d(\varphi^*(f_{i,j} dx_i \land dx_j)) = d(g_{i,j} dy_i \land dy_j) = dg_{i,j} \land dy_i \land dy_j$ by (14a7), (14a9).

14a13 Theorem. (Stokes' theorem for k = 3)

Let C be a 3-chain in \mathbb{R}^n , and ω a 2-form of class C^1 on \mathbb{R}^n . Then

$$\int_C d\omega = \int_{\partial C} \omega \,.$$

Proof. It is sufficient to prove the equality $\int_{\Gamma} d\omega = \int_{\partial \Gamma} \omega$ for every singular 3-box Γ . Similarly to 11g, using (11f2) we transform the needed equality into $\int_{B} \Gamma^{*}(d\omega) = \int_{\partial B} \Gamma^{*}\omega$. Similarly to 11g we may assume that Γ is of class C^{2} . Thus, 14a12 applies, and the needed equality becomes

$$\int_B d(\Gamma^*\omega) = \int_{\partial B} \Gamma^*\omega \, .$$

Similarly to 11g it remains to prove the equality $\int_B d\omega = \int_{\partial B} \omega$ for every 2-form ω of class C^1 on the cube $B = [0,1]^3 \subset \mathbb{R}^3$; we consider only $\omega = f(u_1, u_2, u_3) du_1 \wedge du_2$, since the other two cases are similar.

We have $d\omega = df \wedge du_1 \wedge du_2 = \left(\frac{\partial f}{\partial u_1} du_1 + \frac{\partial f}{\partial u_2} du_2 + \frac{\partial f}{\partial u_3} du_3\right) \wedge du_1 \wedge du_2 = \frac{\partial f}{\partial u_3} du_1 \wedge du_2 \wedge du_3$, thus

$$\int_{B} d\omega = \int_{[0,1]^{3}} \frac{\partial f}{\partial u_{3}} du_{1} du_{2} du_{3} = \iint_{[0,1]^{2}} du_{1} du_{2} \int_{0}^{1} du_{3} \frac{\partial f}{\partial u_{3}} = \iint_{0} du_{1} du_{2} (f(u_{1}, u_{2}, 1) - f(u_{1}, u_{2}, 0)),$$

which is equal to $\int_{\partial B} \omega$ (see (14a1)).

¹Hint: similar to 11f5; use the 3×3 determinant $L_{i,j,k}$.

14a14 Corollary.

 $C_1 \sim C_2$ implies $\partial C_1 \sim \partial C_2$

for arbitrary 3-chains C_1, C_2 in \mathbb{R}^n . (Similar to 11h1.)

14a15 Exercise. ¹ Check that

$$(y\,dx + x\,dy) \wedge (x\,dx \wedge dz + y\,dy \wedge dz) = (y^2 - x^2)\,dx \wedge dy \wedge dz\,.$$

14a16 Exercise.² Check that

$$d(x\,dy \wedge dz + y\,dz \wedge dx + z\,dx \wedge dy) = 3\,dx \wedge dy \wedge dz\,.$$

14a17 Exercise. ³ Prove that

$$d(\omega_1 \wedge \omega_2) = (d\omega_1) \wedge \omega_2 - \omega_1 \wedge d\omega_2$$

for arbitrary 1-forms ω_1, ω_2 on \mathbb{R}^n .

Thus, if ω_1 and ω_2 are closed 1-forms then $\omega_1 \wedge \omega_2$ is a closed 2-form. (Compare it with 13b18.)

14a18 Exercise. ⁴ Prove a generalization of the formula for integration by parts,

$$\int_C f \, d\omega = \int_{\partial C} f \omega - \int_C df \wedge \omega$$

for arbitrary 2-form ω (of class C^1) on \mathbb{R}^n , function $f \in C^1(\mathbb{R}^n)$, and 3-chain C in \mathbb{R}^n .

14b Divergence theorem in three dimensions

A 2-form ω on \mathbb{R}^3 corresponds to a vector field H (recall Sect. 12a), namely,

$$\omega(x, h_1, h_2) = \det(H(x), h_1, h_2),$$

$$H(x) = (f_{2,3}(x), f_{3,1}(x), f_{1,2}(x))$$

for $\omega = \underbrace{f_{1,2}}_{H_3} dx_1 \wedge dx_2 + \underbrace{f_{2,3}}_{H_1} dx_2 \wedge dx_3 + \underbrace{f_{3,1}}_{H_2} dx_3 \wedge dx_1.$

 1 Sjamaar, p. 19.

 $^{^{2}}$ Shurman, p. 423.

³Shurman, Th. 9.8.2 shows that in general the sign depends on the order of ω_1 .

⁴Shurman, Ex. 9.14.3.

226

14b1 Exercise. Let a vector field E correspond to a 1-form ω_1 , and a vector field H correspond to a 2-form ω_2 . Prove that

$$\omega_1 \wedge \omega_2 = \langle E, H \rangle \, dx_1 \wedge dx_2 \wedge dx_3 \, .$$

For every singular 2-box $\Gamma: B \to \mathbb{R}^3$,

$$\int_{\Gamma} \omega = \int_{B} \det \left(H(\Gamma(u)), (D_{1}\Gamma)_{u}, (D_{2}\Gamma)_{u} \right) du = \int_{\Gamma} H$$

(recall (12a7)) is the flux of H through Γ . This relation extends by linearity to 2-chains; in particular, $\int_{\partial\Gamma} \omega = \int_{\partial\Gamma} H$ is the flux of H through the boundary of a singular 3-box Γ .

The derivative $d\omega$ (assuming that ω is of class C^1), being a 3-form on \mathbb{R}^3 , is

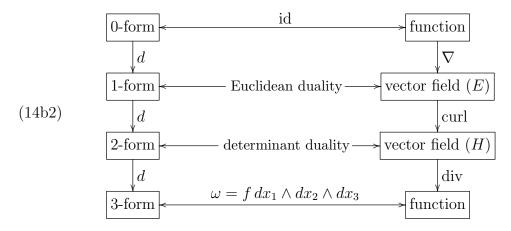
$$d\omega = f \, dx_1 \wedge dx_2 \wedge dx_3$$

for some $f \in C^0(\mathbb{R}^3)$. Taking into account that $d(H_3 dx_1 \wedge dx_2) = D_3 H_3 dx_1 \wedge dx_2 \wedge dx_3$ we get

$$d\omega = (\operatorname{div} H) \, dx_1 \wedge dx_2 \wedge dx_3 \,,$$

$$\operatorname{div} H = D_1 H_1 + D_2 H_2 + D_3 H_3 \,.$$

Now we finalize the diagram (12a3) (see also (12c9)),



14b3 Exercise. ¹ Prove that

$$\operatorname{div}(fH) = \langle \nabla f, H \rangle + f \operatorname{div} H$$

for all vector fields H (of class C^1) on \mathbb{R}^3 and all functions $f \in C^1(\mathbb{R}^3)^2$.

 $^{^{1}}$ Zorich, (14.18).

²Hint: 14a8 and 14b1.

Analysis-III,IV

14b4 Exercise. ¹ Prove that

$$\operatorname{div}(E_1 \times E_2) = \langle \operatorname{curl} E_1, E_2 \rangle - \langle E_1, \operatorname{curl} E_2 \rangle$$

for all vector fields E_1, E_2 (of class C^1) on $\mathbb{R}^{3,2}$

Theorem 14a13 gives the three-dimensional divergence theorem (recall (12c8)):

(14b5)
$$\int_{\partial \Gamma} H = \int_{\Gamma} \operatorname{div} H$$

for every vector field H (of class C^1) on \mathbb{R}^3 and every singular 3-box Γ in \mathbb{R}^3 . Here (as in 12c) by $\int_{\Gamma} f$ we mean $\int_{\Gamma} f \, dx_1 \wedge dx_2 \wedge dx_3$. If $\Gamma : B \to \mathbb{R}^3$ is such that $\Gamma|_{B^\circ}$ is a diffeomorphism between B° and an

open set $G = \Gamma(B^{\circ}) \subset \mathbb{R}^3$ then

$$\int_{\Gamma} f(x) \, dx_1 \wedge dx_2 \wedge dx_3 = \pm \int_G f$$

(a similar fact in two dimensions was noted in Sect. 12c, before (12c6)). Assuming that det $d\Gamma > 0$ we get $\int_{\Gamma} (\operatorname{div} H) dx_1 \wedge dx_2 \wedge dx_3 = \int_G \operatorname{div} H$, and so,

(14b6)
$$\int_{\partial \Gamma} H = \int_{G} \operatorname{div} H$$

similarly to (12c6), (12c8).

In particular, spherical coordinates suggest a singular 3-box Γ_R that represents a ball of radius R,

(14b7)
$$\Gamma_R : [0, R] \times [0, \pi] \times [0, 2\pi] \to \mathbb{R}^3,$$
$$\Gamma_R(r, \theta, \varphi) = (r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta)$$

14b8 Exercise. Prove that

$$\int_{\Gamma_R} f(x) \, dx_1 \wedge dx_2 \wedge dx_3 = \int_{B_R} f$$

for every $f \in C^0(B_R)$.³

 $^{^{1}}$ Zorich, (14.19).

²Hint: 14a17 and 14b1.

³Hint: the determinant is equal to $r^2 \sin \theta$.

Analysis-III,IV

Rotation invariance follows (recall 6m4):

 $\Gamma_R \sim T \circ \Gamma_R$

for every linear isometry $T: \mathbb{R}^3 \to \mathbb{R}^3$.¹ By 14a14 it follows that

(14b9)
$$\partial \Gamma_R \sim T \circ \partial \Gamma_R$$

since generally $T \circ \partial \Gamma = \partial (T \circ \Gamma)$ (think, why).

14b10 Exercise. (a) Consider a radial vector field F on \mathbb{R}^3 ,

$$F(x) = f(|x|)x, \quad f \in C^0[0,\infty)$$

(like 13c3). Check that²

$$\int_{\partial \Gamma_R} F = 4\pi R^3 f(R) = 4\pi R^2 \cdot f(R)R$$

(the area of the sphere times the length of the vector).

(b) More generally, consider F(x) = f(x)x, $f \in C^0(\mathbb{R}^3)$; check that

$$\int_{\partial \Gamma_R} F = R \int_0^{\pi} d\theta \int_0^{2\pi} d\varphi \cdot R^2 \sin \theta \cdot f(R \sin \theta \cos \varphi, R \sin \theta \sin \varphi, R \cos \theta).$$

Postponing integration on surfaces in general, for now we define the integral of a function over the sphere ∂B_R (the boundary of the ball $B_R = \{x : |x| \leq R\} \subset \mathbb{R}^3$) by (14b11)

$$\int_{\partial B_R} f = \int_0^\pi d\theta \int_0^{2\pi} d\varphi \cdot R^2 \sin\theta \cdot f(R\sin\theta\cos\varphi, R\sin\theta\sin\varphi, R\cos\theta)$$

for arbitrary continuous function f on the sphere. Note that

$$\int_{\partial B_R} 1 = 4\pi R^2; \quad \int_{\partial \Gamma_R} f(x)x = R \int_{\partial B_R} f.$$

Now we may define the *mean value* of f on the sphere as $\frac{1}{4\pi R^2} \int_{\partial B_R} f$. This could not be done via Riemann integral (proper or improper), since the sphere is a set of volume zero.

 $^{^1\}mathrm{In}$ spherical coordinates this is easy to see for rotations about the z axis, but problematic for other axes.

²Hint: only one (out of six) face of the boundary contributes; calculate the 3×3 determinant and integrate it.

14b12 Exercise. Prove that

$$\int_{B_R} f = \int_0^R \mathrm{d}r \int_{\partial B_r} f$$

for all $f \in C^0(B_R)$.¹

Therefore

$$\int_{\partial B_R} f = \frac{\mathrm{d}}{\mathrm{d}R} \int_{B_R} f;$$

rotation invariance follows:

$$\int_{\partial B_R} f = \int_{\partial B_R} T \circ f$$

for every linear isometry $T : \mathbb{R}^3 \to \mathbb{R}^{3,2}$ (Compare it with (14b9).)

Similarly to Sect. 12d (before (12d4),

$$\begin{split} \operatorname{div} \nabla f &= \Delta f \,, \\ \Delta &= D_1 D_1 + D_2 D_2 + D_3 D_3 = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \end{split}$$

is the Laplacian. Functions $f \in C^2(\mathbb{R}^3)$ such that $\Delta f = 0$ are called harmonic.

Similarly to (12d4) we'll prove the *mean value property* of a harmonic function u on \mathbb{R}^3 :

(14b13)
$$u(0) = \frac{1}{4\pi R^2} \int_{\partial B_R} u; \quad u(x) = \frac{1}{4\pi R^2} \int_{\partial B_R} u(x+\cdot).$$

To this end we need Green formulas (again).

Applying (14b5) to $H = \nabla u$ we get the first Green formula (recall (12d5))

(14b14)
$$\int_{\partial \Gamma} \nabla u = \int_{\Gamma} \Delta u \quad \text{for all } u \in C^2(\mathbb{R}^3).$$

Exercise 12d6 holds in all dimensions (with the same proof):

(a) div(fH) = f div $H + \langle \nabla f, H \rangle$ for all $f \in C^1(\mathbb{R}^3)$ and $H \in C^1(\mathbb{R}^3 \to \mathbb{R}^3)$;

(b) div
$$(f\nabla g) = f\Delta g + \langle \nabla f, \nabla g \rangle$$
 for all $f \in C^1(\mathbb{R}^3)$ and $g \in C^2(\mathbb{R}^3)$;
(c) $f\Delta g - g\Delta f = \text{div}(f\nabla g - g\nabla f)$ for all $f, g \in C^2(\mathbb{R}^3)$.

¹Hint: first, replace B_R with Γ_R .

 $^{^2\}mathrm{Again},$ in spherical coordinates this is easy to see for rotations about the z axis, but problematic for other axes.

Similarly to (12d7), (12d8) we get the second Green formula (14b15)

$$\int_{\partial \Gamma} u \nabla v = \int_{\Gamma} (u \Delta v + \langle \nabla u, \nabla v \rangle) \quad \text{for all } u \in C^1(\mathbb{R}^3) \text{ and } v \in C^2(\mathbb{R}^3),$$

and the third Green formula

(14b16)
$$\int_{\partial \Gamma} (u\nabla v - v\nabla u) = \int_{\Gamma} (u\Delta v - v\Delta u) \text{ for all } u, v \in C^2(\mathbb{R}^3).$$

14b17 Exercise. Similarly to Γ_R of (14b7) introduce a singular 3-box Γ_{R_1,R_2} that represents the spherical shell $\{x : R_1 \leq |x| \leq R_2\} \subset \mathbb{R}^3$ (given $0 < R_1 < R_1 < R_2$) $R_2 < \infty$) and check that

$$\partial \Gamma_{R_1,R_2} \sim \partial \Gamma_{R_2} - \partial \Gamma_{R_1}$$
.

Here is a three-dimensional counterpart of 12d9.

14b18 Exercise. (a) Let u and v be harmonic functions on a spherical shell $\{x \in \mathbb{R}^3 : a < |x| < b\}$; prove that $\int_{\partial \Gamma_R} (u \nabla v - v \nabla u)$ does not depend on $R \in (a, b).$

(b) In particular, taking v(z) = 1/|z|, prove that¹

$$\int_{\partial \Gamma_R} u \nabla v = -\frac{1}{R^2} \int_{\partial B_R} u;$$
$$\int_{\partial \Gamma_R} v \nabla u = \frac{1}{R} \int_{\partial \Gamma_R} \nabla u.$$

(c) Assuming in addition that u is harmonic on the ball $\{x \in \mathbb{R}^3 : |x| < b\}$ prove that $\frac{1}{R^2} \int_{\partial B_R} u$ does not depend on $R \in (0, b)$ and is equal to $4\pi u(0)$, which proves the first equality of (14b13); the second follows by shift.

14b19 Exercise. (Maximum principle for harmonic functions)

Let u be a harmonic function on a connected open set $G \subset \mathbb{R}^3$. If $\sup_{x \in G} u(x) = u(x_0)$ for some $x_0 \in G$ then u is constant. Prove it.²

The mean value may be taken on the ball rather than the sphere:

(14b20)
$$u(0) = \frac{3}{4\pi R^3} \int_{B_R} u; \quad u(x) = \frac{3}{4\pi R^3} \int_{B_R} u(x+\cdot)$$

Proof: by 14b12 and (14b13),

$$\int_{B_R} u = \int_0^R \mathrm{d}r \int_{\partial B_r} u = \int_0^R 4\pi R^2 u(0) \,\mathrm{d}r = \frac{4\pi R^3}{3} u(0) \,.$$

¹Hint: v is harmonic by 13c4.

²Hint: the set $\{x_0 : u(x_0) = \sup_{x \in G} u(x)\}$ is both open and closed in G.

14b21 Proposition. (Liouville's theorem for harmonic functions, dimension three)

Every harmonic function $\mathbb{R}^3 \to [0,\infty)$ is constant.

Proof. (Nelson's short proof)

For arbitrary $x, y \in \mathbb{R}^3$ and R > 0 we have

$$u(x) = \frac{3}{4\pi R^3} \int_{B_R} u(x+\cdot) \le \frac{3}{4\pi R^3} \int_{B_{R+|x-y|}} u(y+\cdot) = \left(\frac{R+|x-y|}{R}\right)^3 u(y) \,,$$

since the *R*-neighborhood of x is contained in the (R + |x - y|)-neighborhood of y. In the limit $R \to \infty$ we get $u(x) \le u(y)$; similarly, $u(y) \le u(x)$. \Box

14c Order four, and higher

In dimension four (and higher) we cannot rely on our geometric intuition as much as we did in (14a1); we need a formal approach to orientation.

We introduce three types of cubes:¹

- * a standard k-cube is the set $[-1,1]^k$ in \mathbb{R}^k ;
- * a singular k-cube in \mathbb{R}^n is a C^1 mapping $[-1,1]^k \to \mathbb{R}^n$;
- * a geometric k-cube in \mathbb{R}^n is a set $X \subset \mathbb{R}^n$ isometric to $[-1, 1]^k$.

The group² G_k of all isometries³ of the standard k-cube (to itself) consists of $2^k k!$ signed permutation matrices, like $\begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$. The determinant of such matrix is ± 1 .

Accordingly, for a given geometric k-cube in \mathbb{R}^n there exist $2^k k!$ isometric mappings $[-1,1]^k \to X$. If Γ_1 is such mapping then others are $\Gamma_1 \circ T$ for $T \in G_k$; that is, they are Γ_2 such that $\Gamma_1^{-1} \circ \Gamma_2 \in G_k$. All such mappings are singular k-cubes in \mathbb{R}^n , not all mutually equivalent; rather,

$$\Gamma_1 \sim \Gamma_2$$
 whenever $\det(\Gamma_1^{-1} \circ \Gamma_2) = 1$,
 $\Gamma_1 \sim -\Gamma_2$ whenever $\det(\Gamma_1^{-1} \circ \Gamma_2) = -1$.

Thus, a geometric k-cube $X \subset \mathbb{R}^n$ leads to two equivalence classes of singular k-cubes; these two equivalence classes will be called the two *orientations* of X. A k-form cannot be integrated over X unless an orientation is chosen; for the other orientation the integral is the opposite number.

¹This time, [-1, 1] is technically more convenient than [0, 1].

²The so-called hyperoctahedral group.

³Called also automorphisms or congruences.

The simplest case is, k = 1. A geometric 1-cube in \mathbb{R}^n is a straight interval $X = \{x : |A - x| + |x - B| = 2\}$ for given $A, B \in \mathbb{R}^n, |A - B| = 2$. An isometry $\gamma : [-1, 1] \to X$ defined by $\gamma(t) = \frac{1-t}{2}A + \frac{1+t}{2}B$ is a path; denote it just AB. Accordingly, BA is the other isometry $[-1, 1] \to X$, $t \mapsto \frac{1-t}{2}B + \frac{1+t}{2}A$. Note that (BA)(t) = (AB)(-t). Clearly, $BA \sim -AB$, that is, $\int_{BA} \omega = -\int_{AB} \omega$ for all 1-forms ω on \mathbb{R}^n .

The next case is, k = 2. Let $X \subset \mathbb{R}^n$ be a geometric 2-cube. An isometry $\Gamma : [-1,1]^2 \to X$ is a singular 2-cube; denote it by *ABCD* where $A = \Gamma(-1,-1), B = \Gamma(1,-1), C = \Gamma(1,1), D = \Gamma(-1,1)$; these are the vertices of X. There are 8 isometries: *ABCD*, *ADCB*, *BCDA*, *BADC*, *CDAB*, *CBAD*, *DABC*, *DCBA*; they result from *ABCD* via elements of the group G_2 . For *ABCD*, *BCDA*, *CDAB* and *DABC* the elements of the group are rotations by $0, \pi/2, \pi$ and $3\pi/2$, of Jacobian +1; for others, the elements of the group are reflections, of Jacobian -1. Thus,

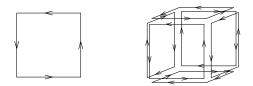
$$ABCD \sim BCDA \sim CDAB \sim DABC \quad \text{is one orientation of } X \,,$$

$$ADCB \sim BADC \sim CBAD \sim DCBA \quad \text{is the other orientation of } X \,.$$

The standard k-cube has 2k hyperfaces

 $\{(u_1, \ldots, u_k) \in [-1, 1]^k : u_i = a\}$ for $i \in \{1, \ldots, k\}$ and $a \in \{-1, 1\}$;

each hyperface is a geometric (k-1)-cube. We want to define the boundary ∂X of the standard k-cube X as the sum $\sum_Y \tilde{Y}$ of its hyperfaces Y treated as singular (k-1)-cubes \tilde{Y} ; to this end we have to choose orientations of these hyperfaces. We did it already for k = 2, 3.



In these two cases the chosen orientations are consistent in the following sense. For every hyperface Y and every $T \in G_k$ such that det T = +1 (that is, $T(\tilde{X}) = \tilde{X}$),

$$T(\tilde{Y}) = \tilde{T}(\tilde{Y}) \,.$$

This consistency is necessary for Stokes' theorem to hold, since $T(\tilde{X}) = \tilde{X}$ must imply $T(\partial \tilde{X}) = \partial \tilde{X}$ (recall 14a14).

Here is a special case of the consistency condition:

(14c1) if
$$T(X) = X$$
 and $T(Y) = Y$ then $T(Y) = Y$.

It is worth noting that such a condition fails for edges (rather than faces) of a 3-cube; here is a counterexample.

Analysis-III,IV

14c2 Example. Let $X = [-1, 1]^3$, $Y = \{-1\} \times \{-1\} \times [-1, 1]$ and $T(u_1, u_2, u_3) = (u_2, u_1, -u_3)$. Then T preserves Y and the orientation of X but does not preserve the orientation of Y.

Consider the hyperface $Y_0 = \{1\} \times [-1,1]^{k-1}$ of $[-1,1]^k$. If $T \in G_k$, $T(Y_0) = Y_0$, then

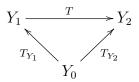
$$T = \left(\frac{1 \mid 0}{0 \mid T'}\right)$$

for some $T' \in G_{k-1}$. Thus, det $T = \det T'$, which ensures (14c1) for Y_0 .

Now we are in position to ensure the consistency condition in general. (This is somewhat similar to the proof of 13a1.) For each hyperface Y of $[-1,1]^k$ we choose $T_Y \in G_k$ such that det $T_Y = +1$ and $T_Y(Y_0) = Y$. We choose an orientation of Y_0 and define

$$\tilde{Y} = T_Y(\tilde{Y}_0)$$

for all Y. Given hyperfaces Y_1, Y_2 and $T \in G_k$ such that det T = +1 and $T(Y_1) = Y_2$, we have $(T_{Y_2}^{-1} \circ T \circ T_{Y_1})(Y_0) = Y_0$ and $\det(T_{Y_2}^{-1} \circ T \circ T_{Y_1}) = +1$.



Applying (14c1) to $T_{Y_2}^{-1} \circ T \circ T_{Y_1}$ and Y_0 we get $(T_{Y_2}^{-1} \circ T \circ T_{Y_1})(\tilde{Y}_0) = \tilde{Y}_0$; thus, $T(T_{Y_1}(\tilde{Y}_0)) = T_{Y_2}(\tilde{Y}_0)$, that is, $T(\tilde{Y}_1) = \tilde{Y}_2$. (Similarly to 13a1, the choice of T_Y does not really matter; think, why.)

Consistent orientations Y are thus constructed in principle; but we need an explicit formula.

In terms of singular (k-1)-cubes

$$\Delta_{i,a} : [-1,1]^{k-1} \to [-1,1]^k \text{ for } i \in \{1,\ldots,k\}, \ a \in \{-1,+1\}, \Delta_{i,a}(u_1,\ldots,u_{k-1}) = (u_1,\ldots,u_{i-1},a,u_i,\ldots,u_{k-1}),$$

we have $\tilde{Y}_{i,a} \sim \pm \Delta_{i,a}$ where $Y_{i,a} = \{(u_1, \ldots, u_k) \in [-1, 1]^k : u_i = a\}$ are the hyperfaces. But what are the signs?

The sign for $Y_0 = Y_{1,+}$ is rather a matter of convention; let it be +1. That is, $\tilde{Y}_0 \sim \Delta_{1,+}$.¹ The mapping $T_{i,a}$: $(u_1, \ldots, u_k) \mapsto (u_2, \ldots, u_i, au_1, u_{i+1}, \ldots, u_k)$ satisfies²

$$T_{i,a}(Y_0) = Y_{i,a}; \quad T_{i,a} \circ \Delta_{1,+} = \Delta_{i,a}; \quad \det(T_{i,a}) = (-1)^{i-1}a.$$

¹More formally, $\tilde{Y}_0 \ni \Delta_{1,+}$.

²Indeed,
$$(u_1, \ldots, u_{k-1}) \stackrel{\Delta_{1,+}}{\mapsto} (1, u_1, \ldots, u_{k-1}) \stackrel{T_{i,a}}{\mapsto} (u_1, \ldots, u_{i-1}, a, u_i, \ldots, u_{k-1}).$$

By the consistency condition, $T_{i,a}(\tilde{Y}_0) \sim \det(T_{i,a})\tilde{Y}_{i,a}$, that is, $\tilde{Y}_{i,a} \sim$ $\det(T_{i,a})T_{i,a} \circ \Delta_{1,+} \sim (-1)^{i-1}a\Delta_{i,a}.$

14c3 Definition. The boundary of a singular k-cube $\Gamma : [-1,1]^k \to \mathbb{R}^n$ is a k-chain

$$\partial \Gamma = \sum_{i=1}^{k} \sum_{a=\pm 1} (-1)^{i-1} a(\Gamma \circ \Delta_{i,a}).$$

14c4 Exercise. Check that the definitions used before for k = 1, 2, 3 conform to 14c3.

14c5 Exercise. Prove that $\partial(\partial\Gamma) = 0$ for all singular k-cubes Γ in $\mathbb{R}^{n,1}$.

14c6 Exercise. Similarly to 14a3, find

$$\lim_{\varepsilon \to 0+} \frac{1}{(2\varepsilon)^k} \int_{\partial \Gamma_{\varepsilon}} \omega$$

where $\Gamma_{\varepsilon}: [-1,1]^k \to \mathbb{R}^n$, $\Gamma_{\varepsilon}(u_1,\ldots,u_k) = x + \varepsilon u_1 h_1 + \cdots + \varepsilon u_k h_k$, and ω is an arbitrary (k-1)-form (of class C^1) on \mathbb{R}^n . Answer: $\sum_{i=1}^k (-1)^{i-1} (D_{h_i} \omega(\cdot,h_1,\ldots,h_{i-1},h_{i+1},\ldots,h_k))_x$.

14c7 Definition. The exterior derivative of a (k-1)-form ω of class C^1 is a k-form $d\omega$ defined by

$$(d\omega)(\cdot, h_1, \dots, h_k) = \sum_{i=1}^k (-1)^{i-1} D_{h_i} \omega(\cdot, h_1, \dots, h_{i-1}, h_{i+1}, \dots, h_k).$$

14c8 Theorem. (Stokes' theorem)

Let C be a k-chain in \mathbb{R}^n , and ω a (k-1)-form of class C^1 on \mathbb{R}^n . Then

$$\int_C d\omega = \int_{\partial C} \omega \,.$$

I skip the proof. The general case is somewhat more technical than the case k = 3, but no new ideas appear in the proof. The equivalent definition 14a10 of exterior derivative becomes

$$d\omega = \sum_{i_1 < \dots < i_k} df_{i_1,\dots,i_k} \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k} \quad \text{for } \omega = \sum_{i_1 < \dots < i_k} f_{i_1,\dots,i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k};$$

the form $dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ is a determinant similar to $L_{i,j,k}$ of Sect. 14a. Still,

 $d(d\omega) = 0$.

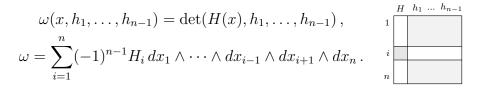
¹Hint: you may use the idea of 14c2, if you like.

Analysis-III,IV

And still,

$$\varphi^*(d\omega) = d(\varphi^*\omega) \,.$$

Similarly to Sect. 14b, an (n-1)-form ω on \mathbb{R}^n corresponds to a vector field H, namely,



For every singular (n-1)-box $\Gamma: B \to \mathbb{R}^n$,

$$\int_{\Gamma} \omega = \int_{B} \det \left(H(\Gamma(u)), (D_{1}\Gamma)_{u}, \dots, (D_{n-1}\Gamma)_{u} \right) du = \int_{\Gamma} H$$

is the flux of H through Γ ; and for an *n*-box Γ , $\int_{\partial \Gamma} \omega = \int_{\partial \Gamma} H$ is the flux of H through the boundary of Γ .

We have

$$d\omega = \sum_{i=1}^{n} (-1)^{n-1} dH_i \wedge dx_1 \wedge \dots \wedge dx_{i-1} \wedge dx_{i+1} \wedge dx_n =$$

$$= \sum_{i=1}^{n} dx_1 \wedge \dots \wedge dx_{i-1} \wedge dH_i \wedge dx_{i+1} \wedge dx_n =$$

$$= \sum_{i=1}^{n} \frac{\partial H_i}{\partial x_i} dx_1 \wedge \dots \wedge dx_n = (\operatorname{div} H) dx_1 \wedge \dots \wedge dx_n +$$

$$\operatorname{div} H = D_1 H_1 + \dots + D_n H_n.$$

Thus, Th. 14c8 gives the *n*-dimensional divergence theorem (recall (14b1)):

(14c9)
$$\int_{\partial \Gamma} H = \int_{\Gamma} \operatorname{div} H$$

for every vector field H (of class C^1) on \mathbb{R}^n and every singular n-box Γ in \mathbb{R}^n .

Index

boundary, 221, 234	Liouville's theorem, 231
closed, 223 divergence theorem, 227, 235	maximum principle, 230 mean value property, 229
exterior derivative, 222, 223, 234	orientation, 231
flux, 235	Stokes' theorem, 224, 234
Green formulas, 229	wedge product, 222
harmonic, 229 hyperface, 232	Δ , 229 $\Delta_{i,a}$, 233 dim 226, 225
integral over sphere, 228 Laplacian, 229	div, 226, 235 $d\omega$, 222, 223, 234 Γ_B , 227
± /	- v /