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14 Higher order forms; divergence theorem
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Boundary and derivative are generalized to 3-chains and 2-forms, and
higher. Stokes’ theorem and divergence theorem are generalized accordingly.

14a Forms of order three

Similarly to the boundary of a singular 2-box, defined in Sect. 11d as

Γ|AB + Γ|BC + Γ|CD + Γ|DA = Γ|AB + Γ|BC − Γ|DC − Γ|AD ,
A B

D C

we define the boundary of a singular 3-box as follows:1

(14a1)

Γ|ADCB + Γ|EFGH + Γ|ABFE+

+ Γ|DHGC + Γ|AEHD + Γ|BCGF =

=− Γ|ABCD + Γ|EFGH − Γ|AEFB+

+ Γ|DHGC − Γ|ADHE + Γ|BCGF .
A

B C

D

E

F G

H

Similarly to (11d1),

(14a2) ∂(∂Γ) = 0 for a singular 3-box Γ .

14a3 Exercise. Similarly to Sect. 11d, find

lim
ε→0+

1

ε3

∫
∂Γε

ω

where Γε : [0, 1]3 → Rn, Γε(u1, u2, u3) = x+ εu1h1 + εu2h2 + εu3h3, and ω is
an arbitrary 2-form (of class C1) on Rn.

Answer:
(
Dh1ω(·, h2, h3)

)
x +

(
Dh2ω(·, h3, h1)

)
x +

(
Dh3ω(·, h1, h2)

)
x.

We proceed similarly to Def. 11d2.

1Here we rely on our geometric intuition; for a formal approach see Sect. 14c.
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14a4 Definition. The exterior derivative of a 2-form ω of class C1 is a
3-form dω defined by

(dω)(·, h1, h2, h3) = Dh1ω(·, h2, h3) +Dh2ω(·, h3, h1) +Dh3ω(·, h1, h2) .

Wedge product was defined in Sect. 11e for two 1-forms. Now we extend
it.

14a5 Definition. (a) Let L1, L2 be linear forms on Rn. Their wedge product
L1 ∧ L2 is an antisymmetric bilinear form L(2) on Rn defined by

L(2)(a, b) = L1(a)L2(b)− L1(b)L2(a) for all a, b ∈ Rn .

(b) Let L(1) be a linear form on Rn, and L(2) an antisymmetric bilinear
form on Rn. Their wedge product L(1)∧L(2) = L(2)∧L(1) is an antisymmetric
trilinear form L(3) on Rn defined by

L(3)(a, b, c) = L(1)(a)L(2)(b, c) + L(1)(b)L(2)(c, a) + L(1)(c)L(2)(a, b)

for all a, b, c ∈ Rn.

(Check the antisymmetry.) This definition is suggested by determinants,
as follows.

A trilinear form L on Rn is generally L(a, b, c) =
∑

i,j,k ci,j,kaibjck. If L is
antisymmetric then

L =
∑
i<j<k

ci,j,kLi,j,k where Li,j,k(a, b, c) =

∣∣∣∣∣∣
ai bi ci
aj bj cj
ak bk ck

∣∣∣∣∣∣
(think, why). Introducing also Li and Li,j by

Li(a) = ai , Li,j(a, b) =

∣∣∣∣ai bi
aj bj

∣∣∣∣
we observe that Li ∧ Lj = Li,j and Li ∧ Lj,k = Li,j,k (think, why). Thus,
(Li ∧ Lj) ∧ Lk = Li ∧ (Lj ∧ Lk) (since Lk,i,j = Li,j,k). Associativity follows
by taking linear combinations:

(L1 ∧ L2) ∧ L3 = L1 ∧ (L2 ∧ L3) for all linear forms L1, L2, L3 on Rn.

Wedge product of differential forms is defined pointwise:

(ω1 ∧ ω2)(x) = ω1(x) ∧ ω2(x) .
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It follows that (fω1) ∧ (gω2) = (fg)(ω1 ∧ ω2) for f, g ∈ C0(Rn). Note that
ω2 ∧ ω1 = ±ω1 ∧ ω2; the sign is minus for two 1-forms, but plus for a 1-form
and 2-form. By associativity, ω1 ∧ ω2 ∧ ω3 is well-defined for three 1-forms.
In particular,

(dxi ∧ dxj ∧ dxk)(x, h1, h2, h3) = Li,j,k(h1, h2, h3)

is the 3× 3 determinant.
A 2-form (of class C1) is called closed, if its derivative is zero. The 2-form

dxi ∧ dxj is closed, since (dxi ∧ dxj)(x, h, k) does not depend on x.
The following two exercises are similar to (11e4) and (11e5).

14a6 Exercise. Prove that
d(dω) = 0

for all 1-forms ω of class C2 on Rn.

Thus, all exact 2-forms of class C1 are closed. By the way, the 2-form
dxi ∧ dxj is exact by 13b18, or just because d(xi dxj) = dxi ∧ dxj by (11e6).
Moreover,

(14a7) df ∧ dg is exact, therefore closed, for all f, g ∈ C1(Rn) .

14a8 Exercise. Prove that

d(fω) = df ∧ ω + f dω

for all f ∈ C1(Rn) and all 2-forms ω of class C1 on Rn.

Therefore

(14a9) d(fω) = df ∧ ω whenever ω is closed .

In particular, d(f dxi ∧ dxj) = df ∧ dxi ∧ dxj for all f ∈ C1(Rn). Similarly
to 11e7 we get the following definition equivalent to 14a4.

14a10 Definition. The exterior derivative of a 2-form ω of class C1 is a
3-form dω defined by

dω =
∑
i<j

dfi,j ∧ dxi ∧ dxj for ω =
∑
i<j

fi,j dxi ∧ dxj .

We turn to change of variables, treated in Sect. 11f for 2-forms (and
1-forms, and 0-forms). Let ϕ ∈ C1(R` → Rn). Recall the pullback ϕ∗ω
defined by 11f1 for all k-forms ω on Rn. We generalize 11f5 and 11f6 as
follows.
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14a11 Exercise. Prove that

ϕ∗(ω1 ∧ ω2 ∧ ω3) = (ϕ∗ω1) ∧ (ϕ∗ω2) ∧ (ϕ∗ω3)

for all 1-forms ω1, ω2, ω3 on Rn.1

14a12 Lemma. For every 2-form ω of class C1 on Rn and ϕ ∈ C2(R` → Rn),

ϕ∗(dω) = d(ϕ∗ω) .

Proof. We have ω =
∑

i<j fi,j dxi ∧ dxj and dω =
∑

i<j dfi,j ∧ dxi ∧ dxj. It

is sufficient to prove that ϕ∗(dfi,j ∧ dxi ∧ dxj) = d
(
ϕ∗(fi,j dxi ∧ dxj)

)
. We

denote
gi,j = ϕ∗fi,j , yi = ϕ∗xi , yj = ϕ∗xj .

By 11f4, ϕ∗(dxi) = dyi, ϕ
∗(dxj) = dyj and ϕ∗(dfi,j) = dgi,j. By 11f5, ϕ∗(dxi∧

dxj) = dyi ∧ dyj. By 14a11, ϕ∗(dfi,j ∧ dxi ∧ dxj) = dgi,j ∧ dyi ∧ dyj. On the
other hand, d

(
ϕ∗(fi,j dxi ∧ dxj)

)
= d(gi,j dyi ∧ dyj) = dgi,j ∧ dyi ∧ dyj by

(14a7), (14a9).

14a13 Theorem. (Stokes’ theorem for k = 3)
Let C be a 3-chain in Rn, and ω a 2-form of class C1 on Rn. Then∫

C

dω =

∫
∂C

ω .

Proof. It is sufficient to prove the equality
∫

Γ
dω =

∫
∂Γ
ω for every singular

3-box Γ. Similarly to 11g, using (11f2) we transform the needed equality into∫
B

Γ∗(dω) =
∫
∂B

Γ∗ω. Similarly to 11g we may assume that Γ is of class C2.
Thus, 14a12 applies, and the needed equality becomes∫

B

d(Γ∗ω) =

∫
∂B

Γ∗ω .

Similarly to 11g it remains to prove the equality
∫
B
dω =

∫
∂B
ω for every

2-form ω of class C1 on the cube B = [0, 1]3 ⊂ R3; we consider only ω =
f(u1, u2, u3) du1 ∧ du2, since the other two cases are similar.

We have dω = df ∧du1∧du2 =
(
∂f
∂u1

du1 + ∂f
∂u2

du2 + ∂f
∂u3

du3

)
∧du1∧du2 =

∂f
∂u3

du1 ∧ du2 ∧ du3, thus∫
B

dω =

∫
[0,1]3

∂f

∂u3

du1du2du3 =

∫∫
[0,1]2

du1du2

∫ 1

0

du3
∂f

∂u3

=

=

∫∫
du1du2

(
f(u1, u2, 1)− f(u1, u2, 0)

)
,

which is equal to
∫
∂B
ω (see (14a1)).

1Hint: similar to 11f5; use the 3× 3 determinant Li,j,k.
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14a14 Corollary.

C1 ∼ C2 implies ∂C1 ∼ ∂C2

for arbitrary 3-chains C1, C2 in Rn. (Similar to 11h1.)

14a15 Exercise. 1 Check that

(y dx+ x dy) ∧ (x dx ∧ dz + y dy ∧ dz) = (y2 − x2) dx ∧ dy ∧ dz .

14a16 Exercise. 2 Check that

d(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy) = 3 dx ∧ dy ∧ dz .

14a17 Exercise. 3 Prove that

d(ω1 ∧ ω2) = (dω1) ∧ ω2 − ω1 ∧ dω2

for arbitrary 1-forms ω1, ω2 on Rn.

Thus, if ω1 and ω2 are closed 1-forms then ω1 ∧ ω2 is a closed 2-form.
(Compare it with 13b18.)

14a18 Exercise. 4 Prove a generalization of the formula for integration by
parts, ∫

C

f dω =

∫
∂C

fω −
∫
C

df ∧ ω

for arbitrary 2-form ω (of class C1) on Rn, function f ∈ C1(Rn), and 3-chain
C in Rn.

14b Divergence theorem in three dimensions

A 2-form ω on R3 corresponds to a vector field H (recall Sect. 12a), namely,

ω(x, h1, h2) = det(H(x), h1, h2) ,

H(x) =
(
f2,3(x), f3,1(x), f1,2(x)

)
for ω = f1,2︸︷︷︸

H3

dx1 ∧ dx2 + f2,3︸︷︷︸
H1

dx2 ∧ dx3 + f3,1︸︷︷︸
H2

dx3 ∧ dx1 .

1Sjamaar, p. 19.
2Shurman, p. 423.
3Shurman, Th. 9.8.2 shows that in general the sign depends on the order of ω1.
4Shurman, Ex. 9.14.3.
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14b1 Exercise. Let a vector field E correspond to a 1-form ω1, and a vector
field H correspond to a 2-form ω2. Prove that

ω1 ∧ ω2 = 〈E,H〉 dx1 ∧ dx2 ∧ dx3 .

For every singular 2-box Γ : B → R3,∫
Γ

ω =

∫
B

det
(
H(Γ(u)), (D1Γ)u, (D2Γ)u

)
du =

∫
Γ

H

(recall (12a7)) is the flux ofH through Γ. This relation extends by linearity to
2-chains; in particular,

∫
∂Γ
ω =

∫
∂Γ
H is the flux of H through the boundary

of a singular 3-box Γ.
The derivative dω (assuming that ω is of class C1), being a 3-form on R3,

is
dω = f dx1 ∧ dx2 ∧ dx3

for some f ∈ C0(R3). Taking into account that d(H3 dx1∧dx2) = D3H3 dx1∧
dx2 ∧ dx3 we get

dω = (divH) dx1 ∧ dx2 ∧ dx3 ,

divH = D1H1 +D2H2 +D3H3 .

Now we finalize the diagram (12a3) (see also (12c9)),

(14b2)

0-form oo id //

d
��

function

∇
��

1-form oo Euclidean duality //

d
��

vector field (E)

curl
��

2-form oo determinant duality //

d
��

vector field (H)

div
��

3-form oo
ω = f dx1 ∧ dx2 ∧ dx3 // function

14b3 Exercise. 1 Prove that

div(fH) = 〈∇f,H〉+ f divH

for all vector fields H (of class C1) on R3 and all functions f ∈ C1(R3).2

1Zorich, (14.18).
2Hint: 14a8 and 14b1.
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14b4 Exercise. 1 Prove that

div(E1 × E2) = 〈curlE1, E2〉 − 〈E1, curlE2〉

for all vector fields E1, E2 (of class C1) on R3.2

Theorem 14a13 gives the three-dimensional divergence theorem (recall
(12c8)):

(14b5)

∫
∂Γ

H =

∫
Γ

divH

for every vector field H (of class C1) on R3 and every singular 3-box Γ in R3.
Here (as in 12c) by

∫
Γ
f we mean

∫
Γ
f dx1 ∧ dx2 ∧ dx3.

If Γ : B → R3 is such that Γ|B◦ is a diffeomorphism between B◦ and an
open set G = Γ(B◦) ⊂ R3 then∫

Γ

f(x) dx1 ∧ dx2 ∧ dx3 = ±
∫
G

f

(a similar fact in two dimensions was noted in Sect. 12c, before (12c6)).
Assuming that det dΓ > 0 we get

∫
Γ
(divH) dx1 ∧ dx2 ∧ dx3 =

∫
G

divH, and
so,

(14b6)

∫
∂Γ

H =

∫
G

divH

similarly to (12c6), (12c8).
In particular, spherical coordinates suggest a singular 3-box ΓR that rep-

resents a ball of radius R,

(14b7)
ΓR : [0, R]× [0, π]× [0, 2π]→ R3 ,

ΓR(r, θ, ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) .

14b8 Exercise. Prove that∫
ΓR

f(x) dx1 ∧ dx2 ∧ dx3 =

∫
BR

f

for every f ∈ C0(BR).3

1Zorich, (14.19).
2Hint: 14a17 and 14b1.
3Hint: the determinant is equal to r2 sin θ.
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Rotation invariance follows (recall 6m4):

ΓR ∼ T ◦ ΓR

for every linear isometry T : R3 → R3.1 By 14a14 it follows that

(14b9) ∂ΓR ∼ T ◦ ∂ΓR

since generally T ◦ ∂Γ = ∂(T ◦ Γ) (think, why).

14b10 Exercise. (a) Consider a radial vector field F on R3,

F (x) = f(|x|)x , f ∈ C0[0,∞)

(like 13c3). Check that2∫
∂ΓR

F = 4πR3f(R) = 4πR2 · f(R)R

(the area of the sphere times the length of the vector).
(b) More generally, consider F (x) = f(x)x, f ∈ C0(R3); check that∫
∂ΓR

F = R

∫ π

0

dθ

∫ 2π

0

dϕ ·R2 sin θ · f(R sin θ cosϕ,R sin θ sinϕ,R cos θ) .

Postponing integration on surfaces in general, for now we define the inte-
gral of a function over the sphere ∂BR (the boundary of the ball BR = {x :
|x| ≤ R} ⊂ R3) by
(14b11)∫

∂BR

f =

∫ π

0

dθ

∫ 2π

0

dϕ ·R2 sin θ · f(R sin θ cosϕ,R sin θ sinϕ,R cos θ)

for arbitrary continuous function f on the sphere. Note that∫
∂BR

1 = 4πR2 ;

∫
∂ΓR

f(x)x = R

∫
∂BR

f .

Now we may define the mean value of f on the sphere as 1
4πR2

∫
∂BR

f . This

could not be done via Riemann integral (proper or improper), since the sphere
is a set of volume zero.

1In spherical coordinates this is easy to see for rotations about the z axis, but prob-
lematic for other axes.

2Hint: only one (out of six) face of the boundary contributes; calculate the 3 × 3
determinant and integrate it.
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14b12 Exercise. Prove that∫
BR

f =

∫ R

0

dr

∫
∂Br

f

for all f ∈ C0(BR).1

Therefore ∫
∂BR

f =
d

dR

∫
BR

f ;

rotation invariance follows: ∫
∂BR

f =

∫
∂BR

T ◦ f

for every linear isometry T : R3 → R3.2 (Compare it with (14b9).)
Similarly to Sect. 12d (before (12d4),

div∇f = ∆f ,

∆ = D1D1 +D2D2 +D3D3 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

is the Laplacian. Functions f ∈ C2(R3) such that ∆f = 0 are called har-
monic.

Similarly to (12d4) we’ll prove the mean value property of a harmonic
function u on R3:

(14b13) u(0) =
1

4πR2

∫
∂BR

u ; u(x) =
1

4πR2

∫
∂BR

u(x+ ·) .

To this end we need Green formulas (again).
Applying (14b5) to H = ∇u we get the first Green formula (recall (12d5))

(14b14)

∫
∂Γ

∇u =

∫
Γ

∆u for all u ∈ C2(R3) .

Exercise 12d6 holds in all dimensions (with the same proof):
(a) div(fH) = f divH + 〈∇f,H〉 for all f ∈ C1(R3) and H ∈ C1(R3 →

R3);
(b) div(f∇g) = f∆g + 〈∇f,∇g〉 for all f ∈ C1(R3) and g ∈ C2(R3);
(c) f∆g − g∆f = div(f∇g − g∇f) for all f, g ∈ C2(R3).

1Hint: first, replace BR with ΓR.
2Again, in spherical coordinates this is easy to see for rotations about the z axis, but

problematic for other axes.
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Similarly to (12d7), (12d8) we get the second Green formula
(14b15)∫

∂Γ

u∇v =

∫
Γ

(u∆v + 〈∇u,∇v〉) for all u ∈ C1(R3) and v ∈ C2(R3) ,

and the third Green formula

(14b16)

∫
∂Γ

(u∇v − v∇u) =

∫
Γ

(u∆v − v∆u) for all u, v ∈ C2(R3) .

14b17 Exercise. Similarly to ΓR of (14b7) introduce a singular 3-box ΓR1,R2

that represents the spherical shell {x : R1 ≤ |x| ≤ R2} ⊂ R3 (given 0 < R1 <
R2 <∞) and check that

∂ΓR1,R2 ∼ ∂ΓR2 − ∂ΓR1 .

Here is a three-dimensional counterpart of 12d9.

14b18 Exercise. (a) Let u and v be harmonic functions on a spherical shell
{x ∈ R3 : a < |x| < b}; prove that

∫
∂ΓR

(u∇v − v∇u) does not depend on

R ∈ (a, b).
(b) In particular, taking v(z) = 1/|z|, prove that1∫

∂ΓR

u∇v = − 1

R2

∫
∂BR

u ;∫
∂ΓR

v∇u =
1

R

∫
∂ΓR

∇u .

(c) Assuming in addition that u is harmonic on the ball {x ∈ R3 : |x| < b}
prove that 1

R2

∫
∂BR

u does not depend on R ∈ (0, b) and is equal to 4πu(0),

which proves the first equality of (14b13); the second follows by shift.

14b19 Exercise. (Maximum principle for harmonic functions)
Let u be a harmonic function on a connected open set G ⊂ R3. If

supx∈G u(x) = u(x0) for some x0 ∈ G then u is constant.
Prove it.2

The mean value may be taken on the ball rather than the sphere:

(14b20) u(0) =
3

4πR3

∫
BR

u ; u(x) =
3

4πR3

∫
BR

u(x+ ·) .

Proof: by 14b12 and (14b13),∫
BR

u =

∫ R

0

dr

∫
∂Br

u =

∫ R

0

4πR2u(0) dr =
4πR3

3
u(0) .

1Hint: v is harmonic by 13c4.
2Hint: the set {x0 : u(x0) = supx∈G u(x)} is both open and closed in G.
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14b21 Proposition. (Liouville’s theorem for harmonic functions, dimen-
sion three)

Every harmonic function R3 → [0,∞) is constant.

Proof. (Nelson’s short proof)
For arbitrary x, y ∈ R3 and R > 0 we have

u(x) =
3

4πR3

∫
BR

u(x+ ·) ≤ 3

4πR3

∫
BR+|x−y|

u(y + ·) =

(
R + |x− y|

R

)3

u(y) ,

since the R-neighborhood of x is contained in the (R+ |x−y|)-neighborhood
of y. In the limit R→∞ we get u(x) ≤ u(y); similarly, u(y) ≤ u(x).

14c Order four, and higher

In dimension four (and higher) we cannot rely on our geometric intuition as
much as we did in (14a1); we need a formal approach to orientation.

We introduce three types of cubes:1

∗ a standard k-cube is the set [−1, 1]k in Rk;

∗ a singular k-cube in Rn is a C1 mapping [−1, 1]k → Rn;

∗ a geometric k-cube in Rn is a set X ⊂ Rn isometric to [−1, 1]k.

The group2 Gk of all isometries3 of the standard k-cube (to itself) consists

of 2kk! signed permutation matrices, like
( 0 −1 0 0

0 0 0 1
1 0 0 0
0 0 −1 0

)
. The determinant of

such matrix is ±1.
Accordingly, for a given geometric k-cube in Rn there exist 2kk! isometric

mappings [−1, 1]k → X. If Γ1 is such mapping then others are Γ1 ◦ T for
T ∈ Gk; that is, they are Γ2 such that Γ−1

1 ◦ Γ2 ∈ Gk. All such mappings are
singular k-cubes in Rn, not all mutually equivalent; rather,

Γ1 ∼ Γ2 whenever det(Γ−1
1 ◦ Γ2) = 1 ,

Γ1 ∼ −Γ2 whenever det(Γ−1
1 ◦ Γ2) = −1 .

Thus, a geometric k-cube X ⊂ Rn leads to two equivalence classes of singular
k-cubes; these two equivalence classes will be called the two orientations of
X. A k-form cannot be integrated over X unless an orientation is chosen;
for the other orientation the integral is the opposite number.

1This time, [−1, 1] is technically more convenient than [0, 1].
2The so-called hyperoctahedral group.
3Called also automorphisms or congruences.
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The simplest case is, k = 1. A geometric 1-cube in Rn is a straight interval
X = {x : |A−x|+|x−B| = 2} for given A,B ∈ Rn, |A−B| = 2. An isometry
γ : [−1, 1]→ X defined by γ(t) = 1−t

2
A+ 1+t

2
B is a path; denote it just AB.

Accordingly, BA is the other isometry [−1, 1]→ X, t 7→ 1−t
2
B + 1+t

2
A. Note

that (BA)(t) = (AB)(−t). Clearly, BA ∼ −AB, that is,
∫
BA

ω = −
∫
AB

ω
for all 1-forms ω on Rn.

The next case is, k = 2. Let X ⊂ Rn be a geometric 2-cube. An
isometry Γ : [−1, 1]2 → X is a singular 2-cube; denote it by ABCD where
A = Γ(−1,−1), B = Γ(1,−1), C = Γ(1, 1), D = Γ(−1, 1); these are the
vertices of X. There are 8 isometries: ABCD, ADCB, BCDA, BADC,
CDAB, CBAD, DABC, DCBA; they result from ABCD via elements of
the group G2. For ABCD,BCDA,CDAB and DABC the elements of the
group are rotations by 0, π/2, π and 3π/2, of Jacobian +1; for others, the
elements of the group are reflections, of Jacobian −1. Thus,

ABCD ∼ BCDA ∼ CDAB ∼ DABC is one orientation of X ,

ADCB ∼ BADC ∼ CBAD ∼ DCBA is the other orientation of X .

The standard k-cube has 2k hyperfaces

{(u1, . . . , uk) ∈ [−1, 1]k : ui = a} for i ∈ {1, . . . , k} and a ∈ {−1, 1} ;

each hyperface is a geometric (k− 1)-cube. We want to define the boundary
∂X of the standard k-cube X as the sum

∑
Y Ỹ of its hyperfaces Y treated

as singular (k − 1)-cubes Ỹ ; to this end we have to choose orientations of
these hyperfaces. We did it already for k = 2, 3.

In these two cases the chosen orientations are consistent in the following
sense. For every hyperface Y and every T ∈ Gk such that detT = +1 (that
is, T (X̃) = X̃),

T (Ỹ ) = T̃ (Y ) .

This consistency is necessary for Stokes’ theorem to hold, since T (X̃) = X̃
must imply T (∂X̃) = ∂X̃ (recall 14a14).

Here is a special case of the consistency condition:

(14c1) if T (X̃) = X̃ and T (Y ) = Y then T (Ỹ ) = Ỹ .

It is worth noting that such a condition fails for edges (rather than faces) of
a 3-cube; here is a counterexample.
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14c2 Example. LetX = [−1, 1]3, Y = {−1}×{−1}×[−1, 1] and T (u1, u2, u3) =
(u2, u1,−u3). Then T preserves Y and the orientation of X but does not pre-
serve the orientation of Y .

Consider the hyperface Y0 = {1} × [−1, 1]k−1 of [−1, 1]k. If T ∈ Gk,
T (Y0) = Y0, then

T =

(
1 0

0 T ′

)
for some T ′ ∈ Gk−1. Thus, detT = detT ′, which ensures (14c1) for Y0.

Now we are in position to ensure the consistency condition in general.
(This is somewhat similar to the proof of 13a1.) For each hyperface Y of
[−1, 1]k we choose TY ∈ Gk such that detTY = +1 and TY (Y0) = Y . We
choose an orientation of Y0 and define

Ỹ = TY (Ỹ0)

for all Y . Given hyperfaces Y1, Y2 and T ∈ Gk such that detT = +1 and
T (Y1) = Y2, we have (T−1

Y2
◦ T ◦ TY1)(Y0) = Y0 and det(T−1

Y2
◦ T ◦ TY1) = +1.

Y1
T // Y2

Y0

TY1

``

TY2

>>

Applying (14c1) to T−1
Y2
◦T ◦TY1 and Y0 we get (T−1

Y2
◦T ◦TY1)(Ỹ0) = Ỹ0; thus,

T
(
TY1(Ỹ0)

)
= TY2(Ỹ0), that is, T (Ỹ1) = Ỹ2. (Similarly to 13a1, the choice of

TY does not really matter; think, why.)
Consistent orientations Ỹ are thus constructed in principle; but we need

an explicit formula.
In terms of singular (k − 1)-cubes

∆i,a : [−1, 1]k−1 → [−1, 1]k for i ∈ {1, . . . , k}, a ∈ {−1,+1} ,
∆i,a(u1, . . . , uk−1) = (u1, . . . , ui−1, a, ui, . . . , uk−1) ,

we have Ỹi,a ∼ ±∆i,a where Yi,a = {(u1, . . . , uk) ∈ [−1, 1]k : ui = a} are the
hyperfaces. But what are the signs?

The sign for Y0 = Y1,+ is rather a matter of convention; let it
be +1. That is, Ỹ0 ∼ ∆1,+.1 The mapping Ti,a : (u1, . . . , uk) 7→
(u2, . . . , ui, au1, ui+1, . . . , uk) satisfies2

Ti,a(Y0) = Yi,a ; Ti,a ◦∆1,+ = ∆i,a ; det(Ti,a) = (−1)i−1a .

1More formally, Ỹ0 3 ∆1,+.

2Indeed, (u1, . . . , uk−1)
∆1,+7→ (1, u1, . . . , uk−1)

Ti,a7→ (u1, . . . , ui−1, a, ui, . . . , uk−1).
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By the consistency condition, Ti,a(Ỹ0) ∼ det(Ti,a)Ỹi,a, that is, Ỹi,a ∼
det(Ti,a)Ti,a ◦∆1,+ ∼ (−1)i−1a∆i,a.

14c3 Definition. The boundary of a singular k-cube Γ : [−1, 1]k → Rn is a
k-chain

∂Γ =
k∑
i=1

∑
a=±1

(−1)i−1a(Γ ◦∆i,a) .

14c4 Exercise. Check that the definitions used before for k = 1, 2, 3 conform
to 14c3.

14c5 Exercise. Prove that ∂(∂Γ) = 0 for all singular k-cubes Γ in Rn.1

14c6 Exercise. Similarly to 14a3, find

lim
ε→0+

1

(2ε)k

∫
∂Γε

ω

where Γε : [−1, 1]k → Rn, Γε(u1, . . . , uk) = x+ εu1h1 + · · ·+ εukhk, and ω is
an arbitrary (k − 1)-form (of class C1) on Rn.

Answer:
∑k

i=1(−1)i−1
(
Dhiω(·, h1, . . . , hi−1, hi+1, . . . , hk)

)
x.

14c7 Definition. The exterior derivative of a (k − 1)-form ω of class C1 is
a k-form dω defined by

(dω)(·, h1, . . . , hk) =
k∑
i=1

(−1)i−1Dhiω(·, h1, . . . , hi−1, hi+1, . . . , hk) .

14c8 Theorem. (Stokes’ theorem)
Let C be a k-chain in Rn, and ω a (k − 1)-form of class C1 on Rn. Then∫

C

dω =

∫
∂C

ω .

I skip the proof. The general case is somewhat more technical than the
case k = 3, but no new ideas appear in the proof. The equivalent definition
14a10 of exterior derivative becomes

dω =
∑

i1<···<ik
dfi1,...,ik∧dxi1∧· · ·∧dxik for ω =

∑
i1<···<ik

fi1,...,ikdxi1∧· · ·∧dxik ;

the form dxi1 ∧ · · · ∧ dxik is a determinant similar to Li,j,k of Sect. 14a. Still,

d(dω) = 0 .

1Hint: you may use the idea of 14c2, if you like.
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And still,
ϕ∗(dω) = d(ϕ∗ω) .

Similarly to Sect. 14b, an (n − 1)-form ω on Rn corresponds to a vector
field H, namely,

ω(x, h1, . . . , hn−1) = det(H(x), h1, . . . , hn−1) ,

ω =
n∑
i=1

(−1)n−1Hi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ dxn .

1

i

n

H h1 ··· hn−1

For every singular (n− 1)-box Γ : B → Rn,∫
Γ

ω =

∫
B

det
(
H(Γ(u)), (D1Γ)u, . . . , (Dn−1Γ)u

)
du =

∫
Γ

H

is the flux of H through Γ; and for an n-box Γ,
∫
∂Γ
ω =

∫
∂Γ
H is the flux of

H through the boundary of Γ.
We have

dω =
n∑
i=1

(−1)n−1dHi ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ dxn =

=
n∑
i=1

dx1 ∧ · · · ∧ dxi−1 ∧ dHi ∧ dxi+1 ∧ dxn =

=
n∑
i=1

∂Hi

∂xi
dx1 ∧ · · · ∧ dxn = (divH) dx1 ∧ · · · ∧ dxn ,

divH = D1H1 + · · ·+DnHn .

Thus, Th. 14c8 gives the n-dimensional divergence theorem (recall (14b1)):

(14c9)

∫
∂Γ

H =

∫
Γ

divH

for every vector field H (of class C1) on Rn and every singular n-box Γ in
Rn.



Tel Aviv University, 2013/14 Analysis-III,IV 236

Index

boundary, 221, 234

closed, 223

divergence theorem, 227, 235

exterior derivative, 222, 223, 234

flux, 235

Green formulas, 229

harmonic, 229
hyperface, 232

integral over sphere, 228

Laplacian, 229

Liouville’s theorem, 231

maximum principle, 230
mean value property, 229

orientation, 231

Stokes’ theorem, 224, 234

wedge product, 222

∆, 229
∆i,a, 233
div, 226, 235
dω, 222, 223, 234
ΓR, 227


	Higher order forms; divergence theorem
	Forms of order three
	Divergence theorem in three dimensions
	Order four, and higher

	Index

