15 Chart, orientation, volume form

15a Planar curves 237
15b Higher dimensions 239
15c Single-chart integration 243
15d Volume form 244

Length of a curve and area of a surface in \mathbb{R}^{3} are special cases of n-dimensional volume of an n-dimensional manifold in \mathbb{R}^{N}, given infinitesimally by the volume form.

> Image: (CC) Jonathan Johanson, http://cliptic.wordpress.com

15a Planar curves

Let $M \subset \mathbb{R}^{2}$ and $\left(x_{0}, y_{0}\right) \in M$.
Recall that a subset A of M is called a (relative) neighborhood of (x_{0}, y_{0}) in M, if A contains all points of M that are close enough to (x_{0}, y_{0}). Also, A is (relatively) open in M if it is a neighborhood in M of every point of A.

15a1 Exercise. Assume that G is a neighborhood of 0 in $\mathbb{R}, \psi: G \rightarrow M$, $\psi(0)=\left(x_{0}, y_{0}\right), \psi$ is a homeomorphism from G to $\psi(G)$, and $\psi(G)$ is a neighborhood of $\left(x_{0}, y_{0}\right)$ in M. Prove that $\psi\left(G_{0}\right)$ is a neighborhood of $\left(x_{0}, y_{0}\right)$ in M for every neighborhood $G_{0} \subset G$ of 0 in \mathbb{R}.

15a2 Definition. A chart (of M around $\left(x_{0}, y_{0}\right)$) is a pair (G, ψ) of an open neighborhood G of 0 in \mathbb{R} and a mapping $\psi: G \rightarrow M$ such that
(a) $\psi(0)=\left(x_{0}, y_{0}\right)$;
(b) $\psi(G)$ is an open neighborhood of $\left(x_{0}, y_{0}\right)$ in $M ;{ }^{1}$
(c) ψ is a homeomorphism from G to $\psi(G)$;
(d) $\psi \in C^{1}\left(G \rightarrow \mathbb{R}^{2}\right)$;
(e) $D \psi$ does not vanish (on G).

15a3 Definition. A co-chart ${ }^{2}$ (of M around $\left(x_{0}, y_{0}\right)$) is a pair (U, φ) of an open neighborhood U of $\left(x_{0}, y_{0}\right)$ in \mathbb{R}^{2} and a mapping $\varphi: U \rightarrow \mathbb{R}$ such that

[^0](a) $\varphi\left(x_{0}, y_{0}\right)=0 ;^{1}$
(b) $M \cap U=\{x \in U: \varphi(x)=0\}$;
(c) $\varphi \in C^{1}(U)$;
(d) $D \psi$ does not vanish (on U).

In particular, if M is the graph of a function f of class C^{1} near x_{0}, we may take $\psi(t)=\left(x_{0}+t, f\left(x_{0}+t\right)\right)$ and $\varphi(x, y)=y-f(x)$. The case $x=g(y)$ may be treated similarly. We'll see soon that the general case reduces to these two special cases (locally, but not globally).

15a4 Remark. (a) If (G, ψ) is a chart and $G_{0} \subset G$ is an open neighborhood of 0 then $\left(G_{0},\left.\psi\right|_{G_{0}}\right)$ is a chart;
(b) if (U, φ) is a co-chart and $U_{0} \subset U$ is an open neighborhood of $\left(x_{0}, y_{0}\right)$ then $\left(U_{0},\left.\varphi\right|_{U_{0}}\right)$ is a co-chart.

15a5 Lemma. Existence of a chart (of M around $\left(x_{0}, y_{0}\right)$) is equivalent to existence of a co-chart (of M around $\left(x_{0}, y_{0}\right)$).

Proof. "If": given U and φ, we assume that $\left(D_{2} \varphi\right)_{\left(x_{0}, y_{0}\right)} \neq 0$ (otherwise we swap the coordinates x, y) and apply to φ the implicit function theorem 5c1. Reducing U to some $V \times W$ we get locally a graph

$$
M \cap U=\{(x, y) \in V \times W: \varphi(x, y)=0\}=\{(x, f(x)): x \in V\}
$$

of some function $f: V \rightarrow W$ of class C^{1}. We take $G=V-x_{0}, \psi\left(x-x_{0}\right)=$ $(x, f(x))$ for $x \in G$, and check that (G, ψ) is a chart.

From a chart to a co-chart (and graph).
"Only if": given G and $\psi, \psi(t)=\left(\psi_{1}(t), \psi_{2}(t)\right)$, we assume that $\psi_{1}^{\prime}(0) \neq 0$ (otherwise we swap the coordinates x, y) and apply to ψ_{1} the inverse function theorem 4c1. Reducing G as needed we ensure that ψ_{1} is a homeomorphism from G to an open neighborhood V of x_{0}, and $\psi_{1}^{-1}: V \rightarrow G$ is of class C^{1}.

[^1]Taking into account that $\psi(G)$ is a neighborhood of $\left(x_{0}, y_{0}\right)$ in M, we reduce V and G (again) and choose a neighborhood W of y_{0} such that

$$
M \cap(V \times W)=\psi(G) \cap(V \times W)
$$

We take $U=V \times W$, define $\varphi: U \rightarrow R$ by

$$
\varphi(x, y)=y-\psi_{2}\left(\psi_{1}^{-1}(x)\right),
$$

and check that (U, φ) is a co-chart.
15a6 Definition. A nonempty set $M \subset \mathbb{R}^{2}$ is a one-dimensional manifold (or 1-manifold) if for every $\left(x_{0}, y_{0}\right) \in M$ there exists a chart of M around $\left(x_{0}, y_{0}\right)$.
"Co-chart" instead of "chart" gives an equivalent definition due to 15 a 5 .
$15 a 7$ Exercise. Which of the following subsets of \mathbb{R}^{2} are 1-manifolds? Prove your answers, both affirmative and negative.

$$
\begin{aligned}
& * M_{1}=\mathbb{R} \times\{0\} ; \\
& * M_{2}=[0,1] \times\{0\} ; \\
& * M_{3}=(0,1) \times\{0\} ; \\
& * M_{4}=\{(0,0)\} ; \\
& * M_{5}=\mathbb{R} \times\{0,1\} ; \\
& * M_{6}=\mathbb{R} \times \mathbb{Z} ; \\
& * M_{7}=\mathbb{R} \times\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\} ; \\
& * M_{8}=M_{7} \cup M_{1} ; \\
& * M_{9}=\{(r \cos \varphi, r \sin \varphi): 0<r<1, \varphi=1 / r\} ; \\
& * M_{10}=M_{9} \cup M_{4} ; \\
& * M_{11}=\{(r \cos \varphi, r \sin \varphi): 0<r<1, \varphi=1 /(1-r)\} ; \\
& * M_{12}=\left\{(x, y): x^{2}+y^{2}=1\right\} ; \\
& * M_{13}=M_{11} \cup M_{12} .
\end{aligned}
$$

15b Higher dimensions

Let $M \subset \mathbb{R}^{N}, n \in\{1, \ldots, N\}$, and $x_{0} \in M$.
15b1 Definition. A chart (n-chart of M around x_{0}) is a pair (G, ψ) of an open neighborhood G of 0 in \mathbb{R}^{n} and a mapping $\psi: G \rightarrow M$ such that
(a) $\psi(0)=x_{0}$;
(b) $\psi(G)$ is an open neighborhood of x_{0} in $M ;{ }^{1}$
(c) ψ is a homeomorphism from G to $\psi(G)$;
(d) $\psi \in C^{1}\left(G \rightarrow \mathbb{R}^{N}\right)$;
(e) for every $x \in G$ the linear operator $(D \psi)_{x}$ from \mathbb{R}^{n} to \mathbb{R}^{N} is one-toone.

15b2 Definition. A co-chart ${ }^{2}$ (n-cochart of M around x_{0}) is a pair (U, φ) of an open neighborhood U of x_{0} in \mathbb{R}^{N} and a mapping $\varphi: U \rightarrow \mathbb{R}^{N-n}$ such that
(a) $\varphi\left(x_{0}\right)=0 ;{ }^{3}$
(b) $M \cap U=\{x \in U: \varphi(x)=0\}$;
(c) $\varphi \in C^{1}\left(U \rightarrow \mathbb{R}^{N-n}\right)$;
(d) for every $x \in U$ the linear operator $(D \varphi)_{x}$ from R^{N} to \mathbb{R}^{N-n} is onto.

In particular, if M is the graph of a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N-n}$ of class C^{1} near x_{0}, that is, $M=\left\{(u, f(u)): u \in \mathbb{R}^{n}\right\}$, then we may take $\psi(t)=$ $\left(u_{0}+t, f\left(u_{0}+t\right)\right)$ and $\varphi(u, v)=v-f(u)$ for $u \in \mathbb{R}^{n}, v \in \mathbb{R}^{N-n}$; here $\left(u_{0}, v_{0}\right)=x_{0}$.

This is one out of $\binom{N}{n}$ similar cases. Recall Sect. 5 d : if a linear operator maps \mathbb{R}^{N} onto \mathbb{R}^{N-n}, it does not mean that it is $(A \mid B)$ with invertible B. Some $(N-n) \times(N-n)$ minor is not zero, but not just the rightmost minor. That is, some $N-n$ out of the N variables are functions of the other n variables; but not just the last $N-n$ variables and the first n variables.

15b3 Lemma. Existence of a chart (n-chart of M around x_{0}) is equivalent to existence of a co-chart (n-cochart of M around x_{0}).

I skip the proof; it is a straightforward generalization of 15 a 5 .
As before, the general case reduces (locally) to the $\binom{N}{n}$ special cases; some $N-n$ variables are functions of the other n variables. In terms of Sect. 5d, M has a n-chart (or n-cochart) around x_{0} if and only if M has n degrees of freedom at x_{0}.

[^2]15b4 Exercise. Let $\left(G_{1}, \psi_{1}\right),\left(G_{2}, \psi_{2}\right)$ be two n-charts of M around x_{0}. Prove existence of a mapping $\varphi: G_{1} \rightarrow G_{2}$ of class C^{1} near 0 such that $\psi_{1}(u)=\psi_{2}(\varphi(u))$ for all u near 0 , and $\operatorname{det}(D \varphi)_{0} \neq 0 .{ }^{1}$

15b5 Exercise. A relation $\operatorname{det}(D \varphi)_{0}>0$ (for $\left(G_{1}, \psi_{1}\right),\left(G_{2}, \psi_{2}\right)$ and φ as above) is an equivalence relation between n-charts of M around x_{0}. Prove it.

Clearly, there exist exactly two equivalence classes (provided that M has an n-chart around x_{0}, of course). These equivalence classes are called the two orientations of M at x_{0}.

15b6 Exercise. If M has an n-chart at x_{0} then M cannot have an m-chart at x_{0} for $m \neq n$. Prove it. ${ }^{2}$ However, M can have an m-chart for $m \neq n$ at another point; give an example.

The special status of the point 0 in \mathbb{R}^{n} is only a matter of convenience; it is easy to reformulate the theory such that $\psi^{-1}\left(x_{0}\right)$ is not necessarily 0 .

15b7 Definition. A nonempty set $M \subset \mathbb{R}^{N}$ is an n-dimensional manifold (or n-manifold) if for every $x_{0} \in M$ there exists an n-chart of M around $x_{0} .{ }^{3}$
"Co-chart" instead of "chart" gives an equivalent definition.
A relatively open nonempty subset of an n-manifold is a n-manifold.
An N-manifold in \mathbb{R}^{N} is just a nonempty open subset of \mathbb{R}^{N}.
15b8 Exercise. (a) If M is an n-manifold in \mathbb{R}^{N} and $T: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ an invertible linear operator then $T(M)$ is also an n-manifold; prove it;
(b) for a non-invertible $T, T(M)$ need not be a manifold (of any dimension); give a counterexample.

15b9 Example. ${ }^{4}$ Consider the set M of all 3×3 matrices A of the form

$$
A=\left(\begin{array}{ccc}
a^{2} & a b & a c \\
b a & b^{2} & b c \\
c a & c b & c^{2}
\end{array}\right) \quad \text { for } a, b, c \in \mathbb{R}, a^{2}+b^{2}+c^{2}=1
$$

[^3]These are orthogonal projections to one-dimensional subspaces of \mathbb{R}^{3}. We treat M as a subset of the six-dimensional space of all symmetric 3×3 matrices.

The set M is invariant under transformations $A \mapsto U A U^{-1}$ where U runs over all orthogonal matrices (linear isometries); these are linear transformations of the six-dimensional space of matrices. If A corresponds to $x=(a, b, c)$ then $U A U^{-1}$ corresponds to $U x$. For arbitrary $A, B \in M$ there exists U such that $U A U^{-1}=B$ ("transitive action").

Thus, M looks the same around all its points ("homogeneous space"). In order to prove that M is a 2 -manifold (in \mathbb{R}^{6}) it is sufficient to find a chart (or co-chart) around a single point of M, say,

$$
A_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \in M
$$

15b10 Exercise. Find a 2-chart of M around $A_{1} .{ }^{1}$
15b11 Exercise. Locally, near A_{1}, four coordinates should be smooth functions of the other two coordinates. Which two? Calculate explicitly these four functions of two variables. ${ }^{2}$

Recall the two orientations of M at x_{0} introduced after 15 b 5 .
15b12 Definition. (a) An orientation of an n-manifold $M \subset \mathbb{R}^{N}$ is a family $\left(\mathcal{O}_{x}\right)_{x \in M}$ of orientations \mathcal{O}_{x} of M at points x such that for every $x_{0} \in M$ and every $(G, \psi) \in \mathcal{O}_{x_{0}}$ the relation $(G, \psi) \in \mathcal{O}_{x}$ holds for all x near $x_{0} .{ }^{3}$
(b) M is orientable if it has (at least one) orientation.

We will see that a sphere is orientable but the Möbius strip is not, as well as M of 15 b 9 . However, a single-chart piece of a manifold is orientable.

An oriented manifold is, by definition, a pair (M, \mathcal{O}) of a manifold and its orientation. By a chart of an oriented manifold (M, \mathcal{O}) we mean a chart (G, ψ) of M such that $(G, \psi) \in \mathcal{O}_{x}$ for all $x \in \psi(G)$.

15b13 Definition. Let M be an n-manifold in \mathbb{R}^{N}.
(a) A vector $h \in \mathbb{R}^{N}$ is tangent to M at $x_{0} \in M$ if $\operatorname{dist}\left(x_{0}+\varepsilon h, M\right)=o(\varepsilon)$ (as $\varepsilon \rightarrow 0$);
(b) the tangent space $T_{x_{0}} M$ (to M at x_{0}) is the set of all tangent vectors (to M at x_{0}).

[^4]The next exercise shows (in particular) that the tangent space is indeed a vector subspace of \mathbb{R}^{N}.

15 b 14 Exercise. Let (G, ψ) be a chart around x_{0} and (U, φ) a co-chart around x_{0}. Prove that the following three conditions on a vector $h \in \mathbb{R}^{N}$ are equivalent:
(a) h is a tangent vector (at x_{0});
(b) h belongs to the image of the linear operator $(D \psi)_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$;
(c) h belongs to the kernel of the linear operator $(D \varphi)_{x_{0}}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N-n}$.

15b15 Example. Let $M \subset \mathbb{R}^{2}$ be the graph of a function $f \in C^{1}(\mathbb{R})$. Then $T_{(x, f(x))} M=\left\{\left(\lambda, \lambda f^{\prime}(x)\right): \lambda \in \mathbb{R}\right\}$.

15b16 Exercise. Generalize 15 b 15 to curves and surfaces in \mathbb{R}^{3} (that are graphs).

15b17 Definition. A differential form of order k (or k-form) on an n-manifold $M \subset \mathbb{R}^{N}$ is a continuous function ω on the set $\left\{\left(x, h_{1}, \ldots, h_{k}\right): x \in\right.$ $\left.M, h_{1}, \ldots, h_{k} \in T_{x} M\right\}$ such that for every $x \in M$ the function $\omega(x, \cdot, \ldots, \cdot)$ is an antisymmetric multililear k-form on $T_{x} M$.

Given a k-form ω on M and a chart (G, ψ) of M, we have the pullback of ω along ψ (similarly to $11 \mathrm{f1}$); this is a k-form $\psi^{*} \omega$ on G defined by

$$
\left(\psi^{*} \omega\right)\left(u, h_{1}, \ldots, h_{k}\right)=\omega\left(\psi(u),\left(D_{h_{1}} \psi\right)_{u}, \ldots,\left(D_{h_{k}} \psi\right)_{u}\right) .
$$

In particular, if $k=n$ (the dimension of M) then $\psi^{*} \omega$ is an n-form on an open set $G \subset \mathbb{R}^{n}$, therefore

$$
\psi^{*} \omega=f d u_{1} \wedge \cdots \wedge d u_{n}
$$

for some continuous function $f: G \rightarrow \mathbb{R}$. In the spirit of (11f2) we may introduce an improper integral

$$
\begin{equation*}
\int_{(G, \psi)} \omega=\int_{G} f \tag{15b18}
\end{equation*}
$$

however, it may diverge.

15c Single-chart integration

15c1 Definition. (a) A k-form ω on an n-manifold $M \subset \mathbb{R}^{N}$ is compactly supported if there exists a compact set $K \subset M$ that supports ω in the sense that $\omega\left(x, h_{1}, \ldots, h_{k}\right)=0$ for all $x \in M \backslash K$ and $h_{1}, \ldots, h_{k} \in T_{x} M$.
(b) ω is a single-chart form if there exist a compact set $K \subset M$ that supports ω and a chart (G, ψ) of M such that $K \subset \psi(G)$.

Assume that M, ω, K and (G, ψ) are as in 15 c 1 (b). Then the pullback $\psi^{*} \omega$ is supported by a compact subset of G. Therefore in the case $k=n$ the integral 15 b 18) is well-defined as a (proper) Riemann integral (of a compactly supported continuous function on \mathbb{R}^{n}).

The next lemma shows that the formula

$$
\begin{equation*}
\int_{(M, \mathcal{O})} \omega=\int_{(G, \psi)} \omega \tag{15c2}
\end{equation*}
$$

is a correct definition of the integral of a single-chart n-form over an oriented n-manifold.

15 c 3 Lemma. Let ω be a compactly supported n-form on an oriented n-manifold (M, \mathcal{O}) in \mathbb{R}^{N}, and $\left(G_{1}, \psi_{1}\right),\left(G_{2}, \psi_{2}\right)$ two charts ${ }^{1}$ of (M, \mathcal{O}) such that $K \subset \psi_{1}\left(G_{1}\right) \cap \psi_{2}\left(G_{2}\right)$ for some compact K that supports ω. Then

$$
\int_{\left(G_{1}, \psi_{1}\right)} \omega=\int_{\left(G_{2}, \psi_{2}\right)} \omega
$$

Proof. The set $\tilde{G}=\psi_{1}\left(G_{1}\right) \cap \psi_{2}\left(G_{2}\right)$ is (relatively) open in M, therefore sets $\tilde{G}_{1}=\psi_{1}^{-1}(\tilde{G}) \subset G_{1}, \tilde{G}_{2}=\psi_{2}^{-1}(\tilde{G}) \subset G_{2}$ are open (in $\left.\mathbb{R}^{n}\right)$. A mapping $\varphi: \tilde{G}_{1} \rightarrow \tilde{G}_{2}, \varphi(u)=\psi_{2}^{-1}\left(\psi_{1}(u)\right)$ is a diffeomorphism by 15 b 4 . The equality

$$
\psi_{1}=\psi_{2} \circ \varphi \quad \text { on } \tilde{G}_{1}
$$

implies

$$
\psi_{1}^{*} \omega=\varphi^{*}\left(\psi_{2}^{*} \omega\right) \quad \text { on } \tilde{G}_{1}
$$

by the chain rule. ${ }^{2}$ We have $\psi_{1}^{*} \omega=f_{1} d u_{1} \wedge \cdots \wedge d u_{n}, \psi_{2}^{*} \omega=f_{2} d u_{1} \wedge \cdots \wedge d u_{n}$ for some $f_{1} \in C\left(\tilde{G}_{1}\right), f_{2} \in C\left(\tilde{G}_{2}\right)$. Thus,

$$
f_{1} d u_{1} \wedge \cdots \wedge d u_{n}=\varphi^{*}\left(f_{2} d u_{1} \wedge \cdots \wedge d u_{n}\right)=\left(f_{2} \circ \varphi\right) d \varphi_{1} \wedge \cdots \wedge d \varphi_{n}
$$

where $\varphi_{i}=u_{i} \circ \varphi$. It follows that $f_{1}(u)=f_{2}(\varphi(u)) \operatorname{det}(D \varphi)_{u}$ for all $u \in$ \tilde{G}_{1}. Using Theorem 8a5, $\int_{G_{2}} f_{2}=\int_{\tilde{G}_{2}} f_{2}=\int_{\tilde{G}_{1}}\left(f_{2} \circ \varphi\right)|\operatorname{det} D \varphi|=\int_{\tilde{G}_{1}}\left(f_{2} \circ\right.$ $\varphi) \operatorname{det} D \varphi=\int_{\tilde{G}_{1}} f_{1}=\int_{G_{1}} f_{1}$.

15d Volume form

All antisymmetric multililear n-forms L on \mathbb{R}^{n} are the same up to a coefficient,

$$
\begin{gathered}
L=c d x_{1} \wedge \cdots \wedge d x_{n} \quad \text { for some } c \in \mathbb{R} \\
L\left(a_{1}, \ldots, a_{n}\right)=c \operatorname{det}\left(a_{1}, \ldots, a_{n}\right) \text { for all } a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}
\end{gathered}
$$

[^5]If a_{1}, \ldots, a_{n} are an orthonormal basis then $\operatorname{det}\left(a_{1}, \ldots, a_{n}\right)= \pm 1$, and therefore $\left|L\left(a_{1}, \ldots, a_{n}\right)\right|=|c|$ does not depend on the basis.

Thus, for every n-dimensional vector space V, all antisymmetric multililear n-forms on V are a one-dimensional vector space, - a line. The two rays of this line are, by definition, the two orientations of V. In other words, the two orientations of V are the two equivalence classes of nontrivial (that is, not identically zero) antisymmetric multililear n-forms on V; the equivalence relation is, $\exists c>0 L_{1}=c L_{2}$.

For an n-dimensional Euclidean space E, each orientation contains exactly one L normalized in the sense that $\left|L\left(a_{1}, \ldots, a_{n}\right)\right|=1$ for some (therefore, every) orthonormal basis a_{1}, \ldots, a_{n} of E.

If $M \subset \mathbb{R}^{N}$ is an n-manifold and $x_{0} \in M$, then the two orientations of M at x_{0} correspond to the two orientations of $T_{x_{0}} M$; namely, an n-chart (G, ψ) of M at x_{0} corresponds to an antisymmetric multililear n-form L on $T_{x_{0}} M$ if $L\left(\left(D_{1} \psi\right)_{0}, \ldots,\left(D_{n} \psi\right)_{0}\right)>0$.

15d1 Definition. An n-form μ on an oriented n-manifold (M, \mathcal{O}) in \mathbb{R}^{N} is the volume form, if for every $x \in M$ the antisymmetric multililear n-form $\mu(x, \cdot, \ldots, \cdot)$ is normalized and corresponds to the orientation \mathcal{O}_{x}.

Clearly, such μ is unique. Is it clear that μ exists? Surely, $\mu(x, \cdot, \ldots, \cdot)$ is well-defined for each x; but is it continuous in x ? We will arrive soon to a useful explicit formula for μ in terms of a chart, thus getting existence as a byproduct. For now, taking existence for granted, we use μ in the following definition.

15d2 Definition. The integral of a single-chart continuous function f : $M \rightarrow \mathbb{R}$ over an oriented manifold (M, \mathcal{O}) is

$$
\int_{(M, \mathcal{O})} f=\int_{(M, \mathcal{O})} f \mu
$$

where μ is the volume form on (M, \mathcal{O}).
15d3 Example. Let $M \subset \mathbb{R}^{2}$ be the graph of a function $f \in C^{1}(\mathbb{R})$. The whole M is covered by a chart $\mathbb{R}=G_{+} \ni x \mapsto \psi_{+}(x)=(x, f(x)) \in M$; denote by \mathcal{O}_{+}the corresponding orientation of M, and by \mathcal{O}_{-}the other orientation. The two volume forms on M are $\mu_{ \pm}\left((x, f(x)),\left(\lambda, \lambda f^{\prime}(x)\right)\right)=$ $\pm \lambda \sqrt{1+f^{\prime 2}(x)}$; thus, $\psi_{+}^{*} \mu_{+}=\sqrt{1+f^{\prime 2}} d x$. Given a compactly supported function $g \in C(M)$, we have

$$
\int_{\left(M, \mathcal{O}_{+}\right)} g=\int_{\mathbb{R}} g(x, f(x)) \sqrt{1+f^{\prime 2}(x)} \mathrm{d} x .
$$

Another chart $\mathbb{R}=G_{-} \ni x \mapsto \psi_{-}(x)=(-x, f(-x)) \in M$ corresponds to \mathcal{O}_{-}; we have $\psi_{-}^{*} \mu_{-}=\sqrt{1+f^{\prime}(-x)^{2}} d x$ (think, why not " $-\sqrt{\ldots}$ ") ; thus,

$$
\int_{\left(M, \mathcal{O}_{-}\right)} g=\int_{\mathbb{R}} g(-x, f(-x)) \sqrt{1+f^{\prime 2}(-x)} \mathrm{d} x
$$

the same result for the other orientation.
Can we generalize 15 d 3 to a surface M in \mathbb{R}^{3} (the graph of a function $\left.f \in C^{1}\left(\mathbb{R}^{2}\right)\right)$? We know the tangent space (recall 15b16) $T_{(x, y, f(x, y))} M$, it is spanned by two vectors, $\left(1,0,\left(D_{1} f\right)_{(x, y)}\right)$ and $\left(0,1,\left(D_{2} f\right)_{(x, y)}\right)$, but they are not orthogonal. We may apply the orthogonalization process, but it leads to unpleasant formulas even for $n=2$ (and the more so for higher n). Fortunately a better way exists.

For arbitrary n vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \left(\operatorname{det}\left(a_{1}, \ldots, a_{n}\right)\right)^{2}=(\operatorname{det}(A))^{2}=\operatorname{det}\left(A^{\mathrm{t}} A\right)= \\
& =\operatorname{det}\left(\left\langle a_{i}, a_{j}\right\rangle\right)_{i, j}=\left|\begin{array}{lll}
\left\langle a_{1}, a_{1}\right\rangle & \ldots & \left\langle a_{1}, a_{n}\right\rangle \\
\left\langle a_{2}, a_{1}\right\rangle & \ldots & \left\langle a_{2}, a_{n}\right\rangle \\
\ldots \ldots \ldots \ldots . . . \ldots \ldots \\
\left\langle a_{n}, a_{1}\right\rangle & \ldots & \left\langle a_{n}, a_{n}\right\rangle
\end{array}\right| ;
\end{aligned}
$$

here $A=\left(a_{1}|\ldots| a_{n}\right)$ is the matrix whose columns are the vectors a_{1}, \ldots, a_{n}; accordingly, $A^{\mathrm{t}} A$ is the matrix of scalar products (think, why), the socalled Gram matrix, and its determinant is called the Gram determinant, or Gramian of a_{1}, \ldots, a_{n}.

Let $E \subset \mathbb{R}^{N}$ be an n-dimensional subspace, e_{1}, \ldots, e_{n} its orthonormal basis, and L a normalized antisymmetric multililear n-form on E. How to calculate $\left|L\left(h_{1}, \ldots, h_{n}\right)\right|$ for arbitrary $h_{1}, \ldots, h_{n} \in E$? By the Gramian:

$$
\begin{equation*}
\left|L\left(h_{1}, \ldots, h_{n}\right)\right|=\sqrt{\operatorname{det}\left(\left\langle h_{i}, h_{j}\right\rangle\right)_{i, j}} . \tag{15d4}
\end{equation*}
$$

Here is why. Consider a linear isometry $T: \mathbb{R}^{n} \rightarrow E, T\left(u_{1}, \ldots, u_{n}\right)=$ $u_{1} e_{1}+\cdots+u_{n} e_{n}$. The antisymmetric multililear n-form $\left(a_{1}, \ldots, a_{n}\right) \mapsto$ $L\left(T a_{1}, \ldots, T a_{n}\right)$ on \mathbb{R}^{n} returns $L\left(e_{1}, \ldots, e_{n}\right)= \pm 1$ on the usual basis of \mathbb{R}^{n}; therefore

$$
L\left(T a_{1}, \ldots, T a_{n}\right)= \pm \operatorname{det}\left(a_{1}, \ldots, a_{n}\right) \quad \text { for all } a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}
$$

Taking a_{1}, \ldots, a_{n} such that $T a_{1}=h_{1}, \ldots, T a_{n}=h_{n}$ we get

$$
\left(L\left(h_{1}, \ldots, h_{n}\right)\right)^{2}=\left(\operatorname{det}\left(a_{1}, \ldots, a_{n}\right)\right)^{2}=\operatorname{det}\left(\left\langle a_{i}, a_{j}\right\rangle\right)_{i, j}=\operatorname{det}\left(\left\langle h_{i}, h_{j}\right\rangle\right)_{i, j},
$$

since T is isometric.
Thus, in order to check whether an antisymmetric multililear n-form L on an n-dimensional $E \subset \mathbb{R}^{N}$ is normalized or not, we do not need an orthonormal basis in E. It suffices to have linearly independent vectors $h_{1}, \ldots, h_{n} \in E$ and check 15d4).

If μ is a volume form on (M, \mathcal{O}) and (G, ψ) a chart of (M, \mathcal{O}) then the pullback $\psi^{*} \mu$ satisfies

$$
\left(\psi^{*} \mu\right)\left(u, e_{1}, \ldots, e_{n}\right)=\mu\left(\psi(u),\left(D_{1} \psi\right)_{u}, \ldots,\left(D_{1} \psi\right)_{u}\right)=J_{\psi}(u),
$$

where e_{1}, \ldots, e_{n} are the usual basis of \mathbb{R}^{n}, and

$$
J_{\psi}(u)=\sqrt{\operatorname{det}\left(\left\langle\left(D_{i} \psi\right)_{u},\left(D_{j} \psi\right)_{u}\right\rangle\right)_{i, j}}
$$

is the (generalized) Jacobian of ψ. We see that

$$
\begin{equation*}
\psi^{*} \mu=J_{\psi} d u_{1} \wedge \cdots \wedge d u_{n} \tag{15d5}
\end{equation*}
$$

Now, given (M, \mathcal{O}) and (G, ψ) (but not μ), we can construct a form μ on the oriented n-manifold $\psi(G) \subset M$ satisfying (15d5), namely, $\mu=$ $\left(\psi^{-1}\right)^{*}\left(J_{\psi} d u_{1} \wedge \cdots \wedge d u_{n}\right)$; existence of the volume form is thus proved (on every orientable manifold, not just single-chart). We have

$$
\begin{equation*}
\int_{(M, \mathcal{O})} f=\int_{(M, \mathcal{O})} f \mu=\int_{(G, \psi)} f \mu=\int_{G}(f \circ \psi) J_{\psi} \tag{15d6}
\end{equation*}
$$

for every continuous $f: M \rightarrow \mathbb{R}$ supported by a compact $K \subset \psi(G)$.
$15 d 7$ Exercise. Consider a Möbius strip (without the edge),

$$
\begin{gathered}
M=\{\Gamma(s, \theta): s \in(-1,1), \theta \in[0,2 \pi]\}, \\
\Gamma(s, \theta)=\left(\begin{array}{c}
\left(R+r s \cos \frac{\theta}{2}\right) \cos \theta \\
\left(R+r s \cos \frac{\theta}{2}\right) \sin \theta \\
r s \sin \frac{\theta}{2}
\end{array}\right),
\end{gathered}
$$

for given $R>r>0$ (as in Sect. 12b). Prove that it is a non-orientable 2-manifold in \mathbb{R}^{3}. ${ }^{1}$

Two facts without proofs: every 1 -manifold in \mathbb{R}^{N} is orientable; every compact 2-manifold in \mathbb{R}^{3} is orientable.

15d8 Exercise. Continuing 15 b 9 prove that the compact 2-manifold $M \subset$ \mathbb{R}^{6} is non-orientable. ${ }^{2}$

[^6]15 d 9 Exercise. Let $f \in C^{1}(\mathbb{R}), M_{a}$ be the graph of $f(\cdot)+a$ for $a \in \mathbb{R}$, and $g \in C\left(\mathbb{R}^{2}\right)$ compactly supported. Prove that
(a) $\int_{\mathbb{R}} \mathrm{d} a \int_{M_{a}} g^{2} \geq \int_{\mathbb{R}^{2}} g^{2}$;
(b) the equality holds if and only if $\forall x, y \quad f^{\prime}(x) g(x, y)=0$.

15 d 10 Exercise. Find J_{ψ} given $\psi(\theta, \varphi)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$. Compare your answer with (14b11).

15d11 Exercise. Find J_{ψ} given $\psi(x)=\left(x, \sqrt{1-|x|^{2}}\right) \in \mathbb{R}^{n+1}$ for $x \in \mathbb{R}^{n}$, $|x|<1$.

Answer: $1 / \sqrt{1-|x|^{2}}$.
15 d 12 Exercise. Consider a half-space $G=\mathbb{R}^{n-1} \times(0, \infty) \subset \mathbb{R}^{n}$, semispheres $M_{r}=\{x \in G:|x|=r\}$ for $r>0$, and a compactly supported $f \in C(G)$. Prove that
(a) $\int_{M_{r}} f=\int_{\left\{u \in \mathbb{R}^{n-1}:|u|<r\right\}} \frac{r}{\sqrt{r^{2}-|u|^{2}}} f\left(u, \sqrt{r^{2}-|u|^{2}}\right) \mathrm{d} u$;
(b) $\int_{0}^{\infty} \mathrm{d} r \int_{M_{r}} f=\int_{G} f$.

Index

chart, 237, 239
co-chart, 237, 240
compactly supported, 243
differential form (on manifold), 243
Gram determinant (Gramian), 246
graph, 240
Jacobian (generalized), 247
Möbius strip, 247
manifold, 239, 241
neighborhood (relative), 237
normalized, 245
open (relatively), 237
orientable, 242
orientation, 241, 242, 245
oriented, 242
pullback, 243
single-chart, 243
tangent space, 242
tangent vector, 242
volume form, 245
$\int_{(G, \psi)} \omega, 243$
$\int_{(M, \mathcal{O})} \omega, 244$
$\int_{(M, \mathcal{O})} f, 245$
$J_{\psi}, 247$
$\psi^{*} \omega, 243$
$T_{x} M, 242$

[^0]: ${ }^{1}$ Relative, of course.
 ${ }^{2}$ Not a standard terminology.

[^1]: ${ }^{1}$ This condition may be dropped since it follows from (b).

[^2]: ${ }^{1}$ Relative, of course.
 ${ }^{2}$ Not a standard terminology.
 ${ }^{3}$ This condition may be dropped since it follows from (b).

[^3]: ${ }^{1}$ Hint: M has n degrees of freedom at x_{0}. Values of φ outside a neighborhood of 0 are irrelevant.
 ${ }^{2}$ Hint: recall 2b13(b).
 3 "In the literature this is usually called a submanifold of Euclidean space. It is possible to define manifolds more abstractly, without reference to a surrounding vector space. However, it turns out that practically all abstract manifolds can be embedded into a vector space of sufficiently high dimension. Hence the abstract notion of a manifold is not substantially more general than the notion of a submanifold of a vector space." Sjamaar, page 69.
 ${ }^{4}$ The projective plane in disguise.

[^4]: ${ }^{1}$ Hint: $(b, c) \mapsto\left(\sqrt{1-b^{2}-c^{2}}, b, c\right)=x \mapsto A=\psi(b, c)$.
 ${ }^{2} \mathrm{Hint}$: solve a quadratic equation.
 ${ }^{3}$ Of course, $\psi^{-1}(x)$ need not be 0 ; if this is required, the argument of ψ must be shifted accordingly.

[^5]: ${ }^{1}$ Orientation must be respected.
 ${ }^{2}$ This is similar to the equality $(\varphi \circ \Gamma)^{*} \omega=\Gamma^{*}\left(\varphi^{*} \omega\right)$ in Sect. 11f.

[^6]: ${ }^{1}$ Hint: think about the function $\theta \mapsto \mu\left(\Gamma(0, \theta), D_{1} \Gamma(0, \theta), D_{2} \Gamma(0, \theta)\right)$.
 ${ }^{2}$ Hint: similar to 15 d 7 . (In fact, a part of M is diffeomorphic to the Möbius strip.)

