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15a Planar curves

Let M ⊂ R2 and (x0, y0) ∈M .
Recall that a subset A of M is called a (relative) neighborhood of (x0, y0)

in M , if A contains all points of M that are close enough to (x0, y0). Also,
A is (relatively) open in M if it is a neighborhood in M of every point of A.

15a1 Exercise. Assume that G is a neighborhood of 0 in R, ψ : G → M ,
ψ(0) = (x0, y0), ψ is a homeomorphism from G to ψ(G), and ψ(G) is a
neighborhood of (x0, y0) in M . Prove that ψ(G0) is a neighborhood of (x0, y0)
in M for every neighborhood G0 ⊂ G of 0 in R.

15a2 Definition. A chart (of M around (x0, y0)) is a pair (G,ψ) of an open
neighborhood G of 0 in R and a mapping ψ : G→M such that

(a) ψ(0) = (x0, y0);
(b) ψ(G) is an open neighborhood of (x0, y0) in M ;1

(c) ψ is a homeomorphism from G to ψ(G);
(d) ψ ∈ C1(G→ R2);
(e) Dψ does not vanish (on G).

15a3 Definition. A co-chart2 (of M around (x0, y0)) is a pair (U,ϕ) of an
open neighborhood U of (x0, y0) in R2 and a mapping ϕ : U → R such that

1Relative, of course.
2Not a standard terminology.
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(a) ϕ(x0, y0) = 0;1

(b) M ∩ U = {x ∈ U : ϕ(x) = 0};
(c) ϕ ∈ C1(U);
(d) Dψ does not vanish (on U).

In particular, if M is the graph of a function f of class C1 near x0, we may
take ψ(t) =

(
x0+t, f(x0+t)

)
and ϕ(x, y) = y−f(x). The case x = g(y) may

be treated similarly. We’ll see soon that the general case reduces to these
two special cases (locally, but not globally).

15a4 Remark. (a) If (G,ψ) is a chart and G0 ⊂ G is an open neighborhood
of 0 then (G0, ψ|G0) is a chart;

(b) if (U,ϕ) is a co-chart and U0 ⊂ U is an open neighborhood of (x0, y0)
then (U0, ϕ|U0) is a co-chart.

15a5 Lemma. Existence of a chart (of M around (x0, y0)) is equivalent to
existence of a co-chart (of M around (x0, y0)).

Proof. “If”: given U and ϕ, we assume that (D2ϕ)(x0,y0) 6= 0 (otherwise we
swap the coordinates x, y) and apply to ϕ the implicit function theorem 5c1.
Reducing U to some V ×W we get locally a graph

M ∩ U = {(x, y) ∈ V ×W : ϕ(x, y) = 0} = {(x, f(x)) : x ∈ V }

of some function f : V → W of class C1. We take G = V − x0, ψ(x− x0) =
(x, f(x)) for x ∈ G, and check that (G,ψ) is a chart.

From a chart to a co-chart (and graph).

“Only if”: givenG and ψ, ψ(t) =
(
ψ1(t), ψ2(t)

)
, we assume that ψ′1(0) 6= 0

(otherwise we swap the coordinates x, y) and apply to ψ1 the inverse function
theorem 4c1. Reducing G as needed we ensure that ψ1 is a homeomorphism
from G to an open neighborhood V of x0, and ψ−11 : V → G is of class C1.

1This condition may be dropped since it follows from (b).
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Taking into account that ψ(G) is a neighborhood of (x0, y0) in M , we reduce
V and G (again) and choose a neighborhood W of y0 such that

M ∩ (V ×W ) = ψ(G) ∩ (V ×W ) .

We take U = V ×W , define ϕ : U → R by

ϕ(x, y) = y − ψ2

(
ψ−11 (x)

)
,

and check that (U,ϕ) is a co-chart.

15a6 Definition. A nonempty set M ⊂ R2 is a one-dimensional manifold
(or 1-manifold) if for every (x0, y0) ∈ M there exists a chart of M around
(x0, y0).

“Co-chart” instead of “chart” gives an equivalent definition due to 15a5.

15a7 Exercise. Which of the following subsets of R2 are 1-manifolds? Prove
your answers, both affirmative and negative.

∗ M1 = R× {0};
∗ M2 = [0, 1]× {0};
∗ M3 = (0, 1)× {0};
∗ M4 = {(0, 0)};
∗ M5 = R× {0, 1};
∗ M6 = R× Z;

∗ M7 = R× {1, 1
2
, 1
3
, . . . };

∗ M8 = M7 ∪M1;

∗ M9 = {(r cosϕ, r sinϕ) : 0 < r < 1, ϕ = 1/r};
∗ M10 = M9 ∪M4;

∗ M11 = {(r cosϕ, r sinϕ) : 0 < r < 1, ϕ = 1/(1− r)};
∗ M12 = {(x, y) : x2 + y2 = 1};
∗ M13 = M11 ∪M12.

15b Higher dimensions

Let M ⊂ RN , n ∈ {1, . . . , N}, and x0 ∈M .

15b1 Definition. A chart (n-chart of M around x0) is a pair (G,ψ) of an
open neighborhood G of 0 in Rn and a mapping ψ : G→M such that

(a) ψ(0) = x0;
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(b) ψ(G) is an open neighborhood of x0 in M ;1

(c) ψ is a homeomorphism from G to ψ(G);
(d) ψ ∈ C1(G→ RN);
(e) for every x ∈ G the linear operator (Dψ)x from Rn to RN is one-to-

one.

15b2 Definition. A co-chart2 (n-cochart of M around x0) is a pair (U,ϕ)
of an open neighborhood U of x0 in RN and a mapping ϕ : U → RN−n such
that

(a) ϕ(x0) = 0;3

(b) M ∩ U = {x ∈ U : ϕ(x) = 0};
(c) ϕ ∈ C1(U → RN−n);
(d) for every x ∈ U the linear operator (Dϕ)x from RN to RN−n is onto.

In particular, if M is the graph of a mapping f : Rn → RN−n of class
C1 near x0, that is, M = {(u, f(u)) : u ∈ Rn}, then we may take ψ(t) =(
u0 + t, f(u0 + t)

)
and ϕ(u, v) = v − f(u) for u ∈ Rn, v ∈ RN−n; here

(u0, v0) = x0.
This is one out of

(
N
n

)
similar cases. Recall Sect. 5d: if a linear operator

maps RN onto RN−n, it does not mean that it is ( A B ) with invertible B.
Some (N −n)× (N −n) minor is not zero, but not just the rightmost minor.
That is, some N − n out of the N variables are functions of the other n
variables; but not just the last N − n variables and the first n variables.

N−n

n N−n

A B

=N−n

N−n

15b3 Lemma. Existence of a chart (n-chart of M around x0) is equivalent
to existence of a co-chart (n-cochart of M around x0).

I skip the proof; it is a straightforward generalization of 15a5.
As before, the general case reduces (locally) to the

(
N
n

)
special cases; some

N − n variables are functions of the other n variables. In terms of Sect. 5d,
M has a n-chart (or n-cochart) around x0 if and only if M has n degrees of
freedom at x0.

1Relative, of course.
2Not a standard terminology.
3This condition may be dropped since it follows from (b).



Tel Aviv University, 2013/14 Analysis-III,IV 241

15b4 Exercise. Let (G1, ψ1), (G2, ψ2) be two n-charts of M around x0.
Prove existence of a mapping ϕ : G1 → G2 of class C1 near 0 such that
ψ1(u) = ψ2(ϕ(u)) for all u near 0, and det(Dϕ)0 6= 0.1

15b5 Exercise. A relation det(Dϕ)0 > 0 (for (G1, ψ1), (G2, ψ2) and ϕ as
above) is an equivalence relation between n-charts of M around x0. Prove it.

Clearly, there exist exactly two equivalence classes (provided that M has
an n-chart around x0, of course). These equivalence classes are called the
two orientations of M at x0.

15b6 Exercise. If M has an n-chart at x0 then M cannot have an m-chart
at x0 for m 6= n. Prove it.2 However, M can have an m-chart for m 6= n at
another point; give an example.

The special status of the point 0 in Rn is only a matter of convenience;
it is easy to reformulate the theory such that ψ−1(x0) is not necessarily 0.

15b7 Definition. A nonempty set M ⊂ RN is an n-dimensional manifold
(or n-manifold) if for every x0 ∈M there exists an n-chart of M around x0.

3

“Co-chart” instead of “chart” gives an equivalent definition.
A relatively open nonempty subset of an n-manifold is a n-manifold.
An N -manifold in RN is just a nonempty open subset of RN .

15b8 Exercise. (a) If M is an n-manifold in RN and T : RN → RN an
invertible linear operator then T (M) is also an n-manifold; prove it;

(b) for a non-invertible T , T (M) need not be a manifold (of any dimen-
sion); give a counterexample.

15b9 Example. 4 Consider the set M of all 3× 3 matrices A of the form

A =

a2 ab ac
ba b2 bc
ca cb c2

 for a, b, c ∈ R , a2 + b2 + c2 = 1 .

1Hint: M has n degrees of freedom at x0. Values of ϕ outside a neighborhood of 0 are
irrelevant.

2Hint: recall 2b13(b).
3“In the literature this is usually called a submanifold of Euclidean space. It is possible

to define manifolds more abstractly, without reference to a surrounding vector space.
However, it turns out that practically all abstract manifolds can be embedded into a
vector space of sufficiently high dimension. Hence the abstract notion of a manifold is not
substantially more general than the notion of a submanifold of a vector space.” Sjamaar,
page 69.

4The projective plane in disguise.
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These are orthogonal projections to one-dimensional subspaces of R3. We
treat M as a subset of the six-dimensional space of all symmetric 3 × 3
matrices.

The set M is invariant under transformations A 7→ UAU−1 where U
runs over all orthogonal matrices (linear isometries); these are linear trans-
formations of the six-dimensional space of matrices. If A corresponds to
x = (a, b, c) then UAU−1 corresponds to Ux. For arbitrary A,B ∈ M there
exists U such that UAU−1 = B (“transitive action”).

Thus, M looks the same around all its points (“homogeneous space”). In
order to prove that M is a 2-manifold (in R6) it is sufficient to find a chart
(or co-chart) around a single point of M , say,

A1 =

1 0 0
0 0 0
0 0 0

 ∈M .

15b10 Exercise. Find a 2-chart of M around A1.
1

15b11 Exercise. Locally, near A1, four coordinates should be smooth func-
tions of the other two coordinates. Which two? Calculate explicitly these
four functions of two variables.2

Recall the two orientations of M at x0 introduced after 15b5.

15b12 Definition. (a) An orientation of an n-manifold M ⊂ RN is a family
(Ox)x∈M of orientations Ox of M at points x such that for every x0 ∈M and
every (G,ψ) ∈ Ox0 the relation (G,ψ) ∈ Ox holds for all x near x0.

3

(b) M is orientable if it has (at least one) orientation.

We will see that a sphere is orientable but the Möbius strip is not, as well
as M of 15b9. However, a single-chart piece of a manifold is orientable.

An oriented manifold is, by definition, a pair (M,O) of a manifold and
its orientation. By a chart of an oriented manifold (M,O) we mean a chart
(G,ψ) of M such that (G,ψ) ∈ Ox for all x ∈ ψ(G).

15b13 Definition. Let M be an n-manifold in RN .
(a) A vector h ∈ RN is tangent to M at x0 ∈M if dist(x0+εh,M) = o(ε)

(as ε→ 0);
(b) the tangent space Tx0M (to M at x0) is the set of all tangent vectors

(to M at x0).

1Hint: (b, c) 7→ (
√

1− b2 − c2, b, c) = x 7→ A = ψ(b, c).
2Hint: solve a quadratic equation.
3Of course, ψ−1(x) need not be 0; if this is required, the argument of ψ must be shifted

accordingly.
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The next exercise shows (in particular) that the tangent space is indeed
a vector subspace of RN .

15b14 Exercise. Let (G,ψ) be a chart around x0 and (U,ϕ) a co-chart
around x0. Prove that the following three conditions on a vector h ∈ RN are
equivalent:

(a) h is a tangent vector (at x0);
(b) h belongs to the image of the linear operator (Dψ)0 : Rn → RN ;
(c) h belongs to the kernel of the linear operator (Dϕ)x0 : RN → RN−n.

15b15 Example. Let M ⊂ R2 be the graph of a function f ∈ C1(R). Then
T(x,f(x))M = {

(
λ, λf ′(x)

)
: λ ∈ R}.

15b16 Exercise. Generalize 15b15 to curves and surfaces in R3 (that are
graphs).

15b17 Definition. A differential form of order k (or k-form) on an n-man-
ifold M ⊂ RN is a continuous function ω on the set {(x, h1, . . . , hk) : x ∈
M, h1, . . . , hk ∈ TxM} such that for every x ∈ M the function ω(x, ·, . . . , ·)
is an antisymmetric multililear k-form on TxM .

Given a k-form ω on M and a chart (G,ψ) of M , we have the pullback
of ω along ψ (similarly to 11f1); this is a k-form ψ∗ω on G defined by

(ψ∗ω)(u, h1, . . . , hk) = ω
(
ψ(u), (Dh1ψ)u, . . . , (Dhkψ)u

)
.

In particular, if k = n (the dimension of M) then ψ∗ω is an n-form on an
open set G ⊂ Rn, therefore

ψ∗ω = f du1 ∧ · · · ∧ dun

for some continuous function f : G → R. In the spirit of (11f2) we may
introduce an improper integral

(15b18)

∫
(G,ψ)

ω =

∫
G

f ;

however, it may diverge.

15c Single-chart integration

15c1 Definition. (a) A k-form ω on an n-manifold M ⊂ RN is compactly
supported if there exists a compact set K ⊂M that supports ω in the sense
that ω(x, h1, . . . , hk) = 0 for all x ∈M \K and h1, . . . , hk ∈ TxM .

(b) ω is a single-chart form if there exist a compact set K ⊂ M that
supports ω and a chart (G,ψ) of M such that K ⊂ ψ(G).
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Assume that M , ω, K and (G,ψ) are as in 15c1(b). Then the pullback
ψ∗ω is supported by a compact subset of G. Therefore in the case k = n
the integral (15b18) is well-defined as a (proper) Riemann integral (of a
compactly supported continuous function on Rn).

The next lemma shows that the formula

(15c2)

∫
(M,O)

ω =

∫
(G,ψ)

ω

is a correct definition of the integral of a single-chart n-form over an oriented
n-manifold.

15c3 Lemma. Let ω be a compactly supported n-form on an oriented
n-manifold (M,O) in RN , and (G1, ψ1), (G2, ψ2) two charts1 of (M,O) such
that K ⊂ ψ1(G1) ∩ ψ2(G2) for some compact K that supports ω. Then∫

(G1,ψ1)

ω =

∫
(G2,ψ2)

ω .

Proof. The set G̃ = ψ1(G1) ∩ ψ2(G2) is (relatively) open in M , therefore
sets G̃1 = ψ−11 (G̃) ⊂ G1, G̃2 = ψ−12 (G̃) ⊂ G2 are open (in Rn). A mapping
ϕ : G̃1 → G̃2, ϕ(u) = ψ−12 (ψ1(u)) is a diffeomorphism by 15b4. The equality

ψ1 = ψ2 ◦ ϕ on G̃1

implies
ψ∗1ω = ϕ∗(ψ∗2ω) on G̃1

by the chain rule.2 We have ψ∗1ω = f1 du1∧· · ·∧dun, ψ∗2ω = f2 du1∧· · ·∧dun
for some f1 ∈ C(G̃1), f2 ∈ C(G̃2). Thus,

f1 du1 ∧ · · · ∧ dun = ϕ∗
(
f2 du1 ∧ · · · ∧ dun

)
= (f2 ◦ ϕ) dϕ1 ∧ · · · ∧ dϕn

where ϕi = ui ◦ ϕ. It follows that f1(u) = f2(ϕ(u)) det(Dϕ)u for all u ∈
G̃1. Using Theorem 8a5,

∫
G2
f2 =

∫
G̃2
f2 =

∫
G̃1

(f2 ◦ ϕ)| detDϕ| =
∫
G̃1

(f2 ◦
ϕ) detDϕ =

∫
G̃1
f1 =

∫
G1
f1.

15d Volume form

All antisymmetric multililear n-forms L on Rn are the same up to a coeffi-
cient,

L = c dx1 ∧ · · · ∧ dxn for some c ∈ R ;

L(a1, . . . , an) = c det(a1, . . . , an) for all a1, . . . , an ∈ Rn .

1Orientation must be respected.
2This is similar to the equality (ϕ ◦ Γ)∗ω = Γ∗(ϕ∗ω) in Sect. 11f.
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If a1, . . . , an are an orthonormal basis then det(a1, . . . , an) = ±1, and there-
fore |L(a1, . . . , an)| = |c| does not depend on the basis.

Thus, for every n-dimensional vector space V , all antisymmetric mul-
tililear n-forms on V are a one-dimensional vector space, — a line. The two
rays of this line are, by definition, the two orientations of V . In other words,
the two orientations of V are the two equivalence classes of nontrivial (that is,
not identically zero) antisymmetric multililear n-forms on V ; the equivalence
relation is, ∃c > 0 L1 = cL2.

For an n-dimensional Euclidean space E, each orientation contains ex-
actly one L normalized in the sense that |L(a1, . . . , an)| = 1 for some (there-
fore, every) orthonormal basis a1, . . . , an of E.

If M ⊂ RN is an n-manifold and x0 ∈M , then the two orientations of M
at x0 correspond to the two orientations of Tx0M ; namely, an n-chart (G,ψ)
of M at x0 corresponds to an antisymmetric multililear n-form L on Tx0M
if L
(
(D1ψ)0, . . . , (Dnψ)0

)
> 0.

15d1 Definition. An n-form µ on an oriented n-manifold (M,O) in RN is
the volume form, if for every x ∈ M the antisymmetric multililear n-form
µ(x, ·, . . . , ·) is normalized and corresponds to the orientation Ox.

Clearly, such µ is unique. Is it clear that µ exists? Surely, µ(x, ·, . . . , ·)
is well-defined for each x; but is it continuous in x? We will arrive soon to a
useful explicit formula for µ in terms of a chart, thus getting existence as a
byproduct. For now, taking existence for granted, we use µ in the following
definition.

15d2 Definition. The integral of a single-chart continuous function f :
M → R over an oriented manifold (M,O) is∫

(M,O)
f =

∫
(M,O)

fµ

where µ is the volume form on (M,O).

15d3 Example. Let M ⊂ R2 be the graph of a function f ∈ C1(R). The
whole M is covered by a chart R = G+ 3 x 7→ ψ+(x) = (x, f(x)) ∈ M ;
denote by O+ the corresponding orientation of M , and by O− the other
orientation. The two volume forms on M are µ±

(
(x, f(x)), (λ, λf ′(x))

)
=

±λ
√

1 + f ′2(x); thus, ψ∗+µ+ =
√

1 + f ′2 dx. Given a compactly supported
function g ∈ C(M), we have∫

(M,O+)

g =

∫
R
g(x, f(x))

√
1 + f ′2(x) dx .
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Another chart R = G− 3 x 7→ ψ−(x) = (−x, f(−x)) ∈ M corresponds to
O−; we have ψ∗−µ− =

√
1 + f ′(−x)2 dx (think, why not “−√. . . ”); thus,∫

(M,O−)

g =

∫
R
g(−x, f(−x))

√
1 + f ′2(−x) dx ,

the same result for the other orientation.

Can we generalize 15d3 to a surface M in R3 (the graph of a function
f ∈ C1(R2))? We know the tangent space (recall 15b16) T(x,y,f(x,y))M , it
is spanned by two vectors, (1, 0, (D1f)(x,y)) and (0, 1, (D2f)(x,y)), but they
are not orthogonal. We may apply the orthogonalization process, but it
leads to unpleasant formulas even for n = 2 (and the more so for higher n).
Fortunately a better way exists.

For arbitrary n vectors a1, . . . , an ∈ Rn,(
det(a1, . . . , an)

)
2 =

(
det(A)

)
2 = det(AtA) =

= det
(
〈ai, aj〉

)
i,j =

∣∣∣∣∣∣∣∣
〈a1, a1〉 . . . 〈a1, an〉
〈a2, a1〉 . . . 〈a2, an〉
. . . . . . . . . . . . . . . . . . . . .
〈an, a1〉 . . . 〈an, an〉

∣∣∣∣∣∣∣∣ ;

here A = ( a1 . . . an ) is the matrix whose columns are the vectors a1, . . . , an;
accordingly, AtA is the matrix of scalar products (think, why), the so-
called Gram matrix, and its determinant is called the Gram determinant,
or Gramian of a1, . . . , an.

Let E ⊂ RN be an n-dimensional subspace, e1, . . . , en its orthonormal
basis, and L a normalized antisymmetric multililear n-form on E. How to
calculate |L(h1, . . . , hn)| for arbitrary h1, . . . , hn ∈ E? By the Gramian:

(15d4) |L(h1, . . . , hn)| =
√

det
(
〈hi, hj〉

)
i,j .

Here is why. Consider a linear isometry T : Rn → E, T (u1, . . . , un) =
u1e1 + · · · + unen. The antisymmetric multililear n-form (a1, . . . , an) 7→
L(Ta1, . . . , Tan) on Rn returns L(e1, . . . , en) = ±1 on the usual basis of
Rn; therefore

L(Ta1, . . . , Tan) = ± det(a1, . . . , an) for all a1, . . . , an ∈ Rn .

Taking a1, . . . , an such that Ta1 = h1, . . . , Tan = hn we get(
L(h1, . . . , hn)

)
2 =

(
det(a1, . . . , an)

)
2 = det

(
〈ai, aj〉

)
i,j = det

(
〈hi, hj〉

)
i,j ,
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since T is isometric.
Thus, in order to check whether an antisymmetric multililear n-form L on

an n-dimensional E ⊂ RN is normalized or not, we do not need an orthonor-
mal basis in E. It suffices to have linearly independent vectors h1, . . . , hn ∈ E
and check (15d4).

If µ is a volume form on (M,O) and (G,ψ) a chart of (M,O) then the
pullback ψ∗µ satisfies

(ψ∗µ)(u, e1, . . . , en) = µ
(
ψ(u), (D1ψ)u, . . . , (D1ψ)u

)
= Jψ(u) ,

where e1, . . . , en are the usual basis of Rn, and

Jψ(u) =
√

det
(
〈(Diψ)u, (Djψ)u〉

)
i,j

is the (generalized) Jacobian of ψ. We see that

(15d5) ψ∗µ = Jψ du1 ∧ · · · ∧ dun .

Now, given (M,O) and (G,ψ) (but not µ), we can construct a form
µ on the oriented n-manifold ψ(G) ⊂ M satisfying (15d5), namely, µ =
(ψ−1)∗(Jψ du1 ∧ · · · ∧ dun); existence of the volume form is thus proved (on
every orientable manifold, not just single-chart). We have

(15d6)

∫
(M,O)

f =

∫
(M,O)

fµ =

∫
(G,ψ)

fµ =

∫
G

(f ◦ ψ)Jψ

for every continuous f : M → R supported by a compact K ⊂ ψ(G).

15d7 Exercise. Consider a Möbius strip (without the edge),

M = {Γ(s, θ) : s ∈ (−1, 1), θ ∈ [0, 2π]} ,

Γ(s, θ) =

( (R+rs cos θ
2
) cos θ

(R+rs cos θ
2
) sin θ

rs sin θ
2

)
,

for given R > r > 0 (as in Sect. 12b). Prove that it is a non-orientable
2-manifold in R3.1

Two facts without proofs: every 1-manifold in RN is orientable; every
compact 2-manifold in R3 is orientable.

15d8 Exercise. Continuing 15b9 prove that the compact 2-manifold M ⊂
R6 is non-orientable.2

1Hint: think about the function θ 7→ µ
(
Γ(0, θ), D1Γ(0, θ), D2Γ(0, θ)

)
.

2Hint: similar to 15d7. (In fact, a part of M is diffeomorphic to the Möbius strip.)
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15d9 Exercise. Let f ∈ C1(R), Ma be the graph of f(·) + a for a ∈ R, and
g ∈ C(R2) compactly supported. Prove that

(a)
∫
R da

∫
Ma
g2 ≥

∫
R2 g

2;
(b) the equality holds if and only if ∀x, y f ′(x)g(x, y) = 0.

15d10 Exercise. Find Jψ given ψ(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ). Com-
pare your answer with (14b11).

15d11 Exercise. Find Jψ given ψ(x) =
(
x,
√

1− |x|2
)
∈ Rn+1 for x ∈ Rn,

|x| < 1.
Answer: 1/

√
1− |x|2.

15d12 Exercise. Consider a half-space G = Rn−1 × (0,∞) ⊂ Rn, semi-
spheres Mr = {x ∈ G : |x| = r} for r > 0, and a compactly supported
f ∈ C(G). Prove that

(a)

∫
Mr

f =

∫
{u∈Rn−1:|u|<r}

r√
r2 − |u|2

f
(
u,
√
r2 − |u|2

)
du;

(b)

∫ ∞
0

dr

∫
Mr

f =

∫
G

f .
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