15 Chart, orientation, volume form

15a	Planar curves	237
15b	Higher dimensions	239
15c	Single-chart integration	243
15d	Volume form	244

Length of a curve and area of a surface in \mathbb{R}^3 are special cases of n-dimensional volume of an n-dimensional manifold in \mathbb{R}^N , given infinitesimally by the volume form.

Image: (CC) Jonathan Johanson, http://cliptic.wordpress.com

15a Planar curves

Let $M \subset \mathbb{R}^2$ and $(x_0, y_0) \in M$.

Recall that a subset A of M is called a (relative) neighborhood of (x_0, y_0) in M, if A contains all points of M that are close enough to (x_0, y_0) . Also, A is (relatively) open in M if it is a neighborhood in M of every point of A.

15a1 Exercise. Assume that G is a neighborhood of 0 in \mathbb{R} , $\psi : G \to M$, $\psi(0) = (x_0, y_0)$, ψ is a homeomorphism from G to $\psi(G)$, and $\psi(G)$ is a neighborhood of (x_0, y_0) in M. Prove that $\psi(G_0)$ is a neighborhood of (x_0, y_0) in M for every neighborhood $G_0 \subset G$ of 0 in \mathbb{R} .

15a2 Definition. A chart (of M around (x_0, y_0)) is a pair (G, ψ) of an open neighborhood G of 0 in \mathbb{R} and a mapping $\psi : G \to M$ such that

- (a) $\psi(0) = (x_0, y_0);$
- (b) $\psi(G)$ is an open neighborhood of (x_0, y_0) in M;¹
- (c) ψ is a homeomorphism from G to $\psi(G)$;
- (d) $\psi \in C^1(G \to \mathbb{R}^2);$
- (e) $D\psi$ does not vanish (on G).

15a3 Definition. A co-chart² (of M around (x_0, y_0)) is a pair (U, φ) of an open neighborhood U of (x_0, y_0) in \mathbb{R}^2 and a mapping $\varphi : U \to \mathbb{R}$ such that

¹Relative, of course.

²Not a standard terminology.

(a) $\varphi(x_0, y_0) = 0;$ (b) $M \cap U = \{x \in U : \varphi(x) = 0\};$ (c) $\varphi \in C^1(U);$ (d) $D\psi$ does not vanish (on U).

In particular, if M is the graph of a function f of class C^1 near x_0 , we may take $\psi(t) = (x_0+t, f(x_0+t))$ and $\varphi(x, y) = y - f(x)$. The case x = g(y) may be treated similarly. We'll see soon that the general case reduces to these two special cases (locally, but not globally).

15a4 Remark. (a) If (G, ψ) is a chart and $G_0 \subset G$ is an open neighborhood of 0 then $(G_0, \psi|_{G_0})$ is a chart;

(b) if (U, φ) is a co-chart and $U_0 \subset U$ is an open neighborhood of (x_0, y_0) then $(U_0, \varphi|_{U_0})$ is a co-chart.

15a5 Lemma. Existence of a chart (of M around (x_0, y_0)) is equivalent to existence of a co-chart (of M around (x_0, y_0)).

Proof. "If": given U and φ , we assume that $(D_2\varphi)_{(x_0,y_0)} \neq 0$ (otherwise we swap the coordinates x, y) and apply to φ the implicit function theorem 5c1. Reducing U to some $V \times W$ we get locally a graph

$$M \cap U = \{(x, y) \in V \times W : \varphi(x, y) = 0\} = \{(x, f(x)) : x \in V\}$$

of some function $f: V \to W$ of class C^1 . We take $G = V - x_0$, $\psi(x - x_0) = (x, f(x))$ for $x \in G$, and check that (G, ψ) is a chart.

From a chart to a co-chart (and graph).

"Only if": given G and ψ , $\psi(t) = (\psi_1(t), \psi_2(t))$, we assume that $\psi'_1(0) \neq 0$ (otherwise we swap the coordinates x, y) and apply to ψ_1 the inverse function theorem 4c1. Reducing G as needed we ensure that ψ_1 is a homeomorphism from G to an open neighborhood V of x_0 , and $\psi_1^{-1}: V \to G$ is of class C^1 .

¹This condition may be dropped since it follows from (b).

C) is a poighborhood of (x_1, y_2) in M we redu

Taking into account that $\psi(G)$ is a neighborhood of (x_0, y_0) in M, we reduce V and G (again) and choose a neighborhood W of y_0 such that

$$M \cap (V \times W) = \psi(G) \cap (V \times W).$$

We take $U = V \times W$, define $\varphi : U \to R$ by

$$\varphi(x,y) = y - \psi_2(\psi_1^{-1}(x)),$$

and check that (U, φ) is a co-chart.

15a6 Definition. A nonempty set $M \subset \mathbb{R}^2$ is a one-dimensional *manifold* (or 1-manifold) if for every $(x_0, y_0) \in M$ there exists a chart of M around (x_0, y_0) .

"Co-chart" instead of "chart" gives an equivalent definition due to 15a5.

15a7 Exercise. Which of the following subsets of \mathbb{R}^2 are 1-manifolds? Prove your answers, both affirmative and negative.

$$M_{1} = \mathbb{R} \times \{0\};$$

$$M_{2} = [0,1] \times \{0\};$$

$$M_{3} = (0,1) \times \{0\};$$

$$M_{4} = \{(0,0)\};$$

$$M_{5} = \mathbb{R} \times \{0,1\};$$

$$M_{6} = \mathbb{R} \times \mathbb{Z};$$

$$M_{7} = \mathbb{R} \times \{1, \frac{1}{2}, \frac{1}{3}, \dots\};$$

$$M_{8} = M_{7} \cup M_{1};$$

$$M_{9} = \{(r \cos \varphi, r \sin \varphi) : 0 < r < 1, \varphi = 1/r\};$$

$$M_{10} = M_{9} \cup M_{4};$$

$$M_{11} = \{(r \cos \varphi, r \sin \varphi) : 0 < r < 1, \varphi = 1/(1-r)\};$$

$$M_{12} = \{(x, y) : x^{2} + y^{2} = 1\};$$

$$M_{13} = M_{11} \cup M_{12}.$$

15b Higher dimensions

Let $M \subset \mathbb{R}^N$, $n \in \{1, \ldots, N\}$, and $x_0 \in M$.

15b1 Definition. A chart (*n*-chart of M around x_0) is a pair (G, ψ) of an open neighborhood G of 0 in \mathbb{R}^n and a mapping $\psi : G \to M$ such that

```
(a) \psi(0) = x_0;
```

Analysis-III,IV

- (b) $\psi(G)$ is an open neighborhood of x_0 in M;¹
- (c) ψ is a homeomorphism from G to $\psi(G)$;
- (d) $\psi \in C^1(G \to \mathbb{R}^N);$

(e) for every $x \in G$ the linear operator $(D\psi)_x$ from \mathbb{R}^n to \mathbb{R}^N is one-toone.

15b2 Definition. A co-chart² (n-cochart of M around x_0) is a pair (U, φ) of an open neighborhood U of x_0 in \mathbb{R}^N and a mapping $\varphi : U \to \mathbb{R}^{N-n}$ such that

(a)
$$\varphi(x_0) = 0;^3$$

(b) $M \cap U = \{x \in U : \varphi(x) = 0\};$
(c) $\varphi \in C^1(U \to \mathbb{R}^{N-n});$
(d) for every $x \in U$ the linear operator $(D\varphi)_x$ from \mathbb{R}^N to \mathbb{R}^{N-n} is onto

In particular, if M is the graph of a mapping $f : \mathbb{R}^n \to \mathbb{R}^{N-n}$ of class C^1 near x_0 , that is, $M = \{(u, f(u)) : u \in \mathbb{R}^n\}$, then we may take $\psi(t) = (u_0 + t, f(u_0 + t))$ and $\varphi(u, v) = v - f(u)$ for $u \in \mathbb{R}^n, v \in \mathbb{R}^{N-n}$; here $(u_0, v_0) = x_0$.

This is one out of $\binom{N}{n}$ similar cases. Recall Sect. 5d: if a linear operator maps \mathbb{R}^N onto \mathbb{R}^{N-n} , it does not mean that it is $(A \mid B)$ with invertible B. Some $(N-n) \times (N-n)$ minor is not zero, but not just the rightmost minor. That is, some N - n out of the N variables are functions of the other nvariables; but not just the last N - n variables and the first n variables.

15b3 Lemma. Existence of a chart (*n*-chart of M around x_0) is equivalent to existence of a co-chart (*n*-cochart of M around x_0).

I skip the proof; it is a straightforward generalization of 15a5.

As before, the general case reduces (locally) to the $\binom{N}{n}$ special cases; some N - n variables are functions of the other n variables. In terms of Sect. 5d, M has a n-chart (or n-cochart) around x_0 if and only if M has n degrees of freedom at x_0 .

¹Relative, of course.

²Not a standard terminology.

³This condition may be dropped since it follows from (b).

15b4 Exercise. Let (G_1, ψ_1) , (G_2, ψ_2) be two *n*-charts of M around x_0 . Prove existence of a mapping $\varphi : G_1 \to G_2$ of class C^1 near 0 such that $\psi_1(u) = \psi_2(\varphi(u))$ for all u near 0, and $\det(D\varphi)_0 \neq 0$.¹

15b5 Exercise. A relation $\det(D\varphi)_0 > 0$ (for (G_1, ψ_1) , (G_2, ψ_2) and φ as above) is an equivalence relation between *n*-charts of *M* around x_0 . Prove it.

Clearly, there exist exactly two equivalence classes (provided that M has an *n*-chart around x_0 , of course). These equivalence classes are called the two *orientations* of M at x_0 .

15b6 Exercise. If M has an n-chart at x_0 then M cannot have an m-chart at x_0 for $m \neq n$. Prove it.² However, M can have an m-chart for $m \neq n$ at another point; give an example.

The special status of the point 0 in \mathbb{R}^n is only a matter of convenience; it is easy to reformulate the theory such that $\psi^{-1}(x_0)$ is not necessarily 0.

15b7 Definition. A nonempty set $M \subset \mathbb{R}^N$ is an *n*-dimensional manifold (or *n*-manifold) if for every $x_0 \in M$ there exists an *n*-chart of M around x_0 .³

"Co-chart" instead of "chart" gives an equivalent definition.

A relatively open nonempty subset of an *n*-manifold is a *n*-manifold. An *N*-manifold in \mathbb{R}^N is just a nonempty open subset of \mathbb{R}^N .

15b8 Exercise. (a) If M is an *n*-manifold in \mathbb{R}^N and $T : \mathbb{R}^N \to \mathbb{R}^N$ an invertible linear operator then T(M) is also an *n*-manifold; prove it;

(b) for a non-invertible T, T(M) need not be a manifold (of any dimension); give a counterexample.

15b9 Example. ⁴ Consider the set M of all 3×3 matrices A of the form

$$A = \begin{pmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{pmatrix} \quad \text{for } a, b, c \in \mathbb{R}, \ a^2 + b^2 + c^2 = 1.$$

¹Hint: M has n degrees of freedom at x_0 . Values of φ outside a neighborhood of 0 are irrelevant.

²Hint: recall 2b13(b).

 3 "In the literature this is usually called a submanifold of Euclidean space. It is possible to define manifolds more abstractly, without reference to a surrounding vector space. However, it turns out that practically all abstract manifolds can be embedded into a vector space of sufficiently high dimension. Hence the abstract notion of a manifold is not substantially more general than the notion of a submanifold of a vector space." Sjamaar, page 69.

⁴The projective plane in disguise.

These are orthogonal projections to one-dimensional subspaces of \mathbb{R}^3 . We treat M as a subset of the six-dimensional space of all symmetric 3×3 matrices.

The set M is invariant under transformations $A \mapsto UAU^{-1}$ where U runs over all orthogonal matrices (linear isometries); these are linear transformations of the six-dimensional space of matrices. If A corresponds to x = (a, b, c) then UAU^{-1} corresponds to Ux. For arbitrary $A, B \in M$ there exists U such that $UAU^{-1} = B$ ("transitive action").

Thus, M looks the same around all its points ("homogeneous space"). In order to prove that M is a 2-manifold (in \mathbb{R}^6) it is sufficient to find a chart (or co-chart) around a single point of M, say,

$$A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in M.$$

15b10 Exercise. Find a 2-chart of M around A_1 .¹

15b11 Exercise. Locally, near A_1 , four coordinates should be smooth functions of the other two coordinates. Which two? Calculate explicitly these four functions of two variables.²

Recall the two orientations of M at x_0 introduced after 15b5.

15b12 Definition. (a) An orientation of an *n*-manifold $M \subset \mathbb{R}^N$ is a family $(\mathcal{O}_x)_{x \in M}$ of orientations \mathcal{O}_x of M at points x such that for every $x_0 \in M$ and every $(G, \psi) \in \mathcal{O}_{x_0}$ the relation $(G, \psi) \in \mathcal{O}_x$ holds for all x near x_0 .³

(b) M is *orientable* if it has (at least one) orientation.

We will see that a sphere is orientable but the Möbius strip is not, as well as M of 15b9. However, a single-chart piece of a manifold is orientable.

An oriented manifold is, by definition, a pair (M, \mathcal{O}) of a manifold and its orientation. By a chart of an oriented manifold (M, \mathcal{O}) we mean a chart (G, ψ) of M such that $(G, \psi) \in \mathcal{O}_x$ for all $x \in \psi(G)$.

15b13 Definition. Let M be an n-manifold in \mathbb{R}^N .

(a) A vector $h \in \mathbb{R}^N$ is tangent to M at $x_0 \in M$ if $dist(x_0 + \varepsilon h, M) = o(\varepsilon)$ (as $\varepsilon \to 0$);

(b) the tangent space $T_{x_0}M$ (to M at x_0) is the set of all tangent vectors (to M at x_0).

¹Hint: $(b,c) \mapsto (\sqrt{1-b^2-c^2}, b, c) = x \mapsto A = \psi(b,c).$

²Hint: solve a quadratic equation.

³Of course, $\psi^{-1}(x)$ need not be 0; if this is required, the argument of ψ must be shifted accordingly.

The next exercise shows (in particular) that the tangent space is indeed a vector subspace of \mathbb{R}^N .

15b14 Exercise. Let (G, ψ) be a chart around x_0 and (U, φ) a co-chart around x_0 . Prove that the following three conditions on a vector $h \in \mathbb{R}^N$ are equivalent:

- (a) h is a tangent vector (at x_0);
- (b) h belongs to the image of the linear operator $(D\psi)_0 : \mathbb{R}^n \to \mathbb{R}^N$;
- (c) h belongs to the kernel of the linear operator $(D\varphi)_{x_0} : \mathbb{R}^N \to \mathbb{R}^{N-n}$.

15b15 Example. Let $M \subset \mathbb{R}^2$ be the graph of a function $f \in C^1(\mathbb{R})$. Then $T_{(x,f(x))}M = \{(\lambda, \lambda f'(x)) : \lambda \in \mathbb{R}\}.$

15b16 Exercise. Generalize 15b15 to curves and surfaces in \mathbb{R}^3 (that are graphs).

15b17 Definition. A differential form of order k (or k-form) on an n-manifold $M \subset \mathbb{R}^N$ is a continuous function ω on the set $\{(x, h_1, \ldots, h_k) : x \in M, h_1, \ldots, h_k \in T_x M\}$ such that for every $x \in M$ the function $\omega(x, \cdot, \ldots, \cdot)$ is an antisymmetric multililear k-form on $T_x M$.

Given a k-form ω on M and a chart (G, ψ) of M, we have the pullback of ω along ψ (similarly to 11f1); this is a k-form $\psi^*\omega$ on G defined by

 $(\psi^*\omega)(u,h_1,\ldots,h_k) = \omega\big(\psi(u),(D_{h_1}\psi)_u,\ldots,(D_{h_k}\psi)_u\big).$

In particular, if k = n (the dimension of M) then $\psi^* \omega$ is an *n*-form on an open set $G \subset \mathbb{R}^n$, therefore

$$\psi^*\omega = f \, du_1 \wedge \dots \wedge du_n$$

for some continuous function $f: G \to \mathbb{R}$. In the spirit of (11f2) we may introduce an improper integral

(15b18)
$$\int_{(G,\psi)} \omega = \int_G f;$$

however, it may diverge.

15c Single-chart integration

15c1 Definition. (a) A k-form ω on an *n*-manifold $M \subset \mathbb{R}^N$ is compactly supported if there exists a compact set $K \subset M$ that supports ω in the sense that $\omega(x, h_1, \ldots, h_k) = 0$ for all $x \in M \setminus K$ and $h_1, \ldots, h_k \in T_x M$.

(b) ω is a single-chart form if there exist a compact set $K \subset M$ that supports ω and a chart (G, ψ) of M such that $K \subset \psi(G)$.

Assume that M, ω , K and (G, ψ) are as in 15c1(b). Then the pullback $\psi^*\omega$ is supported by a compact subset of G. Therefore in the case k = n the integral (15b18) is well-defined as a (proper) Riemann integral (of a compactly supported continuous function on \mathbb{R}^n).

The next lemma shows that the formula

(15c2)
$$\int_{(M,\mathcal{O})} \omega = \int_{(G,\psi)} \omega$$

is a correct definition of the integral of a single-chart n-form over an oriented n-manifold.

15c3 Lemma. Let ω be a compactly supported *n*-form on an oriented *n*-manifold (M, \mathcal{O}) in \mathbb{R}^N , and (G_1, ψ_1) , (G_2, ψ_2) two charts¹ of (M, \mathcal{O}) such that $K \subset \psi_1(G_1) \cap \psi_2(G_2)$ for some compact K that supports ω . Then

$$\int_{(G_1,\psi_1)} \omega = \int_{(G_2,\psi_2)} \omega$$

Proof. The set $\tilde{G} = \psi_1(G_1) \cap \psi_2(G_2)$ is (relatively) open in M, therefore sets $\tilde{G}_1 = \psi_1^{-1}(\tilde{G}) \subset G_1$, $\tilde{G}_2 = \psi_2^{-1}(\tilde{G}) \subset G_2$ are open (in \mathbb{R}^n). A mapping $\varphi: \tilde{G}_1 \to \tilde{G}_2, \, \varphi(u) = \psi_2^{-1}(\psi_1(u))$ is a diffeomorphism by 15b4. The equality

$$\psi_1 = \psi_2 \circ \varphi \quad \text{on } \tilde{G}_1$$

implies

$$\psi_1^*\omega = \varphi^*(\psi_2^*\omega) \quad \text{on } \tilde{G}_1$$

by the chain rule.² We have $\psi_1^* \omega = f_1 du_1 \wedge \cdots \wedge du_n$, $\psi_2^* \omega = f_2 du_1 \wedge \cdots \wedge du_n$ for some $f_1 \in C(\tilde{G}_1)$, $f_2 \in C(\tilde{G}_2)$. Thus,

$$f_1 du_1 \wedge \dots \wedge du_n = \varphi^* (f_2 du_1 \wedge \dots \wedge du_n) = (f_2 \circ \varphi) d\varphi_1 \wedge \dots \wedge d\varphi_n$$

where $\varphi_i = u_i \circ \varphi$. It follows that $f_1(u) = f_2(\varphi(u)) \det(D\varphi)_u$ for all $u \in \tilde{G}_1$. Using Theorem 8a5, $\int_{G_2} f_2 = \int_{\tilde{G}_2} f_2 = \int_{\tilde{G}_1} (f_2 \circ \varphi) |\det D\varphi| = \int_{\tilde{G}_1} (f_2 \circ \varphi) \det D\varphi = \int_{\tilde{G}_1} f_1 = \int_{G_1} f_1$.

15d Volume form

All antisymmetric multililear *n*-forms L on \mathbb{R}^n are the same up to a coefficient,

$$L = c \, dx_1 \wedge \dots \wedge dx_n \quad \text{for some } c \in \mathbb{R};$$

$$L(a_1, \dots, a_n) = c \det(a_1, \dots, a_n) \quad \text{for all } a_1, \dots, a_n \in \mathbb{R}^n.$$

¹Orientation must be respected.

²This is similar to the equality $(\varphi \circ \Gamma)^* \omega = \Gamma^*(\varphi^* \omega)$ in Sect. 11f.

If a_1, \ldots, a_n are an orthonormal basis then $det(a_1, \ldots, a_n) = \pm 1$, and therefore $|L(a_1, \ldots, a_n)| = |c|$ does not depend on the basis.

Thus, for every *n*-dimensional vector space V, all antisymmetric multililear *n*-forms on V are a one-dimensional vector space, — a line. The two rays of this line are, by definition, the two orientations of V. In other words, the two orientations of V are the two equivalence classes of nontrivial (that is, not identically zero) antisymmetric multililear *n*-forms on V; the equivalence relation is, $\exists c > 0 \ L_1 = cL_2$.

For an *n*-dimensional Euclidean space E, each orientation contains exactly one L normalized in the sense that $|L(a_1, \ldots, a_n)| = 1$ for some (therefore, every) orthonormal basis a_1, \ldots, a_n of E.

If $M \subset \mathbb{R}^N$ is an *n*-manifold and $x_0 \in M$, then the two orientations of Mat x_0 correspond to the two orientations of $T_{x_0}M$; namely, an *n*-chart (G, ψ) of M at x_0 corresponds to an antisymmetric multililear *n*-form L on $T_{x_0}M$ if $L((D_1\psi)_0, \ldots, (D_n\psi)_0) > 0$.

15d1 Definition. An *n*-form μ on an oriented *n*-manifold (M, \mathcal{O}) in \mathbb{R}^N is the volume form, if for every $x \in M$ the antisymmetric multililear *n*-form $\mu(x, \cdot, \ldots, \cdot)$ is normalized and corresponds to the orientation \mathcal{O}_x .

Clearly, such μ is unique. Is it clear that μ exists? Surely, $\mu(x, \cdot, \ldots, \cdot)$ is well-defined for each x; but is it continuous in x? We will arrive soon to a useful explicit formula for μ in terms of a chart, thus getting existence as a byproduct. For now, taking existence for granted, we use μ in the following definition.

15d2 Definition. The integral of a single-chart continuous function $f : M \to \mathbb{R}$ over an oriented manifold (M, \mathcal{O}) is

$$\int_{(M,\mathcal{O})} f = \int_{(M,\mathcal{O})} f\mu$$

where μ is the volume form on (M, \mathcal{O}) .

15d3 Example. Let $M \subset \mathbb{R}^2$ be the graph of a function $f \in C^1(\mathbb{R})$. The whole M is covered by a chart $\mathbb{R} = G_+ \ni x \mapsto \psi_+(x) = (x, f(x)) \in M$; denote by \mathcal{O}_+ the corresponding orientation of M, and by \mathcal{O}_- the other orientation. The two volume forms on M are $\mu_{\pm}((x, f(x)), (\lambda, \lambda f'(x))) = \pm \lambda \sqrt{1 + f'^2(x)}$; thus, $\psi_+^* \mu_+ = \sqrt{1 + f'^2} dx$. Given a compactly supported function $g \in C(M)$, we have

$$\int_{(M,\mathcal{O}_+)} g = \int_{\mathbb{R}} g(x, f(x)) \sqrt{1 + f'^2(x)} \, \mathrm{d}x \, .$$

Another chart $\mathbb{R} = G_- \ni x \mapsto \psi_-(x) = (-x, f(-x)) \in M$ corresponds to \mathcal{O}_- ; we have $\psi_-^* \mu_- = \sqrt{1 + f'(-x)^2} dx$ (think, why not " $-\sqrt{\dots}$ "); thus,

$$\int_{(M,\mathcal{O}_{-})} g = \int_{\mathbb{R}} g(-x, f(-x)) \sqrt{1 + f'^{2}(-x)} \, \mathrm{d}x \,,$$

the same result for the other orientation.

Can we generalize 15d3 to a surface M in \mathbb{R}^3 (the graph of a function $f \in C^1(\mathbb{R}^2)$)? We know the tangent space (recall 15b16) $T_{(x,y,f(x,y))}M$, it is spanned by two vectors, $(1, 0, (D_1f)_{(x,y)})$ and $(0, 1, (D_2f)_{(x,y)})$, but they are not orthogonal. We may apply the orthogonalization process, but it leads to unpleasant formulas even for n = 2 (and the more so for higher n). Fortunately a better way exists.

For arbitrary n vectors $a_1, \ldots, a_n \in \mathbb{R}^n$,

$$\left(\det(a_1,\ldots,a_n)\right)^2 = \left(\det(A)\right)^2 = \det(A^{\mathsf{t}}A) =$$
$$= \det\left(\langle a_i, a_j \rangle\right)_{i,j} = \begin{vmatrix} \langle a_1, a_1 \rangle & \dots & \langle a_1, a_n \rangle \\ \langle a_2, a_1 \rangle & \dots & \langle a_2, a_n \rangle \\ \dots & \dots & \dots \\ \langle a_n, a_1 \rangle & \dots & \langle a_n, a_n \rangle \end{vmatrix}$$

here $A = (a_1 | \dots | a_n)$ is the matrix whose columns are the vectors a_1, \dots, a_n ; accordingly, $A^{t}A$ is the matrix of scalar products (think, why), the socalled Gram matrix, and its determinant is called the Gram determinant, or Gramian of a_1, \dots, a_n .

Let $E \subset \mathbb{R}^N$ be an *n*-dimensional subspace, e_1, \ldots, e_n its orthonormal basis, and L a normalized antisymmetric multililear *n*-form on E. How to calculate $|L(h_1, \ldots, h_n)|$ for arbitrary $h_1, \ldots, h_n \in E$? By the Gramian:

(15d4)
$$|L(h_1,\ldots,h_n)| = \sqrt{\det(\langle h_i,h_j\rangle)_{i,j}}.$$

Here is why. Consider a linear isometry $T : \mathbb{R}^n \to E, T(u_1, \ldots, u_n) = u_1e_1 + \cdots + u_ne_n$. The antisymmetric multililear *n*-form $(a_1, \ldots, a_n) \mapsto L(Ta_1, \ldots, Ta_n)$ on \mathbb{R}^n returns $L(e_1, \ldots, e_n) = \pm 1$ on the usual basis of \mathbb{R}^n ; therefore

$$L(Ta_1,\ldots,Ta_n) = \pm \det(a_1,\ldots,a_n) \text{ for all } a_1,\ldots,a_n \in \mathbb{R}^n$$

Taking a_1, \ldots, a_n such that $Ta_1 = h_1, \ldots, Ta_n = h_n$ we get

$$(L(h_1,\ldots,h_n))^2 = (\det(a_1,\ldots,a_n))^2 = \det(\langle a_i,a_j\rangle)_{i,j} = \det(\langle h_i,h_j\rangle)_{i,j},$$

since T is isometric.

Thus, in order to check whether an antisymmetric multililear *n*-form L on an *n*-dimensional $E \subset \mathbb{R}^N$ is normalized or not, we do not need an orthonormal basis in E. It suffices to have linearly independent vectors $h_1, \ldots, h_n \in E$ and check (15d4).

If μ is a volume form on (M, \mathcal{O}) and (G, ψ) a chart of (M, \mathcal{O}) then the pullback $\psi^* \mu$ satisfies

$$(\psi^*\mu)(u, e_1, \dots, e_n) = \mu(\psi(u), (D_1\psi)_u, \dots, (D_1\psi)_u) = J_{\psi}(u),$$

where e_1, \ldots, e_n are the usual basis of \mathbb{R}^n , and

$$J_{\psi}(u) = \sqrt{\det(\langle (D_i\psi)_u, (D_j\psi)_u \rangle)_{i,j}}$$

is the (generalized) Jacobian of ψ . We see that

(15d5)
$$\psi^* \mu = J_{\psi} \, du_1 \wedge \dots \wedge du_n \, .$$

Now, given (M, \mathcal{O}) and (G, ψ) (but not μ), we can construct a form μ on the oriented *n*-manifold $\psi(G) \subset M$ satisfying (15d5), namely, $\mu = (\psi^{-1})^* (J_{\psi} du_1 \wedge \cdots \wedge du_n)$; existence of the volume form is thus proved (on every orientable manifold, not just single-chart). We have

(15d6)
$$\int_{(M,\mathcal{O})} f = \int_{(M,\mathcal{O})} f\mu = \int_{(G,\psi)} f\mu = \int_G (f \circ \psi) J_{\psi}$$

for every continuous $f: M \to \mathbb{R}$ supported by a compact $K \subset \psi(G)$.

15d7 Exercise. Consider a Möbius strip (without the edge),

for given R > r > 0 (as in Sect. 12b). Prove that it is a non-orientable 2-manifold in $\mathbb{R}^{3,1}$

Two facts without proofs: every 1-manifold in \mathbb{R}^N is orientable; every *compact* 2-manifold in \mathbb{R}^3 is orientable.

15d8 Exercise. Continuing 15b9 prove that the compact 2-manifold $M \subset \mathbb{R}^6$ is non-orientable.²

¹Hint: think about the function $\theta \mapsto \mu(\Gamma(0,\theta), D_1\Gamma(0,\theta), D_2\Gamma(0,\theta))$.

²Hint: similar to 15d7. (In fact, a part of M is diffeomorphic to the Möbius strip.)

15d9 Exercise. Let $f \in C^1(\mathbb{R})$, M_a be the graph of $f(\cdot) + a$ for $a \in \mathbb{R}$, and $g \in C(\mathbb{R}^2)$ compactly supported. Prove that

- (a) $\int_{\mathbb{R}} da \int_{M_a} g^2 \ge \int_{\mathbb{R}^2} g^2$; (b) the equality holds if and only if $\forall x, y \ f'(x)g(x, y) = 0$.

15d10 Exercise. Find J_{ψ} given $\psi(\theta, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$. Compare your answer with (14b11).

15d11 Exercise. Find J_{ψ} given $\psi(x) = (x, \sqrt{1-|x|^2}) \in \mathbb{R}^{n+1}$ for $x \in \mathbb{R}^n$, |x| < 1.

Answer: $1/\sqrt{1-|x|^2}$.

15d12 Exercise. Consider a half-space $G = \mathbb{R}^{n-1} \times (0, \infty) \subset \mathbb{R}^n$, semispheres $M_r = \{x \in G : |x| = r\}$ for r > 0, and a compactly supported $f \in C(G)$. Prove that

(a)
$$\int_{M_r} f = \int_{\{u \in \mathbb{R}^{n-1}: |u| < r\}} \frac{r}{\sqrt{r^2 - |u|^2}} f(u, \sqrt{r^2 - |u|^2}) du;$$

(b) $\int_0^\infty dr \int_{M_r} f = \int_G f.$

Index

chart, 237, 239	orientation, 241, 242, 245
co-chart, 237, 240	oriented, 242
compactly supported, 243	
	pullback, 243
differential form (on manifold), 243	
	single-chart, 243
Gram determinant (Gramian), 246	
graph, 240	tangent space, 242
Leveling (new angline d) 047	tangent vector, 242
Jacobian (generalized), 247	l 9.45
Möbius strip 247	volume form, 245
manifold 239 241	$\int (1 - 243)$
	$\int_{(G,\psi)} \omega, 240$
neighborhood (relative), 237	$\int_{(M,\mathcal{O})} \omega, 244$
normalized, 245	$\int_{(M,\mathcal{O})} f, 245$
,	$J_{\psi}, 247$
open (relatively), 237	$\psi^*\omega, 243$
orientable, 242	$T_xM, 242$