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Single-chart pieces of a manifold are combined via partitions of unity.
Curvilinear iterated integrals, Stokes’ and divergence theorems take their
global geometric form.

16a Curvilinear iterated integral

Recall several facts.

∗ The iterated integral approach (Sect. 7) decomposes an integral over the
plane into integrals over parallel lines. It also decomposes an integral
over 3-dimensional space into integrals over parallel planes.1

∗ A 3-dimensional integral decomposes into integrals over spheres, see
14b12 and 15d12.

∗ However, a naive attempt to decompose an integral over the plane into
integrals over curves y = f(x)+a fails (see 15d9); a new factor appears,
like Jacobian.

Thus, we want to understand, whether or not a 2-dimensional integral
decomposes into integrals over curves ϕ(·) = const, and what about a new
factor; and what happens in dimension 3 (and more).

First we try dimension 0 + 1. Let ϕ ∈ C1(R), ∀x ϕ′(x) 6= 0. A set
Mc = {x : ϕ(x) = c}, being a singleton {ϕ−1(c)}, may be treated as a
0-dimensional manifold in R; naturally,

∫
Mc
f = f(ϕ−1(c)). Thus, generally∫

dc
∫
Mc
f 6=

∫
R f ; rather,

∫
dc
∫
Mc
f =

∫
f(ϕ−1(c)) dc =

∫
f(x)|ϕ′(x)| dx =∫

f |ϕ′|; the new factor |ϕ′| appears. Roughly, it shows how many 0-manifolds
Mc appear within an infinitesimal neighborhood of x.

We turn to dimension 1+1. Let ϕ : R2 → R be of class C1 near 0, ϕ(0) =
0, (Dϕ)0 6= 0. Then ϕ is a co-chart of the set M0 = {(x, y) : ϕ(x, y) = 0}
around (0, 0), and ϕ(·)−c is a co-chart of Mc = {(x, y) : ϕ(x, y) = c} provided
that c is small enough. We restrict ourselves to small c and small (x, y), then
Mc are 1-manifolds. Assuming that a function f ∈ C(R2) has a compact

1Or alternatively, parallel lines. In this course we restrict ourselves to dimension n+1;
for dimension n+m see the “Coarea formula”.

http://www.encyclopediaofmath.org/index.php/Coarea_formula
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support within the small neighborhood of (0, 0), we consider
∫

dc
∫
Mc
f . It

is easy to guess that

(16a1)

∫
dc

∫
Mc

f =

∫
R2

f |∇ϕ| ,

since |∇ϕ(x, y)| shows roughly, how many curves Mc intersect an infinitesimal
neighborhood of (x, y). Note that both sides of (16a1) are invariant under
rotations of the plane (since the volume form is well-defined for an n-manifold
in an N -dimensional Euclidean space).

The case of a linear function ϕ is simple and instructive. When proving
(16a1) for a linear ϕ we may assume (due to the rotation invariance) that
ϕ(x, y) = ay. Then

∫
Mc
f =

∫
f
(
x, c

a

)
dx, |∇ϕ| = |a|,∫

dc

∫
Mc

f =

∫
dc

∫
dx f

(
x,
c

a

)
= a

∫
dy

∫
dx f(x, y) ,

which proves (16a1) for a linear ϕ. Taking ϕ(x, y) = ax + by with b 6= 0 we
get

Mc =
{(
x,
c− ax
b

)
: x ∈ R

}
, |∇ϕ| =

√
a2 + b2 ,∫

Mc

f =

∫
R
f
(
x,
c− ax
b

)√
1 +

(
− a

b

)2

dx ;∫
dc

∫
Mc

f =

√
a2 + b2

|b|

∫∫
f
(
x,
c− ax
b

)
dx dc ;∫

R2

f |∇ϕ| =
√
a2 + b2

∫∫
f(x, y) dx dy ;

(16a1) becomes

1

|b|

∫∫
f
(
x,
c− ax
b

)
dx dc =

∫∫
f(x, y) dx dy ,

which follows also from the fact that the Jacobian ∂(x,c)
∂(x,y)

=
∣∣ 1 0
a b

∣∣ of the map-

ping (x, y) 7→ (x, ax+ by) is equal to b.
The former argument (the rotation) fails for nonlinear ϕ (think, why),

but the latter argument (the change of variables) still works, and generalizes
to dimension n+ 1, as we’ll see soon.

Recall the implicit function theorem 5c1 (for c = 1, and some notations
changed): if x0 ∈ Rn, y0 ∈ R, ϕ : Rn+1 → R is continuously differentiable
near (x0, y0), ϕ(x0, y0) = 0, and

(
∂ϕ
∂y

)
(x0,y0) 6= 0, then there exist open neigh-

borhoods U of x0 and V of y0 such that
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(a) for every x ∈ U there exists one and only one y ∈ V satisfying
ϕ(x, y) = 0;

(b) a function g : U → V defined by ϕ
(
x, g(x)

)
= 0 is continuously

differentiable, and ∇g(x0) = − 1

( ∂ϕ
∂y

)(x0,y0)

(
∂ϕ
∂x

)
(x0,y0).

Recall also the idea of the proof: a mapping

h

(
x
y

)
=

(
x

ϕ(x, y)

)
is a diffeomorphism U × V → h(U × V ), and

h−1

(
x
0

)
=

(
x
g(x)

)
.

We need a bit more: there exists an open neighborhood W of
0 in R such that for every c ∈ W ,
(a′) for every x ∈ U there exists one and only one y ∈ V
satisfying ϕ(x, y) = c;
(b′) a function gc : U → V defined by ϕ

(
x, gc(x)

)
= c is

continuously differentiable, and ∇gc(x) = − 1

( ∂ϕ
∂y

)(x,y)

(
∂ϕ
∂x

)
(x,y)

whenever x ∈ U , y = gc(x). U

V

This is easy to prove; basically, h−1

(
x
c

)
=

(
x

gc(x)

)
; for (b′), differentiate

in x the relation ϕ(x, gc(x)) = c.
Thus, for every c ∈ W the set

Mc = {(x, y) ∈ U × V : ϕ(x, y) = c}

is an n-manifold in Rn+1; the function ϕ(·) − c is a co-chart of Mc; and the
mapping U 3 x 7→ ψc(x) =

(
x, gc(x)

)
is a chart of the whole Mc; in other

words, Mc is the graph of gc. The set⋃
c∈W

Mc = h−1(U ×W )

is an open neighborhood of (x0, y0).

16a2 Proposition. For every continuous, compactly supported function f
on ∪c∈WMc, ∫

W

dc

∫
Mc

f =

∫
f |∇ϕ| .
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16a3 Exercise. Find Jψ given ψ(x) = (x, g(x)) ∈ Rn+1 for x ∈ Rn and
g ∈ C1(Rn).1

Answer:
√

1 + |∇g|2.

Proof of Prop. 16a2. For every c ∈ W ,∫
Mc

f =

∫
U

f
(
x, gc(x)

)√
1 + |∇gc|2︸ ︷︷ ︸

Jψc

dx

due to 16a3; thus, the function c 7→
∫
Mc
f is continuous, and∫

W

dc

∫
Mc

f =

∫∫
U×W

f
(
x, gc(x)

)√
1 + |∇gc(x)|2 dx dc .

On the other hand, Dh =

(
id 0
∂ϕ
∂x

∂ϕ
∂y

)
, therefore det(Dh) = ∂ϕ

∂y
. Also,

1 + |∇gc(x)|2 = 1 +

(
1(

∂ϕ
∂y

)
(x,y)

)2∣∣∣(∂ϕ
∂x

)
(x,y)

∣∣∣2 =
|∇ϕ(x, y)|2((

∂ϕ
∂y

)
(x,y)

)2

whenever y = gc(x). Finally, we apply change of variables:∫
W

dc

∫
Mc

f =

∫∫
U×W

f
(
x, gc(x)

) |∇ϕ(x, gc(x))|
| det(Dh)(x,gc(x))|

dx dc =

=

∫∫
U×W

f
(
h−1(x, c)

)
|∇ϕ(h−1(x, c))|

| det(Dh)h−1(x,c)|
dx dc =

=

∫∫
U×W

f
(
h−1(x, c)

)
|∇ϕ(h−1(x, c))|| det(Dh−1)(x,c)| dx dc =

=

∫∫
h−1(U×W )

f(x, y)|∇ϕ(x, y)| dx dy .

16b Many-chart integration

Recall that
∫

(M,O)
ω is defined by (15c2) whenever (M,O) is an oriented

n-manifold and ω a single-chart n-form on M . The linearity,

(16b1)

∫
(M,O)

(c1ω1 + c2ω2) = c1

∫
(M,O)

ω1 + c2

∫
(M,O)

ω2 ,

1Hint: in order to avoid working hard on a determinant, use the rotation invariance.
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is ensured by (15c2) provided that both forms ω1, ω2 have compact supports
within the same chart.

The idea of a “partition of unity” was used in Sect. 8h (when proving
Th. 8a5) in a rudimentary form: partition into integrable functions. Now we
need a bit more: partition into continuous functions.1

16b2 Lemma. Let M ⊂ RN be an n-manifold and K ⊂ M a compact set.
Then there exist single-chart continuous functions f1, . . . , fk : M → [0, 1]
such that f1 + · · ·+ fk = 1 on K.

Proof. For every x ∈ K a function gx : y 7→
(
εx − |y − x|

)
+ is single-chart

if εx is small enough, continuous, and positive in the open εx-neighborhood
of x. These neighborhoods are an open covering of K; we choose a finite
subcovering and get single-chart functions g1, . . . , gk : M → [0,∞) whose
sum g = g1 + · · · + gk is (strictly) positive on K. We take ε > 0 such that
g(·) ≥ ε on K and note that functions f1, . . . , fk : M → [0,∞) defined by

fi(x) =
gi(x)

max(g(x), ε)

have the required properties.

It follows that every compactly supported n-form on M is the sum of
single-chart n-forms,

ω = ω1 + · · ·+ ωk , ωi = fiω .

It is tempting to define (assuming that O is an orientation of M)

(16b3)

∫
(M,O)

ω =

∫
(M,O)

ω1 + · · ·+
∫

(M,O)

ωk ;

however, does this sum depend on the choice of ω1, . . . , ωk? If ω1 + · · ·+ωk =
ω = ω̃1 + · · ·+ ω̃k̃ then ω1 + · · ·+ωk + (−ω̃1) + · · ·+ (−ω̃k̃) = 0; the question
is, whether the corresponding sum of integrals must vanish, or not.

16b4 Lemma. Let ω1, . . . , ω` be single-chart n-forms on an n-manifold M ,
and O an orientation of M ;

if ω1 + · · ·+ ω` = 0 then

∫
(M,O)

ω1 + · · ·+
∫

(M,O)

ω` = 0 .

1Still more will be needed in the proof of Th. 16b15: partition into C1 functions.
(Ultimately, partitions into C∞ functions exist, but we do not need them.)
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Proof. Lemma 16b2 gives single-chart continuous functions f1, . . . , fk such
that f1 + · · ·+ fk = 1 on a compact set that supports ω1, . . . , ω`. By (16b1),
on one hand, ∑̀

j=1

∫
(M,O)

fiωj =

∫
(M,O)

∑̀
j=1

fiωj︸ ︷︷ ︸
=0

= 0 ,

since fi is single-chart; and on the other hand,

k∑
i=1

∫
(M,O)

fiωj =

∫
(M,O)

k∑
i=1

fiωj︸ ︷︷ ︸
=ωj

=

∫
(M,O)

ωj ,

since ωj is single-chart. Therefore

∑̀
j=1

∫
(M,O)

ωj =
∑̀
j=1

k∑
i=1

∫
(M,O)

fiωj =
k∑
i=1

∑̀
j=1

∫
(M,O)

fiωj =
k∑
i=1

0 = 0 .

We see that (16b3) is indeed a correct definition of
∫

(M,O)
ω whenever ω

is a compactly supported n-form on M .
Now we can define the n-dimensional volume of a compact oriented n-man-

ifold (M,O) by

Vn(M,O) =

∫
(M,O)

µ(M,O) ∈ (0,∞)

where µ(M,O) is the volume form on (M,O). However, the Möbius strip
should have an area, too!

We want to define

(16b5)

∫
M

f =

∫
(G,ψ)

fµ(G,ψ)

for a single-chart f ∈ C(M); here (G,ψ) is a chart such that f is compactly
supported within ψ(G), and µ(G,ψ) is the volume form on the n-manifold ψ(G)
(oriented, even if M is non-orientable). To this end we need a counterpart
of Lemma 15c3: ∫

(G1,ψ1)

fµ(G1,ψ1) =

∫
(G2,ψ2)

fµ(G2,ψ2)

whenever (G1, ψ1), (G2, ψ2) are charts such that K ⊂ ψ1(G1) ∩ ψ2(G2) for
some compact K that supports f . We do it similarly to the proof of 15c3, but
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this time we split the relatively open set G̃ = ψ1(G1)∩ψ2(G2) in two relatively
open sets G̃−, G̃+ according to the sign of detDϕ (having ψ−1

2 = ϕ ◦ ψ−1
1 on

G̃). It remains to take into account that µ(G1,ψ1) = µ(G2,ψ2) on G̃+ but

µ(G1,ψ1) = −µ(G2,ψ2) on G̃−.
We see that (16b5) is indeed a correct definition of

∫
M
f for a single-chart

f ∈ C(M). Now, similarly to (16b2), we define

(16b6)

∫
M

f =

∫
M

f1 + · · ·+
∫
M

fk

whenever f = f1 + · · ·+ fk with single-chart fi ∈ C(M).

16b7 Exercise. (a) Prove that (16b6) is a correct definition of
∫
M
f for all

compactly supported f ∈ C(M);1

(b) formulate and prove linearity and monotonicity of the integral.

Now it is easy to define lower and upper integrals for discontinuous com-
pactly supported functions M → R (recall 6i2), and then, Riemann inte-
grability and Jordan measure on an n-manifold in RN . For functions with
no compact support, improper integral may be used. In particular, for a
non-compact manifold M ,

Vn(M) = sup
f≤1

∫
M

f = sup
E
Vn(E)

where f runs over compactly supported continuous (or just integrable) func-
tions, and E runs over sets Jordan measurable in M . Monotone convergence
of volumes (similar to 9c1) holds.

16b8 Exercise. Find the area of the (non-compact) Möbius strip 15b7.

Here is a harder exercise: find the area of the compact non-orientable
2-manifold in R6 introduced in 15b9.

Curvilinear iterated integral revisited

16b9 Theorem. Let G ⊂ Rn be an open set, n > 1, ϕ ∈ C1(G),
∀x ∈ G ∇ϕ(x) 6= 0, and f ∈ C(G) compactly supported. Then for every
c ∈ ϕ(G) the set Mc = {x ∈ G : ϕ(x) = c} is an (n − 1)-manifold in Rn, a
function c 7→

∫
Mc
f on ϕ(G) is continuous and compactly supported, and∫

ϕ(G)

dc

∫
Mc

f =

∫
G

f |∇ϕ| .

1Hint: use partitions of unity.
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16b10 Remark. A function c 7→ Vn−1(Mc) need not be continuous on ϕ(G).
For a counterexample try G = {(x, y) : y < g(x)} ⊂ R2 and ϕ(x, y) = y.

16b11 Exercise. Prove Theorem 16b9.1

16b12 Exercise. For f ∈ C(Rn \ {0}) prove that∫
(0,∞)

dr

∫
{x:|x|=r}

f =

∫
Rn\{0}

f ,

where
∫

(0,∞)
and

∫
Rn\{0} are improper; that is, each side of the equality may

be a number, −∞, +∞ or ∞−∞.2

In particular, ∫
Rn\{0}

f(|x|) dx =

∫
(0,∞)

Vn−1(Sr)f(r) dr ,

where Sr = {x : |x| = r} is the sphere. It is easy to see that Vn−1(Sr) =
rn−1Vn−1(S1); thus,∫

Rn\{0}
f(|x|) dx = Vn−1(S1)

∫
(0,∞)

rn−1f(r) dr .

Now we may take f(r) = e−r
2

and get∫
Rn

e−|x|
2

dx =

(∫
R

e−t
2

dt

)n
= (
√
π)n = πn/2

(recall 9e); thus,

πn/2 = Vn−1(S1)

∫ ∞
0

rn−1e−r
2

dr .

Taking into account that∫ ∞
0

rn−1e−r
2

dr =

∫ ∞
0

t(n−1)/2e−t
dt

2
√
t

=
1

2
Γ
(n

2

)
(recall 9j1), we get3

(16b13) Vn−1(S1) =
2πn/2

Γ(n/2)
.

1Hint: use 16a2 and a partition of unity.
2Hint: start with f ≥ 0, approximate f from below, apply 16b9.
3See also Sjamaar, Exer. 9.6.
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Alternatively we may use the volume of the ball B1 = {x : |x| < 1},

Vn(B1) =
2πn/2

nΓ(n/2)
,

calculated in Sect. 9j.

Divergence theorem revisited

An open set G ⊂ Rn is called regular, if (G)◦ = G; that is, the interior of
the closure of G is equal to G. (Generally it cannot be less than G, but can
be more than G; a simple example: G = R \ {0}.) Equivalently, G is regular
if (and only if) ∂G = ∂(Rn \G); that is, the boundary of the exterior of G is
equal to the boundary of G.

Let G ⊂ Rn be a bounded regular open set, M ⊂ Rn a (necessarily
compact) (n− 1)-manifold, and ∂G = M (the topological boundary, nothing
“singular”. . . ). We want to prove that the flux of a vector field through
M is equal to the integral of its divergence over G. In the language of
differential forms (recall 14c8, 14c9) it means a “nonsingular” Stokes’ theorem
for k = n− 1:

∫
G
dω =

∫
M
ω for every (n− 1)-form ω on Rn. However, this

makes no sense without orienting G and M .
Recall 14c: the hyperface {1} × [−1, 1]n−1 is a part of the boundary of

the cube (−1, 1)n; the tangent space to the hyperface is spanned by vectors
e2, . . . , en; and its orientation conforms to the basis (e2, . . . , en) (in this order),
while the orientation of the cube conforms to (e1, . . . , en), of course. And the
vector e1 is the outward unit normal to the hyperface, according to the sign
of the inequality x1 < 1 on (−1, 1)n.

16b14 Definition. (a) A non-tangent vector h ∈ Rn \ TxM is directed out-
wards, if x− εh belongs to G and x+ εh does not belong to G for all ε small
enough;

(b) an orientation Õ of M conforms at x ∈ M to an orientation O
of G if (h2, . . . , hn) conforms to Õx whenever h1 is directed outwards and
(h1, h2, . . . , hn) conforms to Ox. (Here h2, . . . , hn ∈ TxM , h1 /∈ TxM .)

For a non-regular G it may happen that x− εh and x + εh both belong
to G (for all ε small enough); but for a regular G either h or (−h) must be
directed outwards (and then the other is said to be directed inwards).

16b15 Theorem. Let G ⊂ Rn be a bounded regular open set, M ⊂ Rn an
(n− 1)-manifold, ∂G = M , and orientations O of G and Õ of M conform
(at every point of M). Then∫

(G,O)

dω =

∫
(M,Õ)

ω
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for every (n− 1)-form ω of class C1 on Rn.

The divergence theorem follows.

16b16 Theorem. Let G ⊂ Rn be a bounded regular open set, M ⊂ Rn an
(n− 1)-manifold, ∂G = M . Then∫

G

divH =

∫
M

〈H,~n 〉

for every vector field H of class C1 on Rn; here ~n : M → Rn, ~n(x) is the
outward unit normal vector at x ∈M .

It remains to prove 16b15. Sometimes it is easy to construct an n-chain C
such that C ∼ (G,O) and ∂C ∼ (M, Õ) in the sense that

∫
C
dω =

∫
(G,O)

dω

and
∫
∂C
ω =

∫
(M,O)

ω; but in general this is problematic. Instead, one turns

to a single-chart ω via a partition of unity; and locally M is just the graph
of a function.

We restrict ourselves to n = 2; the general case is quite similar.
We define a good box (for given G and M) as an open box B ⊂ R2

such that M ∩ B is either the empty set or the graph of a function, either
y = f(x) or x = g(y). More exactly, “y = f(x)” means here the following:
B = U × V for some open intervals U, V ⊂ R; f ∈ C1(U), f(U) ⊂ V ; and
M ∩B = {(x, f(x)) : x ∈ U}. (The case “x = g(y)” is interpreted similarly.)

The closure G ∪ M of G is compact, and all good boxes are its open
covering. We choose a finite covering: G∪M ⊂ B1 ∪ · · · ∪Bk, and construct
a corresponding partition of unity of class C1:

f1, . . . , fk : Rn → [0, 1] are continuously differentiable ,

fi(·) = 0 outside Bi ,

f1 + · · ·+ fk = 1 on G ∪M .

To this end, similarly to the proof of 16b2, we let g = g1 + · · · + gk, take ε
such that g(·) ≥ ε on K, and put

fi(x) =
gi(x)

g(x) + ε
2

(
1− g(x)

ε

)
2
+

;

but this time we need gi ∈ C1. We obtain gi by a linear transformation (of
arguments) from (say)

g(x, y) = h(x)h(y) ,

h(t) =

{
(1− t2)2 for − 1 < t < 1,

0 otherwise;
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then f1, . . . , fk have the required properties.
Given an (n− 1)-form ω of class C1 on Rn, we have

ω = ω1 + · · ·+ ωk on G ∪M ,

where each ωi = fiω is an (n − 1)-form of class C1, and ωi = 0 outside Bi.
In order to prove the equality

∫
(G,O)

dω =
∫

(M,Õ)
ω it is sufficient (due to

linearity) to prove the same equality for each ωi.
The case M ∩ Bi = ∅ is simple:

∫
(M,Õ)

ωi = 0 (since ωi = 0 on M), and∫
(G,O)

dω = ±
∫
Bi
dω = ±

∫
∂Bi

ω = 0 (since ωi = 0 on ∂Bi).

It remains to consider the case “x = g(y)” (since the case “y = f(x)” is
similar).1 That is, Bi = V × U , g : U → V is continuously differentiable,
and M ∩ Bi = {(g(y), y) : y ∈ U}. We do not know which orientation of B
conforms to the given orientation O of G, but it does not matter, since the
other orientation changes the signs of both sides of the equality.

The set (V ×U)\M has exactly two connected components (think, why),
one of them being G∩ (V ×U) (think, why). We may assume that G∩ (V ×
U) = {(x, y) ∈ V × U : x < g(y)}; in the other case, “x > g(y)”, we flip the
sign of x.

G MU

Va b

Consider a mapping ψ1 : U → R2, ψ1(y) = (g(y), y); (U, ψ1) is a chart of the
1-manifold M ∩ (V × U).

The set G ∩ (V × U) may be treated as a 2-manifold (in R2); a mapping
ψ2 : V × U → R2,

ψ2(x, y) =
(
a+

x− a
b− a

(g(y)− a), y
)
,

where (a, b) = V , is a diffeomorphism V ×U → G∩ (V ×U); and (V ×U, ψ2)
is a chart of G ∩ (V × U).

These charts, (U, ψ1) and (V × U, ψ2), lead to orientations, O1 on M ∩
(V × U) and O2 on G ∩ (V × U), and these two orientations conform (ac-
cording to 16b14(b)) at every (g(y), y) ∈ M ∩ (V × U); here is why. The
vector (g′(y), 1) ∈ T(g(y),y)M conforms to O1; the vector (1, 0) is directed

1Why prefer “x = g(y)” to “y = f(x)”? Since our preferred hyperface {1}× [−1, 1]n−1
of [−1, 1]n for n = 2 is “x = 1”, not “y = . . . ”.
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outwards; and the basis
(
(1, 0), (g′(y), 1)

)
conforms to O2, since

∣∣ 1 0
g′(y) 1

∣∣ > 0,
and detDψ2 > 0 as well.

We apply Stokes’ theorem to the singular box Γ : V ×U → R2, Γ(x, y) =(
a+ x−a

b−a (g(y)− a), y
)
, getting

∫
Γ
dω =

∫
∂Γ
ω. It remains to note that∫

Γ

dω =

∫
(G∩(V×U),O2)

dω ,

∫
∂Γ

ω =

∫
(M∩(V×U),O1)

ω .
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