16 Integration: from single-chart to many-chart

16a	Curvilinear iterated integral	249
16b	Many-chart integration	252

Single-chart pieces of a manifold are combined via partitions of unity. Curvilinear iterated integrals, Stokes' and divergence theorems take their global geometric form.

16a Curvilinear iterated integral

Recall several facts.

- * The iterated integral approach (Sect. 7) decomposes an integral over the plane into integrals over parallel lines. It also decomposes an integral over 3-dimensional space into integrals over parallel planes.¹
- * A 3-dimensional integral decomposes into integrals over spheres, see 14b12 and 15d12.
- * However, a naive attempt to decompose an integral over the plane into integrals over curves y = f(x) + a fails (see 15d9); a new factor appears, like Jacobian.

Thus, we want to understand, whether or not a 2-dimensional integral decomposes into integrals over curves $\varphi(\cdot) = \text{const}$, and what about a new factor; and what happens in dimension 3 (and more).

First we try dimension 0 + 1. Let $\varphi \in C^1(\mathbb{R})$, $\forall x \ \varphi'(x) \neq 0$. A set $M_c = \{x : \varphi(x) = c\}$, being a singleton $\{\varphi^{-1}(c)\}$, may be treated as a 0-dimensional manifold in \mathbb{R} ; naturally, $\int_{M_c} f = f(\varphi^{-1}(c))$. Thus, generally $\int \mathrm{d}c \int_{M_c} f \neq \int_{\mathbb{R}} f$; rather, $\int \mathrm{d}c \int_{M_c} f = \int f(\varphi^{-1}(c)) \,\mathrm{d}c = \int f(x) |\varphi'(x)| \,\mathrm{d}x = \int f|\varphi'|$; the new factor $|\varphi'|$ appears. Roughly, it shows how many 0-manifolds M_c appear within an infinitesimal neighborhood of x.

We turn to dimension 1+1. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}$ be of class C^1 near 0, $\varphi(0) = 0$, $(D\varphi)_0 \neq 0$. Then φ is a co-chart of the set $M_0 = \{(x,y) : \varphi(x,y) = 0\}$ around (0,0), and $\varphi(\cdot)-c$ is a co-chart of $M_c = \{(x,y) : \varphi(x,y) = c\}$ provided that c is small enough. We restrict ourselves to small c and small (x, y), then M_c are 1-manifolds. Assuming that a function $f \in C(\mathbb{R}^2)$ has a compact

¹Or alternatively, parallel lines. In this course we restrict ourselves to dimension n + 1; for dimension n + m see the "Coarea formula".

Analysis-III,IV

.

support within the small neighborhood of (0,0), we consider $\int dc \int_{M_c} f$. It is easy to guess that

(16a1)
$$\int \mathrm{d}c \int_{M_c} f = \int_{\mathbb{R}^2} f |\nabla \varphi| \,,$$

since $|\nabla \varphi(x, y)|$ shows roughly, how many curves M_c intersect an infinitesimal neighborhood of (x, y). Note that both sides of (16a1) are invariant under rotations of the plane (since the volume form is well-defined for an *n*-manifold in an *N*-dimensional Euclidean space).

The case of a *linear* function φ is simple and instructive. When proving (16a1) for a linear φ we may assume (due to the rotation invariance) that $\varphi(x, y) = ay$. Then $\int_{M_c} f = \int f(x, \frac{c}{a}) dx$, $|\nabla \varphi| = |a|$,

$$\int \mathrm{d}c \int_{M_c} f = \int \mathrm{d}c \int \mathrm{d}x f\left(x, \frac{c}{a}\right) = a \int \mathrm{d}y \int \mathrm{d}x f(x, y) \,,$$

which proves (16a1) for a linear φ . Taking $\varphi(x, y) = ax + by$ with $b \neq 0$ we get

$$M_{c} = \left\{ \left(x, \frac{c-ax}{b}\right) : x \in \mathbb{R} \right\}, \qquad |\nabla\varphi| = \sqrt{a^{2} + b^{2}}$$
$$\int_{M_{c}} f = \int_{\mathbb{R}} f\left(x, \frac{c-ax}{b}\right) \sqrt{1 + \left(-\frac{a}{b}\right)^{2}} \, \mathrm{d}x \, ;$$
$$\int \mathrm{d}c \int_{M_{c}} f = \frac{\sqrt{a^{2} + b^{2}}}{|b|} \iint f\left(x, \frac{c-ax}{b}\right) \, \mathrm{d}x \, \mathrm{d}c \, ;$$
$$\int_{\mathbb{R}^{2}} f|\nabla\varphi| = \sqrt{a^{2} + b^{2}} \iint f(x, y) \, \mathrm{d}x \, \mathrm{d}y \, ;$$

(16a1) becomes

$$\frac{1}{|b|} \iint f\left(x, \frac{c-ax}{b}\right) \mathrm{d}x \,\mathrm{d}c = \iint f(x, y) \,\mathrm{d}x \,\mathrm{d}y,$$

which follows also from the fact that the Jacobian $\frac{\partial(x,c)}{\partial(x,y)} = \begin{vmatrix} 1 & 0 \\ a & b \end{vmatrix}$ of the mapping $(x, y) \mapsto (x, ax + by)$ is equal to b.

The former argument (the rotation) fails for nonlinear φ (think, why), but the latter argument (the change of variables) still works, and generalizes to dimension n + 1, as we'll see soon.

Recall the implicit function theorem 5c1 (for c = 1, and some notations changed): if $x_0 \in \mathbb{R}^n$, $y_0 \in \mathbb{R}$, $\varphi : \mathbb{R}^{n+1} \to \mathbb{R}$ is continuously differentiable near (x_0, y_0) , $\varphi(x_0, y_0) = 0$, and $\left(\frac{\partial \varphi}{\partial y}\right)_{(x_0, y_0)} \neq 0$, then there exist open neighborhoods U of x_0 and V of y_0 such that

250

(a) for every $x \in U$ there exists one and only one $y \in V$ satisfying $\varphi(x, y) = 0$;

(b) a function $g : U \to V$ defined by $\varphi(x, g(x)) = 0$ is continuously differentiable, and $\nabla g(x_0) = -\frac{1}{(\frac{\partial \varphi}{\partial y})_{(x_0,y_0)}} (\frac{\partial \varphi}{\partial x})_{(x_0,y_0)}$.

Recall also the idea of the proof: a mapping

$$h\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x\\\varphi(x,y)\end{pmatrix}$$

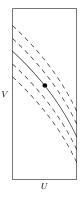
is a diffeomorphism $U \times V \to h(U \times V)$, and

$$h^{-1}\begin{pmatrix}x\\0\end{pmatrix} = \begin{pmatrix}x\\g(x)\end{pmatrix}.$$

We need a bit more: there exists an open neighborhood W of 0 in \mathbb{R} such that for every $c \in W$,

(a') for every $x \in U$ there exists one and only one $y \in V$ satisfying $\varphi(x, y) = c$;

(b') a function $g_c : U \to V$ defined by $\varphi(x, g_c(x)) = c$ is continuously differentiable, and $\nabla g_c(x) = -\frac{1}{(\frac{\partial \varphi}{\partial y})_{(x,y)}} (\frac{\partial \varphi}{\partial x})_{(x,y)}$ whenever $x \in U, y = g_c(x)$.



This is easy to prove; basically, $h^{-1}\begin{pmatrix}x\\c\end{pmatrix} = \begin{pmatrix}x\\g_c(x)\end{pmatrix}$; for (b'), differentiate in x the relation $\varphi(x, g_c(x)) = c$.

Thus, for every $c \in W$ the set

$$M_c = \{(x, y) \in U \times V : \varphi(x, y) = c\}$$

is an *n*-manifold in \mathbb{R}^{n+1} ; the function $\varphi(\cdot) - c$ is a co-chart of M_c ; and the mapping $U \ni x \mapsto \psi_c(x) = (x, g_c(x))$ is a chart of the whole M_c ; in other words, M_c is the graph of g_c . The set

$$\bigcup_{c \in W} M_c = h^{-1}(U \times W)$$

is an open neighborhood of (x_0, y_0) .

16a2 Proposition. For every continuous, compactly supported function f on $\bigcup_{c \in W} M_c$,

$$\int_{W} \mathrm{d}c \int_{M_c} f = \int f |\nabla \varphi| \, .$$

16a3 Exercise. Find J_{ψ} given $\psi(x) = (x, g(x)) \in \mathbb{R}^{n+1}$ for $x \in \mathbb{R}^n$ and $g \in C^1(\mathbb{R}^n).^1$ Answer: $\sqrt{1 + |\nabla g|^2}$.

Proof of Prop. 16a2. For every $c \in W$,

$$\int_{M_c} f = \int_U f\left(x, g_c(x)\right) \underbrace{\sqrt{1 + |\nabla g_c|^2}}_{J_{\psi_c}} \, \mathrm{d}x$$

due to 16a3; thus, the function $c \mapsto \int_{M_c} f$ is continuous, and

$$\int_{W} \mathrm{d}c \int_{M_c} f = \iint_{U \times W} f(x, g_c(x)) \sqrt{1 + |\nabla g_c(x)|^2} \, \mathrm{d}x \, \mathrm{d}c.$$

On the other hand, $Dh = \left(\begin{array}{c|c} \operatorname{id} & 0\\ \hline \frac{\partial \varphi}{\partial x} & \frac{\partial \varphi}{\partial y} \end{array}\right)$, therefore $\det(Dh) = \frac{\partial \varphi}{\partial y}$. Also,

$$1 + |\nabla g_c(x)|^2 = 1 + \left(\frac{1}{\left(\frac{\partial\varphi}{\partial y}\right)_{(x,y)}}\right)^2 \left| \left(\frac{\partial\varphi}{\partial x}\right)_{(x,y)} \right|^2 = \frac{|\nabla\varphi(x,y)|^2}{\left(\left(\frac{\partial\varphi}{\partial y}\right)_{(x,y)}\right)^2}$$

whenever $y = g_c(x)$. Finally, we apply change of variables:

$$\int_{W} \mathrm{d}c \int_{M_{c}} f = \iint_{U \times W} f(x, g_{c}(x)) \frac{|\nabla \varphi(x, g_{c}(x))|}{|\det(Dh)_{(x, g_{c}(x))}|} \, \mathrm{d}x \, \mathrm{d}c =$$

$$= \iint_{U \times W} \frac{f(h^{-1}(x, c)) |\nabla \varphi(h^{-1}(x, c))|}{|\det(Dh)_{h^{-1}(x, c)}|} \, \mathrm{d}x \, \mathrm{d}c =$$

$$= \iint_{U \times W} f(h^{-1}(x, c)) |\nabla \varphi(h^{-1}(x, c))|| \det(Dh^{-1})_{(x, c)}| \, \mathrm{d}x \, \mathrm{d}c =$$

$$= \iint_{h^{-1}(U \times W)} f(x, y) |\nabla \varphi(x, y)| \, \mathrm{d}x \, \mathrm{d}y \, .$$

16b Many-chart integration

Recall that $\int_{(M,\mathcal{O})} \omega$ is defined by (15c2) whenever (M,\mathcal{O}) is an oriented *n*-manifold and ω a single-chart *n*-form on *M*. The linearity,

(16b1)
$$\int_{(M,\mathcal{O})} (c_1 \omega_1 + c_2 \omega_2) = c_1 \int_{(M,\mathcal{O})} \omega_1 + c_2 \int_{(M,\mathcal{O})} \omega_2 ,$$

¹Hint: in order to avoid working hard on a determinant, use the rotation invariance.

is ensured by (15c2) provided that both forms ω_1, ω_2 have compact supports within the same chart.

Analysis-III,IV

The idea of a "partition of unity" was used in Sect. 8h (when proving Th. 8a5) in a rudimentary form: partition into integrable functions. Now we need a bit more: partition into continuous functions.¹

16b2 Lemma. Let $M \subset \mathbb{R}^N$ be an *n*-manifold and $K \subset M$ a compact set. Then there exist single-chart continuous functions $f_1, \ldots, f_k : M \to [0, 1]$ such that $f_1 + \cdots + f_k = 1$ on K.

Proof. For every $x \in K$ a function $g_x : y \mapsto (\varepsilon_x - |y - x|)^+$ is single-chart if ε_x is small enough, continuous, and positive in the open ε_x -neighborhood of x. These neighborhoods are an open covering of K; we choose a finite subcovering and get single-chart functions $g_1, \ldots, g_k : M \to [0, \infty)$ whose sum $g = g_1 + \cdots + g_k$ is (strictly) positive on K. We take $\varepsilon > 0$ such that $g(\cdot) \ge \varepsilon$ on K and note that functions $f_1, \ldots, f_k : M \to [0, \infty)$ defined by

$$f_i(x) = \frac{g_i(x)}{\max(g(x),\varepsilon)}$$

have the required properties.

It follows that every compactly supported n-form on M is the sum of single-chart n-forms,

$$\omega = \omega_1 + \dots + \omega_k, \quad \omega_i = f_i \omega.$$

It is tempting to define (assuming that \mathcal{O} is an orientation of M)

(16b3)
$$\int_{(M,\mathcal{O})} \omega = \int_{(M,\mathcal{O})} \omega_1 + \dots + \int_{(M,\mathcal{O})} \omega_k;$$

however, does this sum depend on the choice of $\omega_1, \ldots, \omega_k$? If $\omega_1 + \cdots + \omega_k = \omega = \tilde{\omega}_1 + \cdots + \tilde{\omega}_{\tilde{k}}$ then $\omega_1 + \cdots + \omega_k + (-\tilde{\omega}_1) + \cdots + (-\tilde{\omega}_{\tilde{k}}) = 0$; the question is, whether the corresponding sum of integrals must vanish, or not.

16b4 Lemma. Let $\omega_1, \ldots, \omega_\ell$ be single-chart *n*-forms on an *n*-manifold M, and \mathcal{O} an orientation of M;

if
$$\omega_1 + \dots + \omega_\ell = 0$$
 then $\int_{(M,\mathcal{O})} \omega_1 + \dots + \int_{(M,\mathcal{O})} \omega_\ell = 0$.

¹Still more will be needed in the proof of Th. 16b15: partition into C^1 functions. (Ultimately, partitions into C^{∞} functions exist, but we do not need them.)

Proof. Lemma 16b2 gives single-chart continuous functions f_1, \ldots, f_k such that $f_1 + \cdots + f_k = 1$ on a compact set that supports $\omega_1, \ldots, \omega_\ell$. By (16b1), on one hand,

$$\sum_{j=1}^{\ell} \int_{(M,\mathcal{O})} f_i \omega_j = \int_{(M,\mathcal{O})} \underbrace{\sum_{j=1}^{\ell} f_i \omega_j}_{=0} = 0,$$

since f_i is single-chart; and on the other hand,

$$\sum_{i=1}^{k} \int_{(M,\mathcal{O})} f_i \omega_j = \int_{(M,\mathcal{O})} \underbrace{\sum_{i=1}^{k} f_i \omega_j}_{=\omega_j} = \int_{(M,\mathcal{O})} \omega_j \,,$$

since ω_j is single-chart. Therefore

$$\sum_{j=1}^{\ell} \int_{(M,\mathcal{O})} \omega_j = \sum_{j=1}^{\ell} \sum_{i=1}^k \int_{(M,\mathcal{O})} f_i \omega_j = \sum_{i=1}^k \sum_{j=1}^{\ell} \int_{(M,\mathcal{O})} f_i \omega_j = \sum_{i=1}^k 0 = 0.$$

We see that (16b3) is indeed a correct definition of $\int_{(M,\mathcal{O})} \omega$ whenever ω is a compactly supported *n*-form on M.

Now we can define the *n*-dimensional volume of a compact oriented *n*-manifold (M, \mathcal{O}) by

$$V_n(M,\mathcal{O}) = \int_{(M,\mathcal{O})} \mu_{(M,\mathcal{O})} \in (0,\infty)$$

where $\mu_{(M,\mathcal{O})}$ is the volume form on (M,\mathcal{O}) . However, the Möbius strip should have an area, too!

We want to define

(16b5)
$$\int_M f = \int_{(G,\psi)} f\mu_{(G,\psi)}$$

for a single-chart $f \in C(M)$; here (G, ψ) is a chart such that f is compactly supported within $\psi(G)$, and $\mu_{(G,\psi)}$ is the volume form on the *n*-manifold $\psi(G)$ (oriented, even if M is non-orientable). To this end we need a counterpart of Lemma 15c3:

$$\int_{(G_1,\psi_1)} f\mu_{(G_1,\psi_1)} = \int_{(G_2,\psi_2)} f\mu_{(G_2,\psi_2)}$$

whenever (G_1, ψ_1) , (G_2, ψ_2) are charts such that $K \subset \psi_1(G_1) \cap \psi_2(G_2)$ for some compact K that supports f. We do it similarly to the proof of 15c3, but this time we split the relatively open set $\tilde{G} = \psi_1(G_1) \cap \psi_2(G_2)$ in two relatively open sets \tilde{G}_-, \tilde{G}_+ according to the sign of det $D\varphi$ (having $\psi_2^{-1} = \varphi \circ \psi_1^{-1}$ on \tilde{G}). It remains to take into account that $\mu_{(G_1,\psi_1)} = \mu_{(G_2,\psi_2)}$ on \tilde{G}_+ but $\mu_{(G_1,\psi_1)} = -\mu_{(G_2,\psi_2)}$ on \tilde{G}_- .

We see that (16b5) is indeed a correct definition of $\int_M f$ for a single-chart $f \in C(M)$. Now, similarly to (16b2), we define

(16b6)
$$\int_M f = \int_M f_1 + \dots + \int_M f_k$$

whenever $f = f_1 + \cdots + f_k$ with single-chart $f_i \in C(M)$.

16b7 Exercise. (a) Prove that (16b6) is a correct definition of $\int_M f$ for all compactly supported $f \in C(M)$;¹

(b) formulate and prove linearity and monotonicity of the integral.

Now it is easy to define lower and upper integrals for discontinuous compactly supported functions $M \to \mathbb{R}$ (recall 6i2), and then, Riemann integrability and Jordan measure on an *n*-manifold in \mathbb{R}^N . For functions with no compact support, improper integral may be used. In particular, for a non-compact manifold M,

$$V_n(M) = \sup_{f \le 1} \int_M f = \sup_E V_n(E)$$

where f runs over compactly supported continuous (or just integrable) functions, and E runs over sets Jordan measurable in M. Monotone convergence of volumes (similar to 9c1) holds.

16b8 Exercise. Find the area of the (non-compact) Möbius strip 15b7.

Here is a harder exercise: find the area of the compact non-orientable 2-manifold in \mathbb{R}^6 introduced in 15b9.

CURVILINEAR ITERATED INTEGRAL REVISITED

16b9 Theorem. Let $G \subset \mathbb{R}^n$ be an open set, n > 1, $\varphi \in C^1(G)$, $\forall x \in G \ \nabla \varphi(x) \neq 0$, and $f \in C(G)$ compactly supported. Then for every $c \in \varphi(G)$ the set $M_c = \{x \in G : \varphi(x) = c\}$ is an (n-1)-manifold in \mathbb{R}^n , a function $c \mapsto \int_{M_c} f$ on $\varphi(G)$ is continuous and compactly supported, and

$$\int_{\varphi(G)} \mathrm{d}c \int_{M_c} f = \int_G f |\nabla \varphi| \,.$$

¹Hint: use partitions of unity.

16b10 Remark. A function $c \mapsto V_{n-1}(M_c)$ need not be continuous on $\varphi(G)$. For a counterexample try $G = \{(x, y) : y < g(x)\} \subset \mathbb{R}^2$ and $\varphi(x, y) = y$.

16b11 Exercise. Prove Theorem 16b9.¹

16b12 Exercise. For $f \in C(\mathbb{R}^n \setminus \{0\})$ prove that

$$\int_{(0,\infty)} \mathrm{d}r \int_{\{x:|x|=r\}} f = \int_{\mathbb{R}^n \setminus \{0\}} f \,,$$

where $\int_{(0,\infty)}$ and $\int_{\mathbb{R}^n \setminus \{0\}}$ are improper; that is, each side of the equality may be a number, $-\infty$, $+\infty$ or $\infty - \infty$.²

In particular,

$$\int_{\mathbb{R}^n \setminus \{0\}} f(|x|) \,\mathrm{d}x = \int_{(0,\infty)} V_{n-1}(S_r) f(r) \,\mathrm{d}r \,,$$

where $S_r = \{x : |x| = r\}$ is the sphere. It is easy to see that $V_{n-1}(S_r) = r^{n-1}V_{n-1}(S_1)$; thus,

$$\int_{\mathbb{R}^n \setminus \{0\}} f(|x|) \, \mathrm{d}x = V_{n-1}(S_1) \int_{(0,\infty)} r^{n-1} f(r) \, \mathrm{d}r \, .$$

Now we may take $f(r) = e^{-r^2}$ and get

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \left(\int_{\mathbb{R}} e^{-t^2} dt\right)^n = (\sqrt{\pi})^n = \pi^{n/2}$$

(recall 9e); thus,

$$\pi^{n/2} = V_{n-1}(S_1) \int_0^\infty r^{n-1} \mathrm{e}^{-r^2} \,\mathrm{d}r \,.$$

Taking into account that

$$\int_0^\infty r^{n-1} e^{-r^2} dr = \int_0^\infty t^{(n-1)/2} e^{-t} \frac{dt}{2\sqrt{t}} = \frac{1}{2} \Gamma\left(\frac{n}{2}\right)$$

(recall 9j1), we get³

(16b13)
$$V_{n-1}(S_1) = \frac{2\pi^{n/2}}{\Gamma(n/2)}.$$

¹Hint: use 16a2 and a partition of unity.

²Hint: start with $f \ge 0$, approximate f from below, apply 16b9.

³See also Sjamaar, Exer. 9.6.

Alternatively we may use the volume of the ball $B_1 = \{x : |x| < 1\},\$

$$V_n(B_1) = \frac{2\pi^{n/2}}{n\Gamma(n/2)},$$

calculated in Sect. 9j.

DIVERGENCE THEOREM REVISITED

An open set $G \subset \mathbb{R}^n$ is called *regular*, if $(\overline{G})^\circ = G$; that is, the interior of the closure of G is equal to G. (Generally it cannot be less than G, but can be more than G; a simple example: $G = \mathbb{R} \setminus \{0\}$.) Equivalently, G is regular if (and only if) $\partial G = \partial(\mathbb{R}^n \setminus \overline{G})$; that is, the boundary of the exterior of G is equal to the boundary of G.

Let $G \subset \mathbb{R}^n$ be a bounded regular open set, $M \subset \mathbb{R}^n$ a (necessarily compact) (n-1)-manifold, and $\partial G = M$ (the topological boundary, nothing "singular"...). We want to prove that the flux of a vector field through M is equal to the integral of its divergence over G. In the language of differential forms (recall 14c8, 14c9) it means a "nonsingular" Stokes' theorem for k = n - 1: $\int_G d\omega = \int_M \omega$ for every (n - 1)-form ω on \mathbb{R}^n . However, this makes no sense without orienting G and M.

Recall 14c: the hyperface $\{1\} \times [-1,1]^{n-1}$ is a part of the boundary of the cube $(-1,1)^n$; the tangent space to the hyperface is spanned by vectors e_2, \ldots, e_n ; and its orientation conforms to the basis (e_2, \ldots, e_n) (in this order), while the orientation of the cube conforms to (e_1, \ldots, e_n) , of course. And the vector e_1 is the outward unit normal to the hyperface, according to the sign of the inequality $x_1 < 1$ on $(-1,1)^n$.

16b14 Definition. (a) A non-tangent vector $h \in \mathbb{R}^n \setminus T_x M$ is directed outwards, if $x - \varepsilon h$ belongs to G and $x + \varepsilon h$ does not belong to G for all ε small enough;

(b) an orientation \mathcal{O} of M conforms at $x \in M$ to an orientation \mathcal{O} of G if (h_2, \ldots, h_n) conforms to $\tilde{\mathcal{O}}_x$ whenever h_1 is directed outwards and (h_1, h_2, \ldots, h_n) conforms to \mathcal{O}_x . (Here $h_2, \ldots, h_n \in T_x M$, $h_1 \notin T_x M$.)

For a non-regular G it may happen that $x - \varepsilon h$ and $x + \varepsilon h$ both belong to G (for all ε small enough); but for a regular G either h or (-h) must be directed outwards (and then the other is said to be directed inwards).

16b15 Theorem. Let $G \subset \mathbb{R}^n$ be a bounded regular open set, $M \subset \mathbb{R}^n$ an (n-1)-manifold, $\partial G = M$, and orientations \mathcal{O} of G and $\tilde{\mathcal{O}}$ of M conform (at every point of M). Then

$$\int_{(G,\mathcal{O})} d\omega = \int_{(M,\tilde{\mathcal{O}})} \omega$$

for every (n-1)-form ω of class C^1 on \mathbb{R}^n .

The divergence theorem follows.

16b16 Theorem. Let $G \subset \mathbb{R}^n$ be a bounded regular open set, $M \subset \mathbb{R}^n$ an (n-1)-manifold, $\partial G = M$. Then

$$\int_G \operatorname{div} H = \int_M \langle H, \vec{n} \rangle$$

for every vector field H of class C^1 on \mathbb{R}^n ; here $\vec{n}: M \to \mathbb{R}^n$, $\vec{n}(x)$ is the outward unit normal vector at $x \in M$.

It remains to prove 16b15. Sometimes it is easy to construct an *n*-chain C such that $C \sim (G, \mathcal{O})$ and $\partial C \sim (M, \tilde{\mathcal{O}})$ in the sense that $\int_C d\omega = \int_{(G,\mathcal{O})} d\omega$ and $\int_{\partial C} \omega = \int_{(M,\mathcal{O})} \omega$; but in general this is problematic. Instead, one turns to a single-chart ω via a partition of unity; and locally M is just the graph of a function.

We restrict ourselves to n = 2; the general case is quite similar.

We define a good box (for given G and M) as an open box $B \subset \mathbb{R}^2$ such that $M \cap B$ is either the empty set or the graph of a function, either y = f(x) or x = g(y). More exactly, "y = f(x)" means here the following: $B = U \times V$ for some open intervals $U, V \subset \mathbb{R}$; $f \in C^1(\overline{U}), f(\overline{U}) \subset V$; and $M \cap B = \{(x, f(x)) : x \in U\}$. (The case "x = g(y)" is interpreted similarly.)

The closure $G \cup M$ of G is compact, and all good boxes are its open covering. We choose a finite covering: $G \cup M \subset B_1 \cup \cdots \cup B_k$, and construct a corresponding partition of unity of class C^1 :

$$f_1, \dots, f_k : \mathbb{R}^n \to [0, 1]$$
 are continuously differentiable,
 $f_i(\cdot) = 0$ outside B_i ,
 $f_1 + \dots + f_k = 1$ on $G \cup M$.

To this end, similarly to the proof of 16b2, we let $g = g_1 + \cdots + g_k$, take ε such that $g(\cdot) \geq \varepsilon$ on K, and put

$$f_i(x) = \frac{g_i(x)}{g(x) + \frac{\varepsilon}{2} \left(1 - \frac{g(x)}{\varepsilon}\right)_+^2};$$

but this time we need $g_i \in C^1$. We obtain g_i by a linear transformation (of arguments) from (say)

$$g(x, y) = h(x)h(y),$$

$$h(t) = \begin{cases} (1 - t^2)^2 & \text{for } -1 < t < 1, \\ 0 & \text{otherwise;} \end{cases}$$

then f_1, \ldots, f_k have the required properties.

Given an (n-1)-form ω of class C^1 on \mathbb{R}^n , we have

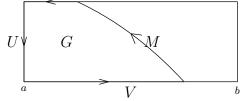
$$\omega = \omega_1 + \dots + \omega_k$$
 on $G \cup M$

where each $\omega_i = f_i \omega$ is an (n-1)-form of class C^1 , and $\omega_i = 0$ outside B_i . In order to prove the equality $\int_{(G,\mathcal{O})} d\omega = \int_{(M,\tilde{\mathcal{O}})} \omega$ it is sufficient (due to linearity) to prove the same equality for each ω_i .

The case $M \cap B_i = \emptyset$ is simple: $\int_{(M,\tilde{\mathcal{O}})} \omega_i = 0$ (since $\omega_i = 0$ on M), and $\int_{(G,\mathcal{O})} d\omega = \pm \int_{B_i} d\omega = \pm \int_{\partial B_i} \omega = 0$ (since $\omega_i = 0$ on ∂B_i).

It remains to consider the case "x = g(y)" (since the case "y = f(x)" is similar).¹ That is, $B_i = V \times U$, $g : \overline{U} \to V$ is continuously differentiable, and $M \cap B_i = \{(g(y), y) : y \in U\}$. We do not know which orientation of Bconforms to the given orientation \mathcal{O} of G, but it does not matter, since the other orientation changes the signs of both sides of the equality.

The set $(V \times U) \setminus M$ has exactly two connected components (think, why), one of them being $G \cap (V \times U)$ (think, why). We may assume that $G \cap (V \times U) = \{(x, y) \in V \times U : x < g(y)\}$; in the other case, "x > g(y)", we flip the sign of x.



Consider a mapping $\psi_1 : U \to \mathbb{R}^2$, $\psi_1(y) = (g(y), y)$; (U, ψ_1) is a chart of the 1-manifold $M \cap (V \times U)$.

The set $G \cap (V \times U)$ may be treated as a 2-manifold (in \mathbb{R}^2); a mapping $\psi_2 : V \times U \to \mathbb{R}^2$,

$$\psi_2(x,y) = \left(a + \frac{x-a}{b-a}(g(y)-a), y\right),$$

where (a, b) = V, is a diffeomorphism $V \times U \to G \cap (V \times U)$; and $(V \times U, \psi_2)$ is a chart of $G \cap (V \times U)$.

These charts, (U, ψ_1) and $(V \times U, \psi_2)$, lead to orientations, \mathcal{O}_1 on $M \cap (V \times U)$ and \mathcal{O}_2 on $G \cap (V \times U)$, and these two orientations conform (according to 16b14(b)) at every $(g(y), y) \in M \cap (V \times U)$; here is why. The vector $(g'(y), 1) \in T_{(q(y),y)}M$ conforms to \mathcal{O}_1 ; the vector (1, 0) is directed

¹Why prefer "x = g(y)" to "y = f(x)"? Since our preferred hyperface $\{1\} \times [-1, 1]^{n-1}$ of $[-1, 1]^n$ for n = 2 is "x = 1", not " $y = \dots$ ".

outwards; and the basis ((1,0), (g'(y),1)) conforms to \mathcal{O}_2 , since $\begin{vmatrix} 1 & 0 \\ g'(y) & 1 \end{vmatrix} > 0$, and det $D\psi_2 > 0$ as well.

We apply Stokes' theorem to the singular box $\Gamma : \overline{V} \times \overline{U} \to \mathbb{R}^2$, $\Gamma(x, y) = \left(a + \frac{x-a}{b-a}(g(y) - a), y\right)$, getting $\int_{\Gamma} d\omega = \int_{\partial \Gamma} \omega$. It remains to note that

$$\int_{\Gamma} d\omega = \int_{(G \cap (V \times U), \mathcal{O}_2)} d\omega \,, \quad \int_{\partial \Gamma} \omega = \int_{(M \cap (V \times U), \mathcal{O}_1)} \omega \,.$$

Index

conforms, 257

volume, 254, 255

outwards, 257

partition of unity, 253

regular, 257

sphere, 256

 $\begin{array}{l} \partial G,\,257\\ \int_{M}f,\,254,\,255\\ \int_{(M,\mathcal{O})}\omega,\,253\\ V_{n}(M),\,255\\ V_{n}(M,\mathcal{O}),\,254 \end{array}$