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The general notion of a continuous mapping from Rn to Rm embraces
continuous functions of several variables, linear operators Rn → Rm, paths
in Rm, etc. Many nonlinear mappings are approximately linear near a point,
be it dimension one or more; but in higher dimensions linear operators are
not just coefficients.

2a A mapping near a point

We define a set of mappings Rn → Rm, denoted on,m(| · |p) or just o(| · |p), for
a given p ≥ 0, as follows.1 2 [Sh:Def.4.2.1]

2a1 Definition. A mapping f : Rn → Rm belongs to o(| · |p) if

|f(x)|
|x|p

→ 0 as x→ 0 , and f(0) = 0 .

Naturally, we write o(1) instead of o(| · |0), and o(| · |) instead of o(| · |1).
One traditionally writes f(x) = o(|x|p) rather than f ∈ o(| · |p).3
An equivalent formulation: for every ε > 0 the inequality

|f(x)| ≤ ε|x|p

holds on some neighborhood of 0.
Here “neighborhood of 0” may be treated in many ways, for example,

1This is about |x| → 0; a similar notation is used for |x| → ∞, but we do not need it
now.

2“Bachmann-Landau notation”.
3Shurman [Sh:Sect.4.2] writes “o(h)” rather than “o(| · |)” and “f is o(h)” rather than

“f ∈ o(| · |)”, but does not hesitate writing “o(h) ⊂ o(1)”.
Quote: How many use the symbolism O(1) without realizing that there is a tacit conven-
tion? It is true that sinx = O(1); but it is not true that O(1) = sinx. (J.E. Littlewood,
“A mathematician’s miscellany”, 1953, p.42. pdf).

http://archive.org/details/mathematiciansmi033496mbp
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∗ (a) an open ball {x : |x| < δ} (δ > 0);

∗ (b) a closed ball {x : |x| ≤ δ} (δ > 0);

∗ (c) an open set containing 0;

∗ (d) a set whose interior contains 0.

These are different classes of sets; however, every set of class (d) contains
some set of class (a) (and the other way round); and the same holds for all
other pairs of these classes.1 This is why (a), (b), (c), (d) are interchangeable
in the phrase “on some neighborhood of 0”. This phrase may be abbreviated
to “near 0”.

From now on,
“neighborhood of x” stands for “a set whose interior contains x”;
“open neighborhood of x” stands for “an open set containing x”.

The intersection of two (or finitely many) neighborhoods of x is a neigh-
borhood of x; for infinitely many neighborhoods this is not the case.

2a2 Exercise. If a linear operator T : Rn → Rm belongs to o(| · |) then
T = 0. Prove it. [Sh:Prop.4.2.5]

2a3 Exercise. If a polynomial P : Rn → R of degree ≤ k belongs to o(| · |k)
then P = 0. Prove it.2

Two mappings f, g : Rn → Rm equal near x are called germ equivalent
at x. The same applies to mappings defined on (generally different) neigh-
borhoods of x.3 This is an equivalence relation. Its equivalence classes are
called germs. The germ of f is denoted by [f ]x.

In contrast to a function, a germ has no values at points (except for x);
for a given y 6= x,

[f1]x = [f2]x does not imply f1(y) = f2(y) .

Similarly to functions, germs may be multiplied by real numbers; for a given
c ∈ R,

[f1]x = [f2]x =⇒ [cf1]x = [cf2]x ,

and added:
[f1]x = [f2]x

[g1]x = [g2]x

}
=⇒ [f1 + g1]x = [f2 + g2]x

1In fact, the class (d) is a filter, while classes (a), (b), (c) are its bases.
2Hint: first, prove it for n = 1; then consider the polynomial R 3 t 7→ P (tx).
3More generally, one may consider mappings f defined on A ∩ U where A ⊂ Rn is a

given set (not dependent on f) and U is a neighborhood of x (dependent on f). Still
more generally, A could also depend on f ; but this situation is better served by mappings
Rn → Rm ∪{∞}, or A→ Rm ∪{∞}. Of course, x should be a limit point of A (otherwise
the theory is trivial).
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(even if the functions have different domains). Germs are a vector space.

2a4 Exercise. Prove that the vector space of germs is infinite-dimensional.1,2

Many properties of mappings apply readily to germs, according to the
pattern
[f ]x is called when f is near x;
here may be “linear”, “bounded”, “continuous”, “one-to-one” etc.

If [f1]x = [f2]x then limy→x f1(y) = limy→x f2(y) in the following sense:
either both limits exist and coincide, or neither limit exists. This way the
notion of limit applies to germs; it is a local notion.

If [f1]0 = [f2]0 then f1 ∈ o(| · |p) ⇐⇒ f2 ∈ o(| · |p);
thus, o(| · |p) may be treated as a set of germs (rather than mappings); also
a local notion.

When locality is evident, I do not hesitate writing “let f : Rn → Rm”
rather than “let f : U → Rm where U ⊂ Rn is a neighborhood of x0”.

2a5 Exercise. (a) Prove that f ∈ o(1) if and only if f(0) = 0 and f is
continuous at 0.

(b) Prove or disprove: if f ∈ o(1) then f is continuous near 0.

2a6 Exercise. (a) Find an example of a function f : R2 → R such that
f /∈ o(| · |) and nevertheless the function R 3 y 7→ f(x, y) belongs to o(| · |)
for every x ∈ R, and the function R 3 x 7→ f(x, y) belongs to o(| · |) for every
y ∈ R .3 4

(b) Can it happen that a continuous f : R2 → R is not o(| · |) and
nevertheless the function R 3 y 7→ f(x, y) vanishes near 0 for every x ∈ R,
and the function R 3 x 7→ f(x, y) vanishes near 0 for every y ∈ R ?

2a7 Exercise. (a) Find an example of a function f : Rn → R such that
f /∈ o(| · |) and nevertheless the function R 3 t 7→ f(th) belongs to o(| · |) for
every h ∈ Rn.5

(b) Can it happen that a continuous f : Rn → R is not o(| · |) and
nevertheless the function R 3 t 7→ f(th) vanishes near 0 for every h ∈ Rn ?

Similarly to o(. . . ) we define O(. . . ) as follows.

1Hint: think about polynomials.
2This space is not endowed with any useful topology.
3Hint: recall 1b2.
4See also 2e2.
5Hint: recall 1b3.
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2a8 Definition. A mapping f : Rn → Rm belongs to O(| · |p) if for some
C <∞ the inequality

|f(x)| ≤ C|x|p

holds near 0.

Also O(| · |p) may be treated as a set of germs.
Clearly,

f(x) = o(|x|p) =⇒ f(x) = O(|x|p) ,

that is, o(| · |p) ⊂ O(| · |p). Also,

f(x) = O(|x|p+ε) =⇒ f(x) = o(|x|p)

whenever ε > 0.

2a9 Exercise. Both o(| · |p) and O(| · |p) are vector spaces (subspaces of the
vector space of germs). Prove it. [Sh:Prop.4.2.4]

2a10 Exercise. Prove that⋂
ε∈(0,p)

o(| · |p−ε) % O(| · |p) ,
⋃
ε>0

O(| · |p+ε) $ o(| · |p) .

2a11 Exercise. If f(x) = o(|x|p) and g(x) = O(|x|q) then f(x)g(x) =
o(|x|p+q). Prove it. [Sh:Prop.4.2.6]

We turn to the composition g◦f : Rn → Rl of two mappings f : Rn → Rm

and g : Rm → Rl.

2a12 Exercise. If f ∈ o(| · |p) and g ∈ O(| · |q) then g ◦ f ∈ o(| · |pq). Prove
it. [Sh:Prop.4.2.7]

2a13 Exercise. It can happen that f ∈ O(1) and g ∈ o(|·|q) but g◦f /∈ o(1).
Find a counterexample.1 Can it happen that g ◦ f /∈ O(1)?

2a14 Exercise. If [f1]0 = [f2]0 ∈ o(1) and [g1]0 = [g2]0 then [g1 ◦ f1]0 =
[g2 ◦ f2]0. Prove it. What about O(1) instead of o(1)?

Thus, composition of germs is well-defined under an appropriate condi-
tion.

2a15 Exercise. Formulate and prove the componentwise nature of o(. . . )
and O(. . . ).2 [Sh:Ex.4.2.2]

1Hint: try a constant f .
2Similarly to 1b4, not 1b5!



Tel Aviv University, 2013/14 Analysis-III,IV 21

An arbitrary norm ‖ · ‖ on Rn being equivalent to the Euclidean norm | · |
(c| · | ≤ ‖ · ‖ ≤ C| · |, recall Sect. 1e), we may replace | · | with ‖ · ‖ in the
definitions of o(. . . ) and O(. . . ). Thus, o(. . . ) and O(. . . ) are well-defined
for mappings between arbitrary vector fd spaces.

2a16 Exercise. Let V1, V2 be vector fd spaces, f : V1 → V2.
(a) If f ∈ o(| · |p) then f |V ∈ o(| · |p) for every subspace V ⊂ V1 (here f |V

is the restriction); prove it. The same for O(. . . ).
(b) Prove or disprove: if f : R2 → R satisfies f |V ∈ o(1) for every one-

dimensional vector subspace V ⊂ R2 then f ∈ o(1).1

2a17 Exercise. Let S1, S2 be affine fd spaces. Prove that a mapping f : S1 →
S2 is continuous at a given point x0 ∈ S1 if and only if f(x0+·)−f(x0) ∈ o(1).

Less formally: f(x0 + h)− f(x0) = o(1) as h→ 0.

Note that f(x0 + ·)− f(x0) : ~S1 → ~S2 (the difference spaces of S1, S2).

2b Derivative

2b1 Definition. A linear operator T : Rn → Rm is the derivative (or differ-
ential) at x0 ∈ Rn of a mapping f : Rn → Rm if [Sh:Def.4.3.2]

f(x0 + h)− f(x0)− T (h) = o(|h|) .

Less formally, f(x0 + h) = f(x0) + T (h) + o(|h|), that is, f(x) = f(x0) +
T (x− x0) + o(|x− x0|).

More formally, f(x0 + ·)− f(x0)− T (·) ∈ o(| · |).
Why “the derivative” rather than “a derivative”? Since such T (if exists)

is unique. Indeed, the difference between two such operators must be 0 by
2a2 (and 2a9). [Sh:Prop.4.3.3]

If the derivative exists then f is called differentiable at x0, and the deriva-
tive is denoted by (Df)x0 , or Dfx0 , Df(x0), df(x0) etc. (And sometimes by
f ′(x0); but see 2b2 below.) Being a linear operator, it may be thought of as a
matrix m×n. If (Df)x exists for all x ∈ Rn, we say that f is differentiable on
Rn. In this case Df is a (generally nonlinear) mapping from Rn to L(Rn,Rm)
(or Mm,n(R)). Similarly, f may be differentiable on a set X ⊂ Rn, and then
Df : X → L(Rn,Rm).

2b2 Exercise. A mapping f : R → Rm is differentiable at x0 ∈ R if and
only if the limit

d

dx

∣∣∣
x=x0

f(x) = f ′(x0) = lim
x→x0

1

x− x0
(
f(x)− f(x0)

)
1Hint: recall 1b3.
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exists; in this case1

(Df)x0 : h 7→ hf ′(x0) ; f ′(x0) = (Df)x0(1) .

Prove it.

2b3 Exercise. Let f : R → R be differentiable at x0, and (Df)x0 > 0.
Prove or disprove:

(a) ∃ε > 0 ∀x ∈ (x0, x0 + ε) f(x) > f(x0);
(b) f is increasing near x0.

2b4 Exercise. Let f : R2 → R2 be defined by f(x, y) = (x2−y2, 2xy). Then
f is differentiable on R2, and (Df)(x0,y0) : (h, k) 7→ (2x0h−2y0k, 2y0h+2x0k),
that is, (Df)(x,y) =

(
2x −2y
2y 2x

)
. Prove it (using only 2b1 and Sect. 2a). Do you

guess why this Df is a linear map R2 →M2,2(R)? [Sh:Exer.4.3.4]

2b5 Exercise. (a) Prove that continuity at x0 is necessary for differentia-
bility at x0. [Sh:Prop.4.3.4]

(b) Is it sufficient?

2b6 Exercise. (a) Prove that the relation f(x0 + ·) − f(x0) ∈ O(| · |) is
necessary for differentiability at x0. [Sh:proof of Prop.4.3.4]

(b) Is it sufficient?

2b7 Exercise. Formulate and prove the componentwise nature of differen-
tiability and derivative.2 [Sh:Ex.4.3.3]

Here is a generalization of Def. 2b1.

2b8 Definition. Let S1, S2 be affine fd spaces. A linear operator T : ~S1 → ~S2

is the derivative (or differential) at x0 ∈ S1 of a mapping f : S1 → S2 if

f(x0 + h)− f(x0)− T (h) = o(|h|) .

Note that f(x0 + ·)− f(x0)− T : ~S1 → ~S2.
We may upgrade S1, S2 to vector spaces, taking x0 = 0 and f(x0) = 0.

Then the relation f(x0 + h)− f(x0)− T (h) = o(|h|) becomes just

f − T ∈ o(| · |) .

Locality of o(| · |) implies locality of the derivative (and differentiability) at
a point.

1When m = 1 it is more convenient to write f ′(x0)h rather than hf ′(x0).
2Recall 2a15.
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2b9 Proposition. (Linearity of derivative) [Sh:Prop.4.4.2]
Let S be an affine fd space, V a vector fd space, f, g : S → V , a, b ∈ R,

and x0 ∈ S. If f, g are differentiable at x0 then also af + bg is, and(
D(af + bg)

)
x0 = a(Df)x0 + b(Dg)x0 .

Proof. We upgrade S to vector space taking x0 = 0. We get f − (Df)0 ∈
o(| · |), g − (Dg)0 ∈ o(| · |). Thus, (af + bg) −

(
a(Df)0 + b(Dg)0

)
= a

(
f −

(Df)0
)

+ b
(
g − (Dg)0

)
∈ o(| · |) by 2a9.

For f, g : S1 → S2 we cannot take arbitrary linear combinations af + bg,
but still can take affine combinations af + bg with a + b = 1; and still,(
D(af + bg)

)
x0 = a(Df)x0 + b(Dg)x0 .

2b10 Proposition. (Product rule)
Let S be an affine fd space, f, g : S → R, and x0 ∈ S. If f, g are differen-

tiable at x0 then also fg (the pointwise product) is, and(
D(fg)

)
x0 = f(x0)(Dg)x0 + g(x0)(Df)x0 .

Proof. We upgrade S to vector space taking x0 = 0. We get

f − f(0)− (Df)0︸ ︷︷ ︸
f̃

∈ o(| · |) , g − g(0)− (Dg)0︸ ︷︷ ︸
g̃

∈ o(| · |) .

Thus,

fg − (fg)(0) =
(
f(0) + (Df)0 + f̃

)(
g(0) + (Dg)0 + g̃

)
− f(0)g(0) =

= f(0)(Dg)0 + g(0)(Df)0 + f(0)g̃ + g(0)f̃ +
(
(Df)0 + f̃

)(
(Dg)0 + g̃

)︸ ︷︷ ︸
∈o(|·|)

.

2b11 Exercise. Generalize the product rule1

(a) for the inner product 〈f(·), g(·)〉 where f, g : S → Rm;
(b) for the pointwise product fg where f : S → R and g : S → Rm.

2b12 Proposition. (Chain rule) [Sh:Th.4.4.3]
Let S1, S2, S3 be affine fd spaces, f : S1 → S2, g : S2 → S3, and x0 ∈

S1. If f is differentiable at x0 and g is differentiable at f(x0) then g ◦ f is
differentiable at x0, and(

D(g ◦ f)
)
x0 = (Dg)f(x0) ◦ (Df)x0 .

1More generally: [Sh:Ex.4.4.8,4.4.9].
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Proof. We upgrade the three affine spaces to vector spaces taking x0 = 0,
f(x0) = 0 and g(f(x0)) = 0. We get

f − (Df)0︸ ︷︷ ︸
S

∈ o(| · |) , g − (Dg)0︸ ︷︷ ︸
T

∈ o(| · |) .

Thus,1 2

g ◦ f − T ◦ S = T ◦ (f − S) + (g − T ) ◦ f ∈ o(| · |) .

2b13 Exercise. Assume that mappings f : Rn → Rm, g : Rm → Rn satisfy
f(0n) = 0m, g(0m) = 0n;
g(f(x)) = x for all x near 0n;
f(g(y)) = y for all y near 0m.

(a) Does it follow that m = n?
(b) Let f be differentiable at 0n and g differentiable at 0m. Prove that

m = n.
(c) Let f be continuous at 0n and g continuous at 0m. Does it follow that

m = n?

2b14 Exercise. An affine mapping f : Rn → Rm, f(x) = Ax+b, is differen-
tiable everywhere, and (Df)x = A for all x; thus Df is a constant mapping
Rn → L(Rn,Rm).

In particular, for a constant mapping f(x) = b we get (Df)x = 0 for all
x.

Prove it. [Sh:Prop.4.4.1]

2b15 Exercise. Prove that an affine mapping f : S1 → S2 is differentiable
on S1, and (Df)x = T for all x, where T : ~S1 → ~S2 satisfies T (x1 − x2) =
f(x1)− f(x2) for all x1, x2 ∈ S1.

Below, by “differentiate” I mean: (1) find the derivative at every point of
differentiability, and (2) prove non-differentiability at every other point.

2b16 Exercise. Differentiate a mapping Rn 3 (x1, . . . , xn) 7→ f1(x1) + · · ·+
fn(xn) ∈ Rm for given differentiable f1, . . . , fn : R→ Rm.

1We move from g ◦ f to T ◦ S in two steps, changing one mapping at a time. Recall
a similar argument from Analysis 1: if xn → x and yn → y then xnyn → xy since
xnyn − xy = x(yn − y) + (xn − x)yn → 0. (Or, equally well, xn(yn − y) + (xn − x)y.)

2Do you think that g ◦ f − T ◦ S = g ◦ (f − S) + (g − T ) ◦ S as well?
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2b17 Exercise. (a) Differentiate a function Rn 3 x 7→ |x| ∈ R.
(b) Differentiate a function Rn 3 x 7→ |x|2 ∈ R.
(c) Differentiate a function Rn 3 x 7→ |x− a|p ∈ R for given a ∈ Rn and

p > 0.

2b18 Exercise. (a) Differentiate a mapping Rn \ {0} 3 x 7→ 1
|x|x ∈ Rn.

(b) Differentiate a mapping R2 \ {0} → R defined by f(r cos θ, r sin θ) =
g(θ) (where r > 0) for a given 2π-periodic differentiable g : R→ R.1 2

2b19 Exercise. Let f : Rn → R be a non-constant homogeneous differen-
tiable function; that is, f(tx) = tkf(x) for all x ∈ Rn, t ≥ 0. Prove that (a)
k ≥ 1; (b) (Df)x(x) = kf(x) (Euler’s identity). [Sh:Ex.4.5.9]

2c Derivative along vector

Let V1, V2 be vector fd spaces, V ⊂ V1 a vector subspace, and f : V1 → V2. If
f is differentiable at 0 then also its restriction f |V is, and(

D(f |V )
)
0 = (Df)0|V ,

which follows readily from 2a16(a) (and 2b8). In particular it holds for one-
dimensional subspaces

Vh = {th : t ∈ R} , h ∈ V1 , h 6= 0 ;

here f |Vh is basically a function of one variable t, f(th) = f̃(t), and we have

f̃ ′(0) = lim
t→0

1

t

(
f̃(t)− f̃(0)

)
= lim

t→0

1

t

(
f(th)− f(0)

)
= (Df)0(h) ;

this is called the derivative (of f at 0) along h and denoted by (Dhf)0 or
∇hf(0). Thus,

(Dhf)0 =
d

dt

∣∣∣
t=0
f(th) = (Df)0(h) .

(The case h = 0 is harmless: just (D0f)0 = 0.) We may also treat it as a
special case of the chain rule: f̃ = f ◦γ where γ(t) = th; (Dγ)0 = γ by 2b14,
thus (Df̃)0 = (Df)0 ◦ (Dγ)0 = (Df)0 ◦ γ by 2b12, and f̃ ′(0) = (Df̃)0(1) =
(Df)0(h).

1Hint: first, do it for g(θ) = cos θ and g(θ) = sin θ; then use arccos and arcsin. You
really need both! You also need two cases: constant and non-constant g.

2It is tempting to say that g(θ) is a differentiable function on the circle (and so, (b)
follows from (a) via the chain rule). However, the circle is not an open set! We’ll return
to the point in Analysis 4.
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The same holds for affine spaces S1, S2:(
D(f |S)

)
x0 = (Df)x0|~S

for f : S1 → S2 differentiable at x0, and affine subspace S 3 x0. For a
one-dimensional S we have S = {x0 + th : t ∈ R}, h ∈ ~S1, (Df)x0(h) =
(Dhf)x0 = d

dt

∣∣
t=0
f(x0 + th).

Nonlinear paths may be used, too. Let γ : R→ S be differentiable at 0,
γ(0) = x0, γ

′(0) = h, then

d

dt

∣∣∣
t=0
f
(
γ(t)

)
= (Dhf)x0

by the chain rule:
(
D(f ◦ γ)

)
0 = (Df)γ(0) ◦ (Dγ)0; (f ◦ γ)′(0) =

(
D(f ◦

γ)
)
0(1) = (Df)γ(0)

(
(Dγ)0(1)

)
= (Df)x0(h).

Note that Dh is linear in h, that is,

(Dc1h1+c1h2f)x0 = c1(Dh1f)x0 + c2(Dh2f)x0

due to differentiability of f at x0.

2c1 Exercise. It can happen that d
dt

∣∣
t=0
f(x0 + th) exists for all h but is

not linear in h. (Of course, such f cannot be differentiable at x0.) Give an
example.1 [Sh:Ex.4.8.10]

2c2 Exercise. It can happen that d
dt

∣∣
t=0
f(x0 + th) exists for all h and is

linear in h and nevertheless f is not differentiable at x0. Give an example.2

[Sh:Ex.4.8.11]

“The multivariate derivative is truly a pan-dimensional construct,
not just an amalgamation of cross sectional data.” [Sh:p.156]

Let f : Rn → R be differentiable at 0, and (Df)0 6= 0. Consider the
hyperplane {h ∈ Rn : (Df)0(h) = 0}, the “positive” halfspace {h ∈ Rn :
(Df)0(h) > 0} and the “negative” halfspace {h ∈ Rn : (Df)0(h) < 0}. Let
γ : R → Rn be differentiable at 0, γ(0) = 0, γ′(0) = h 6= 0. If h belongs to
the “positive” halfspace then d

dt

∣∣
t=0
f
(
γ(t)

)
> 0 and therefore ∃ε > 0 ∀t ∈

(0, ε) f
(
γ(t)

)
> f(0). If h belongs to the hyperplane then d

dt

∣∣
t=0
f
(
γ(t)

)
= 0.

In this case it can happen that γ(t) belongs to the “positive” halfspace for

1Hint: try (x, y) 7→ f(x, y)
√
x2 + y2 for f as in 1b2.

2Hint: try (x, y) 7→ f(x, y)
√
x2 + y2 for f as in 1b3.
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all t > 0 and nevertheless f
(
γ(t)

)
< f(0) for all t > 0. An example: n = 2;

f(x, y) = y − 2x2; γ(t) = (t, t2).

(Df)0(·)=0

γ

f(·)=0

The same holds for f : S → R where S is an affine fd space.
Thus, if f : S → R has a local extremum at x0 then (Df)x0 = 0.

2c3 Exercise. (Rolle theorem in Rn) Let U ⊂ Rn be a bounded open set,
f : U → R a continuous function differentiable on U and vanishing on the
boundary of U . Prove existence of x ∈ U such that (Df)x = 0. [Sh:Ex.4.8.4]

2d Mean value theorem

2d1 Proposition. Assume that x0, h ∈ Rn and f : Rn → R is differentiable
at x0 + th for all t ∈ (0, 1), and continuous at x0 and x0 + h. Then there
exists t ∈ (0, 1) such that

f(x0 + h)− f(x0) = (Dhf)x0+th .

Proof. We introduce ϕ : [0, 1] → R by ϕ(t) = f(x0 + th), note that ϕ′(t) =
(Dhf)(x0+ th) for 0 < t < 1, and apply to ϕ the one-dimensional mean value
theorem.

The set {x0 + th : 0 < t < 1} is the straight interval, sometimes denoted
by (x0, x0 + h). In terms of a = x0 and b = x0 + h we get

f(b)− f(a) = (Db−af)ξ = (Df)ξ(b− a)

for some ξ ∈ (a, b), assuming that f is continuous on [a, b] and differentiable
on (a, b); f must be defined at least at a, b and on some open set containing
(a, b).

The same holds for an arbitrary vector (as well as affine) fd space in place
of Rn.

The mean value theorem fails for f : Rn → Rm, m > 1 (even if n = 1;
try [0, 2π] 3 t 7→ (cos t, sin t) ∈ R2). Nevertheless. . .

2d2 Exercise. (a) Let U be a connected open subset of an affine fd space,
and f : U → Rm a differentiable mapping satisfying Df = 0 on U . Prove
that f is constant on U .

(b) Does the same hold for a disconnected U?
(c) Generalize it to Df = T on U (the same T for all points of U).
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2d3 Exercise. (a) Let U ⊂ R2 be a convex open set, f : U → Rm, and
D1f = 0 on U . Prove that f(x, y) does not depend on y; that is, f(x, y1) =
f(x, y2) whenever (x, y1), (x, y2) ∈ U .

(b) Does the same hold if U is not convex, but still connected?

2e Partial derivative

For a mapping f : Rn → Rm the k-th partial derivative [Sh:Def.4.5.1]

(Dkf)x = ∂kf(x) =
∂

∂xk
f(x1, . . . , xn) =

= lim
t→0

1

t

(
f(x1, . . . , xk−1, xk + t, xk+1, . . . , xn)− f(x1, . . . , xn)

)
is just (Dhf)x where h is the k-th basis vector, h = ek = (0, . . . , 0, 1, 0, . . . , 0).
That is, Dk is rather a shortcut for Dek , provided that f is differentiable at
x0; for now we assume that it is.

In terms of the m × n matrix A of the linear map (Df)x0 the vector
(Dkf)x0 ∈ Rm is the k-th column Aek of A.

In terms of the coordinate functions f1, . . . , fm : Rn → R satisfying
f(x) = (f1(x), . . . , fm(x)) we haveA =

(
(Dkfl)x0

)
k=1,...,n;l=1,...,m. [Sh:Th.4.5.2]

One often writes

Df =

 ∂y1
∂x1

. . . ∂y1
∂xn

. . . . . . . . . . . . .
∂ym
∂x1

. . . ∂ym
∂xn

 where


y1 = f1(x1, . . . , xn),

. . .

ym = fm(x1, . . . , xn).

The chain rule leads to matrix multiplication: [Sh:Th.4.5.4]

∂zk
∂xi

=
∑
j

∂zk
∂yj

∂yj
∂xi

where z = g(y) , y = f(x) .

Now, what happens if f is not assumed to be differentiable at x0? By 2c1,
existence of (Dkf)x0 for all k = 1, . . . , n does not imply existence of (Df)x0 .

2e1 Proposition. Assume that all partial derivatives of a mapping f : Rn →
Rm exist near x0 and are continuous at x0. Then f is differentiable at x0.
[Sh:Th.4.5.3]

2e2 Lemma. Assume that f : Rn → R, Dnf exists near 0, is continuous at
0, and (Dnf)0 = 0. Then the function g : Rn → R defined by

g(x1, . . . , xn) = f(x1, . . . , xn)− f(x1, . . . , xn−1, 0)

belongs to o(| · |).1

1See also 2a6(a).
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Proof. The mean value theorem gives

g(x1, . . . , xn) = (Dnf)(x1,...,xn−1,ξ(x1,...,xn))︸ ︷︷ ︸
o(1)

xn︸︷︷︸
O(|·|)

for some ξ(x1, . . . , xn) between 0 and xn.

Proof of Prop. 2e1. 1 By the componentwise nature of continuity (1b4), deriva-
tive (2b7) and partial derivative we take m = 1. As before, we take x0 = 0
and f(0) = 0. Now we use induction in n. The case n = 1 is trivial. Let
n > 1. It is sufficient to prove that the linear operator T : Rn → R defined
by T (x1, . . . , xn) = (D1f)0x1 + · · · + (Dnf)0xn satisfies f − T ∈ o(| · |). On
one hand, the induction hypothesis gives

f(x1, . . . , xn−1, 0)− T (x1, . . . , xn−1, 0) = o(| · |) .

On the other hand, Lemma 2e2 applied to f − T gives

(f − T )(x1, . . . , xn)− (f − T )(x1, . . . , xn−1, 0) = o(| · |) .

Thus, f − T ∈ o(| · |).

2e3 Definition. Let U ⊂ Rn be an open set. A differentiable mapping
f : U → Rm is continuously differentiable if the mapping Df is continuous
(from U to L(Rn,Rm)). The set of all continuously differentiable mappings
U → Rm is denoted by C1(U → Rm). In particular, C1(U) = C1(U → R).

Note that C1(U → Rm) is a vector space, and C1(U) is an algebra:
fg ∈ C1(U) for all f, g ∈ C1(U).

2e4 Exercise. (a) Let f ∈ C1(U) and g ∈ C1(U → Rm); prove that fg ∈
C1(U → Rm).

(b) Let f, g ∈ C1(U → Rm); prove that 〈f(·), g(·)〉 ∈ C1(U).2

2e5 Exercise. Prove that f : U → Rm is continuously differentiable if
and only if its partial derivatives D1f, . . . , Dnf are continuous mappings
U → Rm.

2e6 Exercise. (a) Differentiate3 a mapping R2 3 (r, θ) 7→ (r cos θ, r sin θ) ∈
R2.

1The proof in [Sh:p.156–157] is incorrect. The mean value theorem is not mentioned
there, and the conclusion of Lemma 2e2 is just taken for granted.

2Hint: use 2b11.
3Do not forget the phrase before 2b16.
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(b) Differentiate a function f : (0,∞) × R → R defined by f(r, θ) =
g(r cos θ, r sin θ) for a given differentiable g : R2 → R.

(c) For f, g as in (b) prove that(
∂g

∂x

)2

+

(
∂g

∂y

)2

=

(
∂f

∂r

)2

+
1

r2

(
∂f

∂θ

)2

whenever x = r cos θ, y = r sin θ, r > 0.

2e7 Exercise. On the vector space Mn,n(R) of all n × n matrices consider
the function f : A 7→ det(A) (determinant). Prove that

(a) f is differentiable everywhere, and Df is continuous everywhere (as
a mapping from Mn,n(R) to L(Mn,n(R),R)).

(b) (Df)I(H) = tr(H) for all H ∈Mn,n(R); here I is the unit matrix.
(c) (D log f)A(H) = tr(A−1H) for all H ∈ Mn,n(R) and all invertible

A ∈Mn,n(R).1

Thus,
log det(A+H) ≈ log detA+ tr(A−1H)

for small H.

2e8 Exercise. Let f : Rn → Rm be differentiable and symmetric in the sense
that f(x1, . . . , xn) is insensitive to any permutation of x1, . . . , xn. Prove that

(a) (Dif)(x1,...,xn) = (Djf)(x1,...,xn) whenever xi = xj;
(b) the operator (Df)(x1,...,xn) cannot be one-to-one if some of x1, . . . , xn

are equal.

2e9 Exercise. Consider the affine space Sn = {f : f (n)(·) = n!} (a special
case of 1c3 for a constant function g(·) = n!) and a mapping ϕ : Rn → Sn,

ϕ(t1, . . . , tn) : t 7→ (t− t1) . . . (t− tn) .

Prove that
(a) the operator (Dϕ)(t1,...,tn) cannot be invertible if some of t1, . . . , tn are

equal;
(b) the operator (Dϕ)(t1,...,tn) is invertible whenever t1, . . . , tn are pairwise

distinct;
(c) dim(Dϕ)(t1,...,tn)(Rn) = |{t1, . . . , tn}|;

that is, the dimension of the image is equal to the number of distinct coor-
dinates.

1[Sh:Ex.4.4.9].
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2f Gradient, directional derivative

Let1 f : Rn → R be differentiable at x0 ∈ Rn; then (Df)x0 = T : Rn → R,
T (h1, . . . , hn) = t1h1 + · · · + tnhn = 〈(t1, . . . , tn), (h1, . . . , hn)〉. Denoting
(t1, . . . , tn) by2 ∇f(x0) we get

(Df)x0 : h 7→ 〈∇f(x0), h〉 ;

the vector ∇f(x0) is called the gradient of f at x0.
Similarly to the derivative, the gradient is a local notion, well-defined for

f : E → R whenever E is a Euclidean affine fd space (recall 1c7). In contrast
to the derivative, the gradient is ill-defined if E is just an affine (or vector)
fd space.

When E = Rn, the gradient is related to partial derivatives by

∇f(x0) =
(
(D1f)x0 , . . . , (Dnf)x0

)
.

In Euclidean E the gradient is related to derivative along vector by

(Dhf)x0 = 〈∇f(x0), h〉 ,

both sides being (Df)x0(h).
When |h| = 1, (Dhf)x0 is also called the directional derivative (of f at x0

in the direction h). Note that

|(Dhf)x0 | ≤ |∇f(x0)| ;

the equality is reached when h = ± 1
|∇f(x0)|∇f(x0) (assuming ∇f(x0) 6= 0).

Thus, ∇f(x0) points in the direction of greatest increase of f at x0, and
|∇f(x0)| is this greatest rate. [Sh:p.180] Also, ∇f(x0) is orthogonal to the
hyperplane {h ∈ Rn : (Df)0(h) = 0}.

By the mean value theorem, f(b) − f(a) = 〈∇f(ξ), b − a〉 for some ξ ∈
(a, b); thus,

|f(b)− f(a)| ≤ |b− a| sup
0<t<1

∣∣∇f(a+ t(b− a)
)∣∣ .

2f1 Exercise. Let U ⊂ Rn be an open set, f ∈ C1(U), and |∇f | ≤ M on
U . Then the relation

|f(b)− f(a)| ≤M |b− a| for all a, b ∈ U

must hold whenever U is convex (prove it), but can fail when U is connected
and not convex (find an example).

1Note m = 1. . .
2It really means (∇f)(x0) rather than ∇(f(x0)).
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2f2 Exercise. Let U ⊂ Rn be an open set, f ∈ C1(U), and K ⊂ U is
compact. Prove that f

∣∣
K

is a Lipschitz function; that is, ∃M ∀x, y ∈
K |f(x)− f(y)| ≤M |x− y|. 1

Gradient is defined for functions Rn → R, not mappings Rn → Rm.
However, gradients of coordinate functions are related to the derivative of a
mapping.

2f3 Lemma. Let a mapping f : Rn → Rm be differentiable at x0, and
f1, . . . , fm : Rn → R be the coordinate functions of f (that is, f(x) =(
f1(x), . . . , fm(x)

)
. Then the following two conditions are equivalent:

(a) vectors ∇f1(x0), . . . ,∇fm(x0) are linearly independent;
(b) the linear operator (Df)x0 maps Rn onto Rm.

Proof. We have (recall 2b7)

(Df)x0(h) =
(
(Df1)x0(h), . . . , (Dfm)x0(h)

)
=
(
〈∇f1(x0), h〉, . . . , 〈∇fm(x0), h〉

)
.

Violation of (a), that is, linear dependence between the gradient vectors
means existence of c = (c1, . . . , cm) ∈ Rm such that the vector c1∇f1(x0) +
· · ·+ cm∇fm(x0) vanishes. Equivalently: this vector has zero scalar product
by every vector h ∈ Rn. That is, (Df)x0(h) is orthogonal to c for all h.
Existence of such c is exactly a violation of (b).

2g Higher order derivative

Given an open set U ⊂ Rn, we define a set Ck(U → Rm) of mappings
U → Rm recursively. First, f ∈ C0(U → Rm) if and only if f is continuous
on U ; further, f ∈ Ck+1(U → Rm) if and only if f is differentiable on U and
Dhf ∈ Ck(U → Rm) for all h ∈ Rn.

In particular, Ck(U) = Ck(U → R).
The same applies to functions on a vector of affine fd space.
Clearly,

C0(U → Rm) ⊃ C1(U → Rm) ⊃ C2(U → Rm) ⊃ . . .

Treating Dh as a linear operator Ck+1(U) → Ck(U) we note linearity in
h:

Dh = h1D1 + · · ·+ hnDn for h = (h1, . . . , hn) .

1Hint: note that U need not be convex; assuming f(xn) − f(yn) ≥ n|xn − yn| take a
convergent subsequence. . .
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Thus, the condition “Dhf ∈ Ck(U → Rm) for all h ∈ Rn” is equivalent to
“D1f, . . . , Dnf ∈ Ck(U → Rm)”. That is, Ck(U) consists of functions f such
that Di1 . . . Dikf ∈ C0(U) for all i1, . . . , ik ∈ {1, . . . , n}.

By the well-know theorem (Young, Schwarz, Clairaut),

DiDj = DjDi and therefore Dh1Dh2 = Dh2Dh1 .

The second differential of f ∈ C2(U) at x0 ∈ U is the symmetric bilinear
form

Rn × Rn 3 (h1, h2) 7→ Dh1Dh2f(x0) ∈ R ;

its matrix
(
DiDjf(x0)

)
i,j, consisting of second partial derivatives, is called

Hessian matrix. The corresponding quadratic form

Rn 3 h 7→ DhDhf(x0) ∈ R

occurs in the second order multivariate Taylor formula

f(x0 + h) = f(x0) +Dhf(x0) +
1

2
DhDhf(x0) + o(|h|2) .

This is the same as the univariate Taylor formula for the function R 3 t 7→
f(x0 + th) at t = 1.1 For a higher order the situation is similar:

f(x0 + h) = f(x0) +Dhf(x0) +
1

2!
DhDhf(x0) + · · ·+ 1

k!
Dk
hf(x0) + o(|h|k) ;

the sum of homogeneous polynomials (higher differentials).2

1In order to get o(|h|2) one needs uniform (in h) continuity of the functions DhDhf ,
but this is not a problem: they all boil down to the finite set of functions DiDjf .

2Such a polynomial is unique by 2a3.
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