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A first order necessary condition (“Lagrange multipliers”) for constrained
extrema is proved via open mappings and used for optimization.

3a What is the problem

As was noted in Sect. 2c, local extrema of a differentiable function f can
be found using the necessary condition (Df)x = 0, which is important for
optimization. Now we turn to a harder task: to maximize f(x, y) subject
to a constraint g(x, y) = 0; in other words, to maximize f on the set Zg =
{(x, y) : g(x, y) = 0}. Here f, g : R2 → R are given differentiable functions
(the objective function and the constraint function).

f=const g=0

It is easy to guess a necessary condition: ∇f and ∇g must be collinear.
[Sh:Sect.5.4] It is easy to prove this guess taking for granted that Zg, being
a curve, can be parametrized by a differentiable path γ, that is, g(x, y) =
0 ⇐⇒ ∃t (x, y) = γ(t). Is it really the general case?
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Rather unexpectedly, every closed subset of R2 is Zg for some g ∈ C1(R2).
(The proof is beyond this course.)

A simple example: g(x, y) = x2 − y2; g ∈ C1(R2); Zg is the union of two
straight lines intersecting at the origin. Note that ∇g = 0 at the origin.

Another example:

g(x, y) =

{
x2 + y2 for x ≤ 0,

y2 for x ≥ 0.

Again, g ∈ C1(R2) (think, why); Zg = [0,∞) × {0}, a ray from the origin.
Again,∇g = 0 at the origin. The function f : (x, y) 7→ x reaches its minimum
on Zg at the origin. Can we say that ∇f and ∇g are collinear at the origin?
Rather, they are linearly dependent.

We assume that∇f(x0, y0) and∇g(x0, y0) are linearly independent, g(x0, y0) =
0, and want to prove that (x0, y0) cannot be a local constrained1 extremum2

of f on Zg. Assume for simplicity x0 = y0 = 0 and f(0, 0) = 0. Consider
the mapping h : R2 → R2, h(x, y) =

(
f(x, y), g(x, y)

)
near the origin, and its

linear approximation T = (Dh)(0,0) : R2 → R2; T (x, y) = (ax + by, cx + dy)
where a = (D1f)(0,0), b = (D2f)(0,0), c = (D1g)(0,0), d = (D2g)(0,0). Vec-
tors ∇f(0, 0) = (a, b) and ∇g(0, 0) = (c, d) are linearly independent, thus
| a bc d | 6= 0, which means that T is invertible. (Alternatively, use Lemma 2f3.)

It follows that T (x1, y1) = (1, 0) for some x1, y1. We have

f(tx1, ty1) = t+ o(t) , g(tx1, ty1) = o(t) .

Does it show that the origin cannot be a local constrained extremum of f on
Zg? No, it does not. We still did not find xt, yt such that

f(xt, yt) = t+ o(t) , g(xt, yt) = 0 .

In other words: we know that the image V = h(U) of a neighborhood U of the
origin contains a differentiable path γ : (−ε, ε)→ R2 such that γ(0) = (0, 0)

1In other words, conditional.
2Not necessarily strict; that is, either f(x0, y0) ≤ f(x, y) for all (x, y) near (x0, y0)

(minimum), or “≥” (maximum).
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and γ′(0) = (1, 0), but we still do not know, whether V contains (−ε, ε)×{0}
or not.

?

?
γh

We know that T is onto, but we still do not know, whether h is locally onto.
In more technical language: whether h is an open mapping, as defined below.

Of course, we need a multidimensional theory; R2 is only the simplest
case.

3b Open mappings

3b1 Definition. A mapping f : Rn → Rm is open if f(U) is open for every
open U ⊂ Rn.

3b2 Remark. For m < n, the usual embedding f : Rm → Rn is a home-
omorphism Rm → f(Rm) ⊂ Rn, but not an open mapping. On the other
hand, the usual projection g : Rn → Rm is open, but not one-to-one.

Similarly, for an open U ⊂ Rn a mapping f : U → Rm is called open if
f(U1) is open for every open U1 ⊂ U .1

3b3 Exercise. Let U, V ⊂ Rn be open and f : U → V a homeomorphism;
prove that f is open. Does it hold if V is not assumed to be open?

3b4 Exercise. Prove or disprove: a continuous function R → R is open if
and only if it is strictly monotone.

3b5 Exercise. Let U ⊂ Rn be open, and f : U → Rm. Consider all open
U1 ⊂ U such that f |U1 is open. If these U1 cover U then f is open.

Prove it.

3b6 Exercise. A mapping f : U → Rm is open if and only if for every x ∈ U
and every neighborhood U1 ⊂ U of x the set f(U1) is a neighborhood of f(x).

Prove it.
Reminder: a neighborhood need not be open.

3b7 Proposition. Let U ⊂ Rn be open, and f ∈ C1(U → Rn). If the
operator (Df)x is invertible for all x ∈ U then f is open.

1If you know that every subset of Rn is itself a topological space, you probably know
the notion of an open mapping X → Y for given X ⊂ Rn, Y ⊂ Rm. Then you may recall
1b17 and think, whether the continuous bijection f : R2 → B is open, or not.
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3b8 Lemma. Let U ⊂ Rn be open and bounded, f : U → Rn a continuous
mapping, differentiable on U . If f is a homeomorphism1 U → f(U) and the
operator (Df)x is invertible for all x ∈ U then f |U is open. (Here U is the
closure of U .)

3b9 Proposition. Assume that x0 ∈ Rn, f : Rn → Rn is differentiable near
x0, Df is continuous at x0, and the operator (Df)x0 is invertible. Then there
exists a bounded open neighborhood U of x0 such that f |U is a homeomor-
phism U → f(U), and f is differentiable on U , and the operator (Df)x is
invertible for all x ∈ U .

Clearly, Prop. 3b7 follows from 3b8 (to be proved in Sect. 3d) and 3b9(to
be proved in Sect. 3e) via 3b5.

In fact, for every open U ⊂ Rn, every continuous one-to-one mapping
U → Rn is open (and therefore a homeomorphism U → f(U)). This is a
well-known topological result, “the Brouwer invariance of domain theorem”.
Then, why Lemma 3b8?2 For two reasons.

First, invariance of domain is proved using algebraic topology (the Brouwer
fixed point theorem). Lemma 3b8 is much simpler to prove, due to differen-
tiability assumption.

Second, in this course we improve our understanding of differentiable
mappings. Continuous mappings in general are a different story.

3b10 Exercise. Prove invariance of domain in dimension one.3

3b11 Exercise. Taking Prop. 3b7 for granted, prove the more general claim:
Let U ⊂ Rn be open, and f ∈ C1(U → Rm). If the operator (Df)x maps

Rn onto Rm for all x ∈ U then f is open.4

If the linear approximation is onto then the nonlinear mapping is locally
onto.

3b12 Exercise. Taking Prop. 3b9 for granted, prove the following claim:
Assume that x0 ∈ Rn, f : Rn → Rm is differentiable near x0, Df is

continuous at x0, and the operator (Df)x0 is one-to-one. Then there exists
a bounded open neighborhood U of x0 such that f |U is a homeomorphism
U → f(U).5

1That is, f is continuous and one-to-one, and f−1 : f(U)→ U is also continuous.
2Still another alternative to Lemma 3b8 will be discussed in Sect. 4d.
3Hint: recall 3b4.
4Hint: the operator maps some m-dimensional subspace of Rn onto Rm. That is,

(Df)x0
◦ T is onto for some linear T : Rm → Rn.

5Hint: the operator T ◦ (Df)x0 is one-to-one for some linear T : Rm → Rn.
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If the linear approximation is one-to-one then the nonlinear mapping is
locally one-to-one.

If the linear approximation is bijective then the nonlinear mapping is
locally bijective.

3c From differentiability to geometry

Assume that U is an open neighborhood of x0, f : U → Rn is differentiable
at x0, (Df)x0 is an invertible operator, but f(U) is not a neighborhood of
y0 = f(x0).

For every h ∈ Rn the path

γh(t) = f(x0 + th) for t ∈ (−ε, ε)

is well-defined (for some ε), differentiable, contained in f(U), and

γh(0) = y0 , γ′h(0) = Dhf(x0) = T (h)

where T = (Df)x0 . Due to invertibility of T , every vector is of the form
T (h).

3c1 Exercise.
(a) For n = 2 prove that f(U) intersects every open
triangle with one vertex at y0.
(b) What about a generalization to n > 2?

y0

f(U)

We really need much less than 3c1(b).

3c2 Exercise.
Prove that f(U) intersects every open ball whose bound-
ary contains y0.

1

y0

f(U)

Let us call y0 ∈ f(U) a regular boundary point,2 if f(U) does not intersect
some open ball whose boundary contains y0. We conclude.

3c3 Lemma. If U is an open neighborhood of x0, f : U → Rn is differentiable
at x0, (Df)x0 is an invertible operator, then y0 = f(x0) cannot be a regular
boundary point.

Irregular boundary points are still a challenge.

1Hint: either use the path γh for an appropriate h, or alternatively, differentiate a
function |f(·)− a|2 where a is the center of the ball.

2Not a standard terminology; introduced for convenience, to be used within sections
3c, 3d only.
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3d From topology to geometry

3d1 Lemma. Let U ⊂ Rn be open and bounded, f : U → Rn continuous.
If f is a homeomorphism U → f(U) with no regular boundary points (of
f(U)), then f(U) is open.

Proof. [Sh:p.198–199] Let y0 ∈ f(U); we have to prove that f(U) is a neigh-
borhood of y0.

We have U = U ] ∂U , therefore f(U) = f(U)] f(∂U) (since f is one-to-
one). Sets U and ∂U are compact, therefore f(U) and f(∂U) are compact
(since f is continuous).

The distance dist(y0, f(∂U)) = infz∈∂U |y0 − z| is positive (by compact-
ness); denote it by 2ε. The open ε-neighborhood of y0 does not intersect
f(∂U). It is sufficient to prove that it is contained in f(U).

ε

2ε

y0

f(∂U)
y0

y1

a

δ

Assuming the contrary we take a ∈ Rn such that |a− y0| < ε but a /∈ f(U).
Observe that a /∈ f(∂U) and therefore a /∈ f(U). By compactness there exists
y1 ∈ f(U) such that |a− y1| = dist(a, f(U)) > 0; we denote this distance by
δ and note that δ < ε (since y0 ∈ f(U)). It follows that y1 /∈ f(∂U) (since
|y0−y1| ≤ |y0−a|+ |a−y1| < ε+δ < 2ε) and therefore y1 ∈ f(U). The open
δ-neighborhood of a does not intersect f(U); thus y1 is a regular boundary
point. Contradiction.

In combination with 3c3 it proves Lemma 3b8.
For proving 3b7 it remains to prove 3b9.

3e Local homeomorphism

We generalize Prop. 3b9 as follows.

3e1 Proposition. Assume that S1, S2 are n-dimensional affine spaces, x0 ∈
S1, f : S1 → S2 is differentiable near x0, Df is continuous at x0, and the
operator (Df)x0 : ~S1 → ~S2 is invertible. Then there exists a bounded open
neighborhood U of x0 such that f |U is a homeomorphism U → f(U), and f
is differentiable on U , and the operator (Df)x is invertible for all x ∈ U .
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Maybe you think that the more general 3e1 is harder to prove than 3b9.
No, it is easier to prove! Recall Sect. 1c: irrelevant structure is a nuisance.
Dealing with two affine spaces we may upgrade them to vector spaces such
that x0 = 0 and f(x0) = 0. (We could not do it in a single space unless
f(x0) = x0.) More importantly, dealing with two vector spaces we can di-
agonalize an arbitrary linear operator. . . Recall Sect. 1c (again): two bases
give more freedom than one basis.

We have two vector spaces ~S1, ~S2 and an invertible linear operator (Df)x0 =

T : ~S1 → ~S2. We choose a basis (e1, . . . , en) of ~S1 and the corresponding basis

(Te1, . . . , T en) of ~S2. Then the matrix of T becomes the unit matrix! Ac-
cordingly, T turns into the identity operator id : Rn → Rn. Having T = id we
may forget the coordinates, downgrading Rn to vector space, and reformulate
Prop. 3e1 as follows.

3e2 Proposition. Assume that V is a vector fd space, f : V → V is differ-
entiable near 0, Df is continuous at 0, f(0) = 0, and (Df)0 is the identity
operator V → V . Then there exists a bounded open neighborhood U of 0
such that f |U is a homeomorphism U → f(U), and f is differentiable on U ,
and the operator (Df)x is invertible for all x ∈ U .

3e3 Exercise. Generalize 2f1: |f(b) − f(a)| ≤ M |b − a| for f : Rn → Rm

provided that ‖Df‖ ≤M on [a, b].1

Proof. We have (Df)x → (Df)0 = id as x → 0. We upgrade V to a Eu-
clidean space (arbitrarily) and use the operator norm (recall Sect. 1e):

‖(Df)x − id‖ → 0 as x→ 0 .

For every ε > 0 there exists a neighborhood Uε of 0 such that f is differen-
tiable on Uε, and

‖(Df)x − id‖ ≤ ε for all x ∈ Uε .

We choose Uε to be convex (just a ball, if you like) and apply 2f1 to the
mapping f − id (its derivative being Df − id): |(f − id)(x)− (f − id)(y)| ≤
ε|x− y|, that is,

|(f(x)− f(y))− (x− y)| ≤ ε|x− y| for all x, y ∈ Uε .

It follows (assuming ε < 1) that f(x)− f(y) 6= 0 for x− y 6= 0; that is, f |Uε

is one-to-one. Moreover, the triangle inequality gives

(1− ε)|x− y| ≤ |f(x)− f(y)| ≤ (1 + ε)|x− y|

1Hint: Rn f−→ Rm g−→ R, g(y) = 〈u, y〉, |u| = 1; apply 2f1 to g ◦ f ; optimize in u.
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for all x, y ∈ Uε. Thus, f |Uε is a homeomorphism Uε → f(Uε).
Finally,

∣∣((Df)x − id
)
(h)
∣∣ ≤ ε|h|, that is,

|(Df)x(h)− h| ≤ ε|h| for all x ∈ Uε , h ∈ V ;

the triangle inequality (again) gives

(1− ε)|h| ≤ |(Df)x(h)| ≤ (1 + ε)|h| ,

which shows that the operator (Df)x is one-to-one, therefore invertible.

Thus, 3e1, 3b9, and finally 3b7 are proved.

3e4 Exercise. Consider the set U ⊂ Rn of all (a0, . . . , an−1) such that the
polynomial

t 7→ tn + an−1t
n−1 + · · ·+ a0

has n pairwise distinct real roots.
(a) Prove that U is open.
(b) Define ψ : U → Rn by ψ(a0, . . . , an−1) = (t1, . . . , tn) where t1 < · · · <

tn are the roots of the polynomial. Prove that ψ is a homeomorphism U → V
where V = {(t1, . . . , tn) : t1 < · · · < tn}.1

3f Curves

We return to the problem discussed in Sect. 3a.

3f1 Proposition. Assume that f, g : R2 → R are continuously differentiable
near a given point (x0, y0); vectors ∇f(x0, y0) and ∇g(x0, y0) are linearly
independent; and g(x0, y0) = 0. Denote z0 = f(x0, y0). Then there exist
ε > 0 and a path γ : (z0 − ε, z0 + ε) → R2 such that γ(z0) = (x0, y0),
f(γ(t)) = t and g(γ(t)) = 0 for all t ∈ (z0 − ε, z0 + ε).

Proof. The mapping h : R2 → R2 defined by h(x, y) =
(
f(x, y), g(x, y)

)
is

continuously differentiable near (x0, y0), and (Dh)(x0,y0) is invertible by 2f3.
Lemma 3b8 and Prop. 3b9 provide a neighborhood U of (x0, y0) such that
V = f(U) is a neighborhood of (z0, 0) and h|U is a homeomorphism U → V .
We take ε > 0 such that (t, 0) ∈ V for all t ∈ (z0 − ε, z0 + ε) and define γ by

γ(t) = (h|U)−1(t, 0) .

Clearly γ is continuous, γ(0) = (x0, y0), γ(t) ∈ U and h(γ(t)) = (t, 0), that
is, f(γ(t)) = t and g(γ(t)) = 0.

1Hint: use 2e9(b).
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3f2 Corollary. If f, g, x0, y0 are as in 3f1 then (x0, y0) cannot be a local
constrained extremum of f on Zg.

3f3 Remark. (a) Prop. 3f1 does not claim differentiability of the path γ
(but only its continuity).

(b) Prop. 3f1 does not claim that γ covers all points of Zg near (x0, y0).
Moreover, the set U ∩ Zg need not be connected.

We’ll return to these points later (in 4c10).

The next case is, dimension three. We guess that a single constraint
g(x, y, z) = 0 leads to a surface Zg, not a curve; a curve is rather Zg1,g2 =
Zg1 ∩ Zg2 .

3f4 Proposition. Assume that f, g1, g2 : R3 → R are continuously differen-
tiable near a given point (x0, y0, z0); vectors∇f(x0, y0, z0),∇g1(x0, y0, z0) and
∇g2(x0, y0, z0) are linearly independent; and g1(x0, y0, z0) = g2(x0, y0, z0) =
0. Denote w0 = f(x0, y0, z0). Then there exist ε > 0 and a path γ :
(w0 − ε, w0 + ε) → R3 such that γ(w0) = (x0, y0, z0), f(γ(t)) = t and
g1(γ(t)) = g2(γ(t)) = 0 for all t ∈ (w0 − ε, w0 + ε).

3f5 Exercise. Prove Prop. 3f4.1

3f6 Corollary. If f, g1, g2, x0, y0, z0 are as in 3f4 then (x0, y0, z0) cannot be
a local constrained extremum of f on Zg1,g2 .

3f7 Exercise. Generalize 3f4 and 3f6 to f, g1, . . . , gn−1 : Rn → R.

3g Surfaces

We turn to a single constraint g(x, y, z) = 0 in R3, and a function f : R3 → R.
How to proceed? The mapping (x, y, z) 7→

(
f(x, y, z), g(x, y, z)

)
from R3 to

R2 surely is not expected to be a local homeomorphism. However, we may
add another constraint, getting a curve on the surface!

3g1 Proposition. Assume that f, g : R3 → R are continuously differentiable
near a given point (x0, y0, z0); vectors ∇f(x0, y0, z0) and ∇g(x0, y0, z0) are
linearly independent; and g(x0, y0, z0) = 0. Denote w0 = f(x0, y0, z0). Then
there exist ε > 0 and a path γ : (w0 − ε, w0 + ε) → R3 such that γ(w0) =
(x0, y0, z0), f(γ(t)) = t and g(γ(t)) = 0 for all t ∈ (w0 − ε, w0 + ε).

1Hint: similar to the proof of 3f1; h(x, y, z) = ((f(x, y, z), g1(x, y, z), g2(x, y, z)), . . .
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Proof. We choose a vector a ∈ R3 such that the three vectors a, ∇f(x0, y0, z0)
and ∇g(x0, y0, z0) are linearly independent. We choose a function g2 : R3 →
R, continuously differentiable near (x0, y0, z0), such that ∇g2(x0, y0, z0) = a
(for example, the linear function g2(·) = 〈·, a〉). It remains to apply Prop. 3f4
to f, g, g2.

3g2 Corollary. If f, g, x0, y0, z0 are as in 3g1 then (x0, y0, z0) cannot be a
local constrained extremum of f on Zg.

3g3 Exercise. Generalize 3g1 and 3g2 to f, g1, . . . , gm : Rn → R, 1 ≤ m ≤
n− 1.

3h Lagrange multipliers

3h1 Theorem. Assume that x0 ∈ Rn, functions f, g1, . . . , gm : Rn → R
are continuously differentiable near x0, g1(x0) = · · · = gm(x0) = 0, and
vectors ∇g1(x0), . . . ,∇gm(x0) are linearly independent. If x0 is a local con-
strained extremum of f subject to g1(·) = · · · = gm(·) = 0 then there exist
λ1, . . . , λm ∈ R such that

∇f(x0) = λ1∇g1(x0) + · · ·+ λm∇gm(x0) .

This is a reformulation of the generalization meant in 3g3.
The numbers λ1, . . . , λm are called Lagrange multipliers.
A physicist could say: in equilibrium, the driving force is neutralized by

constraints reaction forces.
In practice, seeking local constrained extrema of f on Z = Zg1,...,gm one

solves (that is, finds all solutions of) a system of m+ n equations

g1(x) = · · · = gm(x) = 0 , (m equations)

∇f(x) = λ1∇g1(x) + · · ·+ λm∇gm(x) (n equations)

for m+ n variables

λ1, . . . , λm , (m variables)

x . (n variables)

For each solution (λ1, . . . , λm, x) one ignores λ1, . . . , λm and checks f(x).1

In addition, one checks f(x) for all points x that violate the conditions of
3h1; that is, ∇g1(x), . . . ,∇gm(x) are linearly dependent, or f, g1, . . . , gm fail
to be continuously differentiable at x.

1Being ignored in this framework, (λ1, . . . , λm) are of interest in another framework,
see Sect. 3j.
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If the set Z is not compact, one checks all relevant limits of f .
If all that is feasible (which is not guaranteed!), one finally obtains the

infimum and supremum of f on Z.

Theorem 3h1 generalizes readily from Rn to an n-dimensional Euclidean
affine space. But if no Euclidean norm is given on the affine space then the
gradient is not defined. However, the gradient vector ∇f(x0) is rather a
substitute of the linear function (Df)x0 , namely, (Df)x0 : h 7→ 〈∇f(x0), h〉
(recall Sect. 2f). Thus, the relation ∇f(x0) = λ1∇g1(x0) + · · ·+ λm∇gm(x0)
between vectors may be replaced with a relation

(Df)x0 = λ1(Dg1)x0 + · · ·+ λm(Dgm)x0

between linear functions. And linear independence of vectors∇g1(x0), . . . ,∇gm(x0)
may be replaced with linear independence of linear functions (Dg1)x0 , . . . , (Dgm)x0 ;
or, due to Lemma 2f3, we may say instead that (Dg)x0 maps Rn onto Rm.
Now it is clear how to generalize Th. 3h1 from Rn to an affine fd space.

3i Examples

Three points on a spheroid

We consider an ellipsoid of revolution (in other words, spheroid)

x2 + y2 + αz2 = 1

for some α ∈ (0, 1) ∪ (1,∞), and three points P,Q,R on this surface. We
want to maximize |PQ|2 + |QR|2 + |RP |2.

We’ll see that the maximum is reached when P,Q,R are situated either
in the horizontal plane z = 0 or the vertical plane y = 0 (or another vertical
plane through the origin; they all are equivalent due to symmetry). Thus, the
three-dimensional problem boils down to a pair of two-dimensional problems
(not to be solved here).

We introduce nine coordinates,

P = (x1, y1, z1) , Q = (x2, y2, z2) , R = (x3, y3, z3)

and functions f, g1, g2, g3 : R9 → R of these coordinates,

f(x1, . . . , z3) =(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

+(x2 − x3)2 + (y2 − y3)2 + (z2 − z3)2

+(x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2 ;

g1(x1, . . . , z3) =x21 + y21 + αz21 − 1 ,

g2(x1, . . . , z3) =x22 + y22 + αz22 − 1 ,

g3(x1, . . . , z3) =x23 + y23 + αz23 − 1 .
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We use the approach of Sect. 3h with n = 9, m = 3. The functions f, g1, g2, g3
are continuously differentiable on R9. The set Z = Zg1,g2,g3 ⊂ R9 is compact.
The gradients of g1, g2, g3 do not vanish on Z (check it) and are linearly
independent (and moreover, orthogonal).

We introduce Lagrange multipliers λ1, λ2, λ3 corresponding to g1, g2, g3
and consider a system of m + n = 12 equations for 12 unknowns. The first
three equations are

x21 + y21 + αz21 = 1 , x22 + y22 + αz22 = 1 , x23 + y23 + αz23 = 1 .

Now, the partial derivatives. We have

∂f

∂x1
= 2(x1 − x2)− 2(x3 − x1) = 4x1 − 2x2 − 2x3 ,

which is convenient to write as 6x1 − 2(x1 + x2 + x3); similarly,

∂f

∂xk
= 6xk − 2(x1 + x2 + x3) ,

∂f

∂yk
= 6yk − 2(y1 + y2 + y3) ,

∂f

∂zk
= 6zk − 2(z1 + z2 + z3)

for k = 1, 2, 3. Also,

∂gk
∂xk

= 2xk ,
∂gk
∂yk

= 2yk ,
∂gk
∂zk

= 2αzk ;

other partial derivatives vanish. We get 9 more equations:

6xk − 2(x1 + x2 + x3) = λk · 2xk ,
6yk − 2(y1 + y2 + y3) = λk · 2yk ,
6zk − 2(z1 + z2 + z3) = λk · 2αzk

for k = 1, 2, 3. That is,

(3− λk)xk = x1 + x2 + x3 ,

(3− λk)yk = y1 + y2 + y3 ,

(3− αλk)zk = z1 + z2 + z3 .

We note that

(x1 + x2 + x3)yk = (3− λk)xkyk = (y1 + y2 + y3)xk
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for k = 1, 2, 3.
Case 1: x1 + x2 + x3 6= 0 or y1 + y2 + y3 6= 0.
Then P,Q,R are situated on the vertical plane {(x, y, z) : (x1+x2+x3)y =

(y1 + y2 + y3)x}.
Case 2: x1 + x2 + x3 = y1 + y2 + y3 = 0 and (λ1, λ2, λ3) 6= (3, 3, 3).
If λ1 6= 3 then x1 = y1 = 0; the three vectors (x1, y1), (x2, y2), (x3, y3) ∈ R2

(of zero zum!) are collinear; therefore P,Q,R are situated on a vertical plane
(again). The same holds if λ2 6= 3 or λ3 6= 3.

Case 3: x1 + x2 + x3 = y1 + y2 + y3 = 0 and λ1 = λ2 = λ3 = 3.
Then z1 = z2 = z3 = z1+z2+z3

3−3α , therefore z1 = z2 = z3 = 0 (since α 6= 1);
P,Q,R are situated on the horizontal plane {(x, y, z) : z = 0}.

Isoperimetry for triangles

Denote by A the area, and by L the length. The Dido isoperimetric
inequality says that, for any plane figure G,

A(G) ≤ L(∂G)2

4π
,

and equality is attained for discs only. For triangles, the estimate can be
improved:

A(∆) ≤ L(∂∆)2

12
√

3
,

for any plane triangle ∆, and the equality sign attains for the equilateral
triangles and only for them.

In other words, among all triangles with the given perimeter, the equilat-
eral one has the largest area.

Proof. We use the Heron formula that relates the area A and the perimeter
L = x+ y + z:

A2 =
L

2

(
L

2
− x
)(

L

2
− y
)(

L

2
− z
)
.

Set L = 2s. Then we need to maximize the function

f(x, y, z) = s(s− x)(s− y)(s− z)

under condition
g(x, y, z) = x+ y + z − 2s = 0 .

Of course, we have additional restrictions

x, y, z > 0, x+ y > z, x+ z > y, y + z > x ,
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which define the domain U in the space (x, y, z). (Draw this domain!) On
the boundary of this domain (when the inequalities turn to the equations),
the function f identically vanishes. Thus, f attains its maximal value inside
U and we can use the Lagrange multipliers.

The Lagrange equations are
−s(s− y)(s− z) = λ

−s(s− x)(s− z) = λ

−s(s− x)(s− y) = λ

x+ y + z = 2s

The first three equations give us

(s− y)(s− z) = (s− x)(s− z) = (s− x)(s− y) ,

whence

x = y = z =
2

3
s ,

and A2 = s · (s/3)3. The result follows.

Extrema of quadratic forms

We are looking for the maximal and minimal values of the quadratic form

f(x) =
n∑

i,j=1

aijxixj aij = aji ,

on the unit sphere
n∑
i=1

x2i = 1 .

In this case, f(x) = 〈Ax, x〉, where A is a symmetric linear operator
with the matrix (aij). Thus ∇f(x) = 2Ax (recall 2b11(a)). Furthermore,
g(x) = |x|2 − 1, and ∇g(x) = 2x. Therefore, the Lagrange equations take
the form {

2Ax = 2λx

(x, x) = 1 .

Hence, λ is the eigenvalue of A, and the maximum of the form is the largest
eigenvalue, the minimum of the form is the smallest eigenvalue.
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The operator norm.
As a corollary, we compute the (operator) norm of a linear operator A ∈

L(Rn,Rn). By definition,

‖A‖ = max
|x|=1
|Ax| .

Thus, we need to maximize the function f(x) = |Ax|2 = (Ax,Ax) under
additional condition |x|2 = 1.

Observe that f(x) = (Ax,Ax) = (A∗Ax, x). Hence, by the previous
paragraph, ‖A‖2 equals the maximal eigenvalue of the symmetric matrix
A∗A.

3i1 Exercise. Let A be an invertible linear operator. Find ‖A−1‖.

The Hölder inequality

Let 1 < p <∞. Then

(3i2)
∣∣∣∑xiyi

∣∣∣ ≤ (∑ |xi|p
)1/p (∑

|yi|q
)1/q

,

where q is ‘the dual exponent’ to p: 1
p

+ 1
q

= 1.

Proof. We assume that all xi’s and yi’s are non-negative. Since Hölder’s
inequality is homogeneous with respect to multiplication of all xi by the
same positive number, we assume that

∑
xpi = 1. Given y ∈ Rn with

non-negative coordinates, define the function f(x) =
∑
xiyi. That is, for

a compact set K = {x ∈ Rn : xi ≥ 0,
∑
xpi = 1}, we want to prove that

maxK f ≤ (
∑
yqi )

1/q. We use induction with respect to the number n of
variables. For n = 1, we have K = {1}, and there is nothing to prove.

For an arbitrary n ≥ 2, we look at the extremum of f on K. The Lagrange
multipliers technique can be applied only on the set K0 = {x ∈ Rn : xi >
0,
∑
xpi = 1} (why?). However, the rest K\K0 consists of x such that at least

one of the coordinates xi vanishes. Hence, by the assumption of the induction
maxK\K0 f ≤ (

∑
yqi )

1/q. Now, using the Lagrange method, we shall find that
the conditional extremum of f under assumptions g(x) =

∑
xpi − 1 = 0

equals (
∑
yqi )

1/q. This will prove Hölder’s inequality (and also will show that
it cannot be improved).

The Lagrange equations have the form

yi = λpxp−1i , 1 ≤ i ≤ n ,∑
xpi = 1 .
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We have: xi = cy
1

p−1

i ; 1 =
∑
xpi = cp

∑
y

p
p−1

i = cp
∑
yqi ; c = 1

(
∑
yqi )

1/p ;∑
xiyi = c

∑
y

1
p−1

+1

i = c
∑
y

p
p−1

i = c
∑
yqi = (

∑
yqi )

1− 1
p = (

∑
yqi )

1/q (recall
that p

p−1 = q).

We proved Hölder’s inequality in the case of finitely many variables xi and
yi. It persists in the case of countable many variables xi and yi. In this case,
it means that if two series

∑
|xi|p and

∑
|yi|q converge (and q is dual to p),

then the series
∑
xiyi also converges and inequality (3i2) holds.

3i3 Exercise. Prove that, for xi > 0,

n
1
x1

+ ... + 1
xn

≤ n
√
x1x2 . . . xn ≤

x1 + x2 + · · ·+ xn
n

.

The equality sign attains only in the case when all xi’s are equal.1

3i4 Exercise. Find the maximum of the function f(x, y, z) = xaybzc (a, b, c >
0), where x, y and z are positive, and xk + yk + zk = 1 (k > 0).

3i5 Exercise. Find the maximum of y over all points (x, y) ∈ R2 that satisfy
the equation x2 + xy + y2 = 27.

[Sh:Sect.5.4]

3j Sensitivity of optimum to parameters

When using a mathematical model one often bothers about sensitivity2 of
the result (the output of the model) to the assumptions (the input). Here is
one of such questions.3

What happens if the restrictions g1(x) = · · · = gm(x) = 0 are replaced
with g1(x) = c1, . . . , gm(x) = cm?

Assume that the system of m+ n equations

g1(x) = c1, . . . , gm(x) = cm , (m equations)

∇f(x) = λ1∇g1(x) + · · ·+ λm∇gm(x) (n equations)

1Hint: to get the first inequality, minimize x1 ·x2 · ... ·xn under assumption that all xi’s
are positive and

∑
i x

−1
i = 1. To get the second inequality, maximize x1x2 . . . xn under

assumption that all xi are positive and
∑

i xi = 1.
2Closely related ideas: stability, robustness; uncertainty; elasticity, . . .
3A more general one: g1(x, c1) = 0, . . . , gm(x, cm) = 0.
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for (λ, x) ∈ Rm × Rn has a solution (λ(c), x(c)) for all c ∈ Rm near 0, and
the mapping c 7→ x(c) is differentiable at 0. Then, by the chain rule,

∂

∂ck

∣∣∣
c=0
f(x(c)) =

〈
∇f(x(0)),

∂

∂ck

∣∣∣
c=0
x(c)

〉
for k = 1, . . . ,m .

On the other hand,

∇f(x(0)) = λ1(0)∇g1(x(0)) + · · ·+ λm(0)∇gm(x(0))

and 〈
∇g1(x(0)),

∂

∂ck

∣∣∣
c=0
x(c)

〉
=

∂

∂ck

∣∣∣
c=0
g1(x(c)) =

{
1, if k = 1,

0, otherwise

(since g1(x(c)) = c1). The same holds for g2, . . . , gm. Therefore

∂

∂ck

∣∣∣
c=0
f(x(c)) = λk(0) .

It means that λk = λk(0) is the sensitivity of the critical value to the level
ck of the constraint gk(x) = ck. That is,

f(x(c)) = f(x(0)) + λ1(0)c1 + · · ·+ λm(0)cm + o(|c|) .

Does it mean that

(3j1) sup
Zc

f = sup
Z0

f + λ1(0)c1 + · · ·+ λm(0)cm + o(|c|)

where Zc = {x : g1(x) = c1, . . . , gm(x) = cm}? Not necessarily, for sev-
eral reasons (possible non-compactness, non-differentiability, greater or equal
value at another critical point when c = 0). But if supZc

f = f(x(c)) for all
c near 0 then (3j1) holds.1

1See also Sect. 13.2 in book: J. Cooper, “Working analysis”, Elsevier 2005.
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