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Having more variables than equations we can express some variables in
terms of the others, but only locally. The inverse function theorem helps a
lot.

5a What is the problem

The set Z = Zg = {(x, y) : g(x, y) = 0} ⊂ R2 for a given g : R2 → R was
discussed in Sect. 3, starting on Sect. 3a. Assuming that g is continuously
differentiable near a given point (x0, y0) ∈ Z and ∇g(x0, y0) 6= 0 we got
in Sect. 3f a path within Z through (x0, y0). In spite of Remark 3f3(a)
this path is continuously differentiable, see Remark 4c10. However, Remark
3f3(b) persists: it is still unclear whether the path exhausts Z near (x0, y0),
or not.

But why just a path? It would be nicer to have the graph of a function
ϕ : R → R. This is not always possible. For example, the circle {(x, y) :
x2 + y2 = 1} = Zg for g(x, y) = x2 + y2 − 1. It is locally the graph of one
of two functions x 7→

√
1− x2, x 7→ −

√
1− x2 near (x0, y0) ∈ Zg except for

(x0, y0) = (±1, 0). [Sh:p.206]

√
1−x2

−
√
1−x2

?

For this reason we assume that the vector ∇g(x0, y0) is not horizontal, that
is,

(D2g)(x0,y0) 6= 0 .

(Otherwise x = ψ(y) rather than y = ϕ(x).)
Hopefully, the section gx : R → R of g defined by gx(y) = g(x, y) can

help; it satisfies g′x 6= 0 near y0 (provided that x is close enough to x0), which
should imply existence and uniqueness of a root y = ϕ(x) of gx close to y0.
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By some effort we could prove continuity of ϕ and maybe, by more effort, its
continuous differentiability.

Of course, we need a multidimensional theory; R2 is only the simplest
case.

Fortunately we do not need the effort mentioned above, since we have a
powerful helper, — the inverse function theorem!

5b Simple observations before the theorem

Dimension 1 + 1 = 2 (planar curves)

In Sect. 3f we got a path γ parametrized by values of the objective function
f . Now we need the graph of a function ϕ; such graph may be thought of
as a path parametrized by the coordinate x. Similarly to Sect. 3f we define
h : R2 → R2 by h(x, y) =

(
f(x, y), g(x, y)

)
, but this time for f(x, y) = x.

That is, we define
h(x, y) =

(
x, g(x, y)

)
.

We have

(Dh)(x0,y0) = T =

(
1 0
a b

)
where a = (D1g)(x0,y0), b = (D2g)(x0,y0). Here and henceforth we ignore
the distinction between operators and their matrices, and write vectors as
columns (when matrices are involved). That is,

(Dh)(x0,y0)

(
u
v

)
=

(
u

au+ bv

)
=

(
1 0
a b

)(
u
v

)
;

h(x0 + u, y0 + v)− h(x0, y0) =

(
x0 + u

g(x0 + u, y0 + v)

)
−
(

x0
g(x0, y0)

)
=(

u
au+ bv

)
+ o(| · |) .

Claim: T is invertible if and only if b 6= 0. Proof: det(T ) = b. Another proof:

T

(
u
v

)
=

(
ξ
η

)
⇐⇒ (u = ξ, au+ bv = η) ⇐⇒ (u = ξ, bv = η − aξ) .



Tel Aviv University, 2013/14 Analysis-III,IV 62

Dimension 3 + 2 = 5 (for example)

We consider two constraints on 5 variables:{
g1(x1, x2, x3, y1, y2) = 0 ,

g2(x1, x2, x3, y1, y2) = 0 ,

that is,

g(x, y) = 0 , where
x = (x1, x2, x3), y = (y1, y2),

g(x, y) = (g1(x, y), g2(x, y));

g : R5 → R2.1 We define h : R5 → R5 by

h(x, y) =

(
x

g(x, y)

)
for x ∈ R3, y ∈ R2

and differentiate it at a given point (x0, y0) = (x
(0)
1 , x

(0)
2 , x

(0)
3 , y

(0)
1 , y

(0)
2 ) ∈ R5:

(5b1) (Dh)(x0,y0) = T =

(
id 0
A B

)
;

here id ∈ L(R3,R3) is the identity operator, and (A B ) = (Dg)(x0,y0) ∈
L(R5,R2), A ∈ L(R3,R2), B ∈ L(R2,R2). Namely,

A =

(
∂g1
∂x1

∂g1
∂x2

∂g1
∂x3

∂g2
∂x1

∂g2
∂x2

∂g2
∂x3

)
, B =

(
∂g1
∂y1

∂g1
∂y2

∂g2
∂y1

∂g2
∂y2

)
,

the partial derivatives being taken at (x0, y0). A shorter notation:

A =
∂g

∂x

∣∣∣
(x0,y0)

, B =
∂g

∂y

∣∣∣
(x0,y0)

.

Thus,

g(x0 + u, y0 + v)− g(x0, y0) = Au+Bv + o(| · |)

h(x0 + u, y0 + v)− h(x0, y0) =

(
u

Au+Bv

)
+ o(| · |) for u ∈ R3, v ∈ R2.

Claim: T is invertible if and only if B is invertible. Proof: det(T ) = det(B).
Another proof:

(5b2) T

(
u
v

)
=

(
ξ
η

)
⇐⇒ (u = ξ, Bv = η − Aξ) .

1As before, we ignore the distinction between R3 × R2 and R5.
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Dimension r + c = n (the general case)

This is completely similar to the case r = 3, c = 2, n = 5. Here r, c ∈
{1, 2, 3, . . . }; c constraints on n variables are given; g : Rr × Rc = Rn → Rc;
x0 ∈ Rr, y0 ∈ Rc; h : Rn → Rn;

A =
∂g

∂x

∣∣∣
(x0,y0)

, B =
∂g

∂y

∣∣∣
(x0,y0)

;

r may be called the number of degrees of freedom; 5b1 and 5b2 still apply.

5c The theorem

5c1 Theorem. [Sh:Th.5.3.2] Assume that r, c ∈ {1, 2, 3, . . . }, n = r + c,
x0 ∈ Rr, y0 ∈ Rc, g : Rn → Rc is continuously differentiable near (x0, y0),

g(x0, y0) = 0, and the operator B = ∂g
∂y

∣∣∣
(x0,y0)

is invertible. Then there exist

open neighborhoods U of x0 and V of y0 such that
(a) for every x ∈ U there exists one and only one y ∈ V satisfying

g(x, y) = 0;
(b) a function ϕ : U → V defined by g

(
x, ϕ(x)

)
= 0 is continuously

differentiable, and (Dϕ)x0 = −B−1A where A = ∂g
∂x

∣∣∣
(x0,y0)

.

x

y

U

V

Rr
(Dϕ)x0 //

A !!

Rc

Rc
−B−1

==

5c2 Remark. (a) The neighborhoods U, V can be chosen to be open balls
(see the proof);

(b) the graph of ϕ covers all points of Zg within U ×V (recall 3f3(b) and
4c10).
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Proof of Theorem 5c1.

A mapping h : Rn → Rn defined by

h

(
x
y

)
=

(
x

g(x, y)

)
for x ∈ Rr, y ∈ Rc

is continuously differentiable near (x0, y0),
h(x0, y0) = (x0, 0), and the operator

(Dh)(x0,y0) = T =

(
id 0
A B

)
,

where A =
∂g

∂x

∣∣∣
(x0,y0)

, B =
∂g

∂y

∣∣∣
(x0,y0)

,

is invertible (as shown in Sect. 5b). Theorem 4c1 gives
an open neighborhood W ⊂ Rn of (x0, y0) such that
h(W ) ⊂ Rn is an open neighborhood of (x0, 0), h|W is a
homeomorphism W → h(W ) continuously differentiable
on W , and the inverse mapping (h|W )−1 : h(W ) → W
is continuously differentiable on h(W ).
We take open neighborhoods U0 ⊂ Rr of x0 and V ⊂ Rc

of y0 such that U0×V ⊂ W . Using continuity of (h|W )−1

at (x0, 0) we take an open neighborhood U ⊂ U0 of x0
such that U × {0} ⊂ h(W ) and (h|W )−1(U × {0}) ⊂
Rr × V .

(x0,y0)
W

U0×V

x0

U

(x0,0)

h(W )

h

Item (a), existence. Let x ∈ U , then (h|W )−1(x, 0) = (x, y) for some y ∈
V (since it belongs both to Rr×V and to {x}×Rc). We have h(x, y) = (x, 0),
therefore g(x, y) = 0.

Item (a), uniqueness. Let x ∈ U , y1, y2 ∈ V and g(x, y1) = g(x, y2) = 0,
then h(x, y1) = h(x, y2) = (x, 0), therefore y1 = y2 (since h is one-to-one on
W ).

Item (b), continuous differentiability. The mapping ϕ satisfies (and may
be defined by) the equality

( x
ϕ(x)

)
= (h|W )−1

(
x
0

)
for x ∈ U (since g(x, ϕ(x)) =

0 implies h(x, ϕ(x)) = (x, 0) ∈ h(W )). The mapping (h|W )−1 is continuously
differentiable on h(W ) ⊃ U × {0}. It follows that ϕ is continuously differ-
entiable on U , since ϕ is the composition of three maps (two of them being
linear): x 7→

(
x
0

)
; (h|W )−1;

(
x
y

)
7→ y. It remains to prove the formula for

(Dϕ)(x0,y0).
The chain rule 2b12 in combination with 2b14 gives (Dϕ)x0 as the prod-

uct of three operators: x 7→
(
x
0

)
;
(
D(h|W )−1

)
(x0,0);

(
x
y

)
7→ y. By 4c2,
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(
D(h|W )−1

)
(x0,0) =

(
(Dh)(x0,y0)

)−1 = T−1. We note that

T−1 =

(
id 0

−B−1A B−1

)
since

T

(
u
v

)
=

(
ξ
η

)
⇐⇒

{
u = ξ

Bv = η − Aξ

}
⇐⇒

(
u
v

)
=

(
ξ

B−1(η − Aξ)

)
.

It follows that

T−1
(
ξ
0

)
=

(
ξ

−B−1Aξ

)
,

and finally, (Dϕ)x0(ξ) = −B−1Aξ.

If in the linear approximation y is a function of x then y is locally a
function of x.

5c3 Exercise. In dimension 1 + 1 = 2 prove that

ϕ′(x0) = −(D1g)(x0,y0)

(D2g)(x0,y0)

.

(Less formally, dy
dx

= −∂g/∂x
∂g/∂y

since ∂g
∂x

dx+ ∂g
∂y

dy = dg(x, y) = 0.)

5c4 Exercise. (a) In dimension 1+1 = 2, assuming in addition that g ∈ C2

near (x0, y0), prove that ϕ ∈ C2 near x0.
1

(b) Generalize (a) to arbitrary dimension r + c = n and Ck for arbitrary
k = 1, 2, 3, . . .

5c5 Exercise. (a) Prove that the equation x cosxy = 0 near the point
(x, y) = (1, π/2) has unique solution y = y(x), and the function y(·) is
convex near x = 1.

(b) The same for the equation xy+ lnx+ ln y = 1 near the point (x, y) =
(1, 1).2

5c6 Exercise. Given k ∈ {1, 2, 3, . . . }, we define g : R2 → R by g(x, y) =
Im
(
(x+ iy)k

)
. Also, let x0 = y0 = 0.

(a) Find all k such that g(·, ·), x0, y0 satisfy the assumptions of Theorem
5c1.

(b) Find all k such that g(·, ·), x0, y0 satisfy the conclusions of Theorem
5c1.

1Hint: ϕ′(x) = − (D1g)(x,ϕ(x))

(D2g)(x,ϕ(x))
.

2Hint: in both cases you can do with almost no calculations!



Tel Aviv University, 2013/14 Analysis-III,IV 66

5c7 Exercise. Let g(·, ·), x0, y0 satisfy the assumptions of Theorem 5c1.
Show that g2(·, ·), x0, y0 violate the assumptions of Theorem 5c1 but still
satisfy its conclusions.

5c8 Exercise. Assume that g : Rn → R is continuously differentiable near
the origin, and (D1g)0 6= 0, . . . , (Dng)0 6= 0. Then the equation g(x1, . . . , xn) =
0 locally defines n functions x1(x2, . . . , xn), x2(x1, x3, . . . , xn), . . . , xn(x1, . . . , xn−1).
Find the product

∂x1
∂x2

∂x2
∂x3

. . .
∂xn−1
∂xn

∂xn
∂x1

at the origin.1

5d Degrees of freedom

In Theorem 3h1 linear independence of ∇g1(x0), . . . ,∇gm(x0) is required. In
Theorem 5c1 the operator B = ∂g

∂y

∣∣
(x0,y0)

is required to be invertible. Is it the

same, or not?
The number of constraints, denoted by m in Sect. 3, is now denoted by

c. The number of variables is n (in both cases).
The matrix of B is a part of the matrix (A B ) = (Dg)(x0,y0).
The vectors ∇g1(x0), . . . ,∇gc(x0) are the rows of the matrix
(A B ) = (Dg)(x0,y0).

c

r c

A B

If they are linearly dependent then clearly the rows of B are, and therefore
B is not invertible. The contrary is wrong: it can happen that the rows of
B are linearly dependent but the rows of (A B ) are not.

Linear independence of the rows of (A B ) means that this
matrix is of rank c, that is, some c× c minor is not zero. But
not just the rightmost minor. That is, some c out of the n
variables are functions of the other r variables. But not just
the last c variables of the first r variables.

=c

c

Recall the circle treated in Sect. 5a:

y=
√
1−x2

y=−
√
1−x2

x=
√

1−y2

Generally, dealing with a set of the form

Zg = {x : g(x) = 0} , g : Rn → Rc

1Hint: first, consider a linear g.
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and a point x0 ∈ Zg such that ∇g1(x0), . . . ,∇gc(x0) are linearly independent
(equivalently, the operator (Dg)x0 maps Rn onto Rc, recall 2f3), we see that
near x0 the set Zg is basically the graph of a continuously differentiable
mapping Rr → Rc (but the division of n variables into r and c may depend
on x0). In this situation one says that Zg at x0 has r degrees of freedom.1

In particular, the circle has one degree of freedom at every point.

5e Examples

Planar linkages

Informally, planar linkages are mechanical systems like these:2

They are used in machines and tools.3

They consist of bodies, called bars or links, connected by joints.
The number of degrees of freedom is important. One degree of freedom

is the main case in classical mechanics. Zero degrees of freedom means that
the system is rather a construction. Several degrees of freedom are widely
used in robotics.

Some planar links may be described as finite sequences (A1, . . . , Ap) of
points of R2 constrained by equations of two forms, |Ai − Aj| = ci,j and
|Ai − Bk| = c′i,k; here ci,j and c′i,k are lengths of the links and Bk are fixed

1This is basically the dimension of a manifold, treated in Analysis 4.
2Images from Wikipedia (articles “Six-bar linkage”, “Chebyshev linkage”).
3Images from Wikipedia (articles “Four-bar linkage”, “Klann linkage”, “Linkage (me-

chanical)”).

http://en.wikipedia.org/wiki/Six-bar_linkage
http://en.wikipedia.org/wiki/Chebyshev_linkage
http://en.wikipedia.org/wiki/Four-bar_linkage
http://en.wikipedia.org/wiki/Klann_linkage
http://en.wikipedia.org/wiki/Linkage_(mechanical)
http://en.wikipedia.org/wiki/Linkage_(mechanical)
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points. An example:

B1

A1

A2

B2

L2

L4

L3 |A1 −B1| = L2 ,

|A1 − A2| = L3 ,

|A2 −B2| = L4 .

Here we observe 2 fixed points, p = 2 free points and c = 3 constraints, and
expect one degree of freedom (2p− c = 1).

Generally, given p (free) points and c constraints, one expects to have

M = 2p− c

degrees of freedom. This M is called mobility. Is it really the number of
degrees of freedom?

The functions |Ai−Aj| are continuously differentiable everywhere except
for the case Ai = Aj. We could turn to the functions |Ai−Aj|2 continuously
differentiable everywhere, but the case Ai = Aj remains exceptional: the
gradient vanishes here. Well, we assume that ci,j > 0 and c′i,k > 0, which
ensures continuous differentiability and non-zero gradients. The question is,
are the gradients linearly independent?

The answer appears to be affirmative for majority of practically impor-
tant cases. But not always. Sometimes the answer is negative; such planar
linkages are called overconstrained. Putting aside trivial examples such as
L1,3 = L1,2 + L2,3 we turn to a quite nontrivial example.

The so-called Peaucellier-Lipkin linkage transforms rotation into straight
motion.1

1Images from Wikipedia (article “Peaucellier-Lipkin linkage”).

http://en.wikipedia.org/wiki/Peaucellier-Lipkin_linkage
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Here p = 4, c = 7, M = 1. We “symmetrize” this linkage as follows:

Now p = 7, c = 14, M = 0 and nevertheless it moves!
Returning to the Peaucellier-Lipkin linkage we denote by f(·) the horizon-

tal coordinate of the rightmost point, observe that f(·) = const on Zg, thus,
f has a local constrained extremum (not strict, of course) at every point of
Zg. Taking for granted that this linkage is not overconstrained we conclude
that ∇f(x) = λ1∇g1(x) + · · ·+ λ7∇g7(x) for some λ1, . . . , λ7 (depending on
x ∈ Zg).

For the symmetrized linkage we still have ∇f(x) = λ1∇g1(x) + · · · +
λ7∇g7(x), but also, by symmetry, −∇f(x) = λ1∇g8(x) + · · · + λ7∇g14(x).
Clearly, λ1, . . . , λ7 are not all zero, and λ1∇g1(x)+· · ·+λ7∇g7(x)+λ1∇g8(x)+
· · · + λ7∇g14(x) = 0 is a linear dependence between the gradients of the
constraints.

Rotations in three dimensions

A rotation of R3 is a linear operator U : R3 → R3 such that |Ux| =
|x| for all x ∈ R3 and in addition detU = 1 (rather than −1); here U is
thought of as a 3 × 3 matrix. The three columns u1, u2, u3 of this matrix
U = (u1 u2 u3 ) are orthonormal vectors in R3. In addition, u3 = u1 × u2
(the vector product). We may describe U by a pair (u1, u2) of orthonormal
vectors (the correspondence U ↔ (u1, u2) being bijective). Now the situation
is similar to that of “planar linkages”, but spatial rather than planar. We
have one fixed point O = (0, 0, 0) ∈ R3, two free points u1, u2 ∈ R3 and three
constraints

|u1 −O| = 1 , |u2 −O| = 1 , |u1 − u2| =
√

2 equivalent to

|u1| = 1 , |u2| = 1 , 〈u1, u2〉 = 0 .

Thus, p = 2; the number of variables is 3p = 6; the number of constraints is
c = 3; the mobility is M = 3p− c = 3. Is it really the number of degrees of
freedom? That is, are the gradients (of the constraints) linearly independent?

We take u1 = (x1, x2, x3), u2 = (x4, x5, x6), and

g1(x1, . . . , x6) = x21 + x22 + x23 − 1 ,

g2(x1, . . . , x6) = x24 + x25 + x26 − 1 ,

g3(x1, . . . , x6) = x1x4 + x2x5 + x3x6 .
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Thus,

∇g1(x1, . . . , x6) = (2x1, 2x2, 2x3, 0, 0, 0) ,

∇g2(x1, . . . , x6) = (0, 0, 0, 2x4, 2x5, 2x6) ,

∇g3(x1, . . . , x6) = (x4, x5, x6, x1, x2, x3) .

If λ1∇g1 + λ2∇g2 + λ3∇g3 = 0 at a point of Zg then 2λ1u1 + λ3u2 = 0
and 2λ2u2 + λ3u1 = 0 (check it), which implies λ1 = λ2 = λ3 = 0, since
|2λ1u1 + λ3u2|2 = 4λ21 + λ23 and |2λ2u2 + λ3u1|2 = 4λ22 + λ23.

We see that the three gradients are linearly independent, and therefore
Zg has 3 degrees of freedom at every point.

For instance, at the point u1 = (1, 0, 0), u2 = (0, 1, 0) we have∇g1∇g2
∇g3

 =

2 0 0 0 0 0
0 0 0 0 2 0
0 1 0 1 0 0

 ;

a non-zero 3×3 minor can be chosen in two ways: by taking columns 1, 2, 5 or
1, 4, 5. It means that near the given point x1, x2, x5 are functions of x3, x4, x6;
or alternatively,x1, x4, x5 are functions of x2, x3, x6.

or but not

Now we could turn to spatial (rather than planar) linkages, in particular,
the overconstrained Sarrus linkage.1

However, this is beyond our course.

1Images from Wikipedia (articles “Four-bar linkage”, “Sarrus linkage”).

http://en.wikipedia.org/wiki/Four-bar_linkage
http://en.wikipedia.org/wiki/Sarrus_linkage
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