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One-dimensional integrals are taken over intervals, while n-dimensional
integrals are taken over more complicated sets in Rn.

It is frequently claimed that Lebesgue integration is as easy to
teach as Riemann integration. This is probably true, but I have
yet to be convinced that it is as easy to learn.

T.W. Körner1

6a What is the problem

A quote:

As already pointed out, many of the quantities of interest in con-
tinuum mechanics represent extensive properties, such as mass,
momentum and energy. An extensive property assigns a value to
each part of the body. From the mathematical point of view, an
extensive property can be regarded as a set function, in the sense

1“A companion to analysis: A second first and first second course in analysis”, AMS
2004. (See page 197.)
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that it assigns a value to each subset of a given set. Consider, for
example, the case of the mass property. Given a material body,
this property assigns to each subbody its mass. Other examples
of extensive properties are: volume, electric charge, internal en-
ergy, linear momentum. Intensive properties, on the other hand,
are represented by fields, assigning to each point of the body a def-
inite value. Examples of intensive properties are: temperature,
displacement, strain.

As the example of mass clearly shows, very often the extensive
properties of interest are additive set functions, namely, the value
assigned to the union of two disjoint subsets is equal to the sum
of the values assigned to each subset separately. Under suitable
assumptions of continuity, it can be shown that an additive set
function is expressible as the integral of a density function over
the subset of interest. This density, measured in terms of prop-
erty per unit size, is an ordinary pointwise function defined over
the original set. In other words, the density associated with a
continuous additive set function is an intensive property. Thus,
for example, the mass density is a scalar field.

Marcelo Epstein1

We need a mathematical theory of the correspondence between set func-
tions Rn ⊃ E 7→ F (E) ∈ R and (ordinary) functions Rn 3 x 7→ f(x) ∈ R
via integration, F (E) =

∫
E
f . The theory should address (in particular) the

following questions.

∗ What are admissible sets E and functions f? (Arbitrary sets are as
useless here as arbitrary functions.)

∗ What is meant by “disjoint”?

∗ What is meant by integral?

∗ What are the general properties of the integral?

∗ How to calculate the integral explicitly for given f and E ?

Postponing the last question to subsequent sections, we start now the inte-
gration theory based on two postulates. First,

(6a1) vol(B) inf
B
f ≤ F (B) ≤ vol(B) sup

B
f

whenever B is a box (to be defined). Second,

(6a2) F (B1 ∪ · · · ∪Bk) = F (B1) + · · ·+ F (Bk)

1“The elements of continuum biomechanics”, Wiley 2012. (See Sect. 2.2.1.)
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whenever a box B is split into k boxes B1, . . . , Bk.
For boxes the theory is similar to the one-dimensional Riemann integra-

tion. However, two problems need additional effort:

∗ E need not be a box (it may be a ball, a cone, etc.);

∗ rotation invariance should be proved.

These problems do not appear in dimension one; there an (ordinary) function
F : R→ R such that F ′ = f leads to the set function [s, t] 7→ F (t)− F (s) =∫ t
s
f .

6b Dimension one: reminder

[Sh:6.1,6.2]
Interval: I = [s, t] ⊂ R, where −∞ < s < t <∞.

Its length: length(I) = t− s.
A partition of I: P = {t0, t1, . . . , tk} where s = t0 < t1 < · · · < tk = t.

It divides I into k subintervals: Jj = [tj−1, tj] for j = 1, . . . , k. Alternatively,
P = {J1, . . . , Jk}.1 It is convenient to include k = 1 (the trivial partition).
Additivity of length: length(I) = length(J1)+· · ·+length(Jk) =

∑
J∈P length(J).

A refinement P ′ of P : a partition P ′ = {t′0, t′1, . . . , t′l} such that P ⊂ P ′.2

Then, length(J) =
∑

J ′⊂J,J ′∈P ′ length(J ′) for each J ∈ P (indeed, these J ′

are a partition of J).
Common refinement P1 ∨ P2 = P1 ∪ P2 of two partitions.3

A bounded function f : I → R.
Lower and upper Darboux sums:

L(f, P ) =
∑
J∈P

length(J) inf
J
f ; U(f, P ) =

∑
J∈P

length(J) sup
J
f .

Evident:

L(f, P ) ≤ U(f, P ) ; that is, [L(f, P ), U(f, P )] 6= ∅ .

Easy to see:4 if P ′ is a refinement of P then

L(f, P ) ≤ L(f, P ′) and U(f, P ) ≥ U(f, P ′) ; that is,

[L(f, P ′), U(f, P ′)] ⊂ [L(f, P ), U(f, P )] .

1Not quite a partition; but the tiny overlap does not matter, since it does not break
additivity of length.

2This notation is correct for sets of points, not of subintervals. It is better to write
P ≺ P ′.

3Again, the notation P1 ∪ P2 is correct for sets of points, not of subintervals.
4Additivity of length is used.
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Not so evident:
L(f, P1) ≤ U(f, P2) for all P1, P2 ;

proof: L(f, P1) ≤ L(f, P1 ∪ P2) ≤ U(f, P1 ∪ P2) ≤ U(f, P2).
Lower and upper integrals:

∗

∫
I

f = L

∫
I

f = sup
P
L(f, P ) ;

∗∫
I

f = U

∫
I

f = inf
P
U(f, P ) .

Evident:
∗

∫
I

f ≤
∗∫
I

f .

Integrability and integral (Riemann-Darboux):

∗

∫
I

f =
∗∫
I

f =

∫
I

f .

The same holds in a one-dimensional Euclidean affine space instead of R.
Accordingly, the integral (as well as the lower and upper integral) is invariant
under translation: for every r ∈ R,∫

[s,t]

f =

∫
[s+r,t+r]

g where g(u) = f(u− r) ,

and reflection: ∫
[s,t]

f =

∫
[−t,−s]

g where g(u) = f(−u) .

6b1 Exercise. If f and F satisfy (6a1) and (6a2) then ∗
∫
B
f ≤ F (B) ≤

∗∫
B
f , and therefore F (B) =

∫
B
f if f is integrable.

Formulate it accurately, and prove.

6b2 Exercise. Let

f(x) = 1 , g(x) = 0 for all rational x ,

f(x) = 0 , g(x) = 1 for all irrational x .

Prove that

∗

∫
I

(af + bg) = min(a, b) length(I) ,

∗∫
I

(af + bg) = max(a, b) length(I)

for all a, b ∈ R and all intervals I.
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6c Higher dimensions

[Sh:6.1,6.2]
Dimension two: a box is a rectangle [s, t] × [u, v] ⊂ R2; its area is (t −

s)(v − u).
Dimension n: a box is I1×· · ·×In ⊂ Rn where I1, . . . , In ⊂ R are intervals

(as in Sect. 6b). Its volume: vol(B) =
∏n

j=1 length(Ij). Note that all boxes
are closed and bounded.

A partition of B: the product P of one-dimensional partitions P1, . . . , Pn
of the intervals I1, . . . , In; it divides B into k = k1 . . . kn subboxes of the
form C = J1× · · · × Jn where J1 ∈ P1, . . . , Jn ∈ Pn. It is convenient to write
P = P1 × · · · × Pn.

Additivity of volume:

(6c1) vol(B) =
∑
C∈P

vol(C) ;

follows from the one-dimensional additivity:∑
C∈P

vol(C) =
∑

J1∈P1,...,Jn∈Pn

length J1 . . . length Jn =( ∑
J1∈P1

length(J1)

)
. . .

( ∑
Jn∈Pn

length(Jn)

)
= length(I1) . . . length(In) = vol(B) .

A refinement of P : P ′ = P ′1 × · · · × P ′n where each P ′j is a refinement of
Pj. Symbolically, P ≺ P ′. If P ≺ P ′ then

(6c2) vol(C) =
∑

C′⊂C,C′∈P ′
vol(C ′) for each C ∈ P

(indeed, these C ′ are a partition of C).
Common refinement P1 ∨ P2 of two partitions P1, P2 (just the product of

one-dimensional common refinements).
The rest is completely similar to Sect. 6b (with boxes and volumes instead

of intervals and lengths); it is reproduced here mostly for references.
A bounded function f : B → R.
Lower and upper Darboux sums:

(6c3) L(f, P ) =
∑
C∈P

vol(C) inf
C
f ; U(f, P ) =

∑
C∈P

vol(C) sup
C
f .

Evident:

L(f, P ) ≤ U(f, P ) ; that is, [L(f, P ), U(f, P )] 6= ∅ .
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Easy to see (using (6c2)): if P ′ is a refinement of P then

L(f, P ) ≤ L(f, P ′) and U(f, P ) ≥ U(f, P ′) ; that is,

[L(f, P ′), U(f, P ′)] ⊂ [L(f, P ), U(f, P )] .

Not so evident:
L(f, P1) ≤ U(f, P2) for all P1, P2 ;

proof: L(f, P1) ≤ L(f, P1 ∪ P2) ≤ U(f, P1 ∪ P2) ≤ U(f, P2).
Lower and upper integrals:

(6c4)
∗

∫
B

f = sup
P
L(f, P ) ;

∗∫
B

f = inf
P
U(f, P ) .

Evident:

(6c5)
∗

∫
B

f ≤
∗∫
B

f .

Integrability and integral (Riemann-Darboux):

(6c6)
∗

∫
B

f =
∗∫
B

f =

∫
B

f .

The same holds in the product S1×· · ·×Sn of n one-dimensional Euclidean
affine spaces instead of Rn. Accordingly, the integral (as well as the lower
and upper integral) is invariant under translation: for every r ∈ Rn,

(6c7)

∫
B

f =

∫
B+r

g where g(u) = f(u− r) ,

and reflections (of some or all the coordinates). Permutations of coordinates
are also unproblematic. However, for now we cannot integrate over an arbi-
trary n-dimensional Euclidean space, since rotation invariance of the integral
is not proved yet.

6d Basic properties of integrals

[Sh:6.2]
The constant function c1l(x) = c is integrable, and

(6d1)

∫
B

c1l = c vol(B) for all c ∈ R .

(Do not bother to use (6c1); just take the trivial partition P and observe
that L(f, P ) = U(f, P ) = c vol(B).)
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A number of properties of integrals are proved according to a pattern

(6d2)

sup
C
f // U(f, P ) //

∗∫
B

f
))
∫
B

f .

inf
C
f // L(f, P ) //

∗

∫
B

f

55

It means: an evident property of supC f implies the corresponding property
of U(f, P ) and then of

∗∫
B
f (assuming only boundedness); similarly, from

infC f to ∗
∫
B
f ; and finally, assuming integrability, the properties of

∗∫
B
f

and ∗
∫
B
f are combined into a property of

∫
B
f .

Monotonicity:

if f(·) ≤ g(·) on B then
∗

∫
B

f ≤
∗

∫
B

g ,
∗∫
B

f ≤
∗∫
B

g ,(6d3)

and for integrable f, g,

∫
B

f ≤
∫
B

g .(6d4)

(It can happen that
∗∫
B
f > ∗

∫
B
g; find an example.)

Homogeneity:

∗

∫
B

cf = c
∗

∫
B

f ,
∗∫
B

cf = c
∗∫
B

f for c ≥ 0 ;(6d5)

∗

∫
B

cf = c
∗∫
B

f ,
∗∫
B

cf = c
∗

∫
B

f for c ≤ 0 ;(6d6)

if f is integrable then cf is, and

∫
B

cf = c

∫
B

f for all c ∈ R .(6d7)

(Sub-, super-) additivity:

∗∫
B

(f + g) ≤
∗∫
B

f +
∗∫
B

g ;(6d8)

∗

∫
B

(f + g) ≥
∗

∫
B

f +
∗

∫
B

g ;(6d9)

if f, g are integrable then f + g is, and

∫
B

(f + g) =

∫
B

f +

∫
B

g .(6d10)

(It can happen that
∗∫
B

(f + g) <
∗∫
B
f +

∗∫
B
g; find an example.)

Combining properties (6d7) and (6d10) we get linearity (for integrable
functions only):

(6d11)

∫
B

(c1f1 + · · ·+ ckfk) = c1

∫
B

f1 + · · ·+ ck

∫
B

fk
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for c1, . . . , ck ∈ R and integrable f1, . . . , fk.
Translation invariance; see (6c7).

6d12 Exercise. Prove (6d3)–(6d11).

6d13 Exercise. Prove that the set of all integrable functions is closed under
uniform convergence. In other words: let f, fn : B → R, supB |fn − f | → 0
as n→∞. If each fn is integrable then f is integrable.1

6d14 Exercise. Prove that the set of all integrable functions is not closed
under pointwise convergence. In other words: let f, fn : B → R, fn(x) →
f(x) (as n → ∞) for every x ∈ B. It can happen that each fn is integrable
but f is not integrable (even if f is bounded).2

The set of all integrable functions is closed under integral convergence in
the following sense.

6d15 Proposition. Let f, fn : B → R be bounded functions such that

∗∫
B

|fn − f | → 0 as n→∞ .

Then

∗

∫
B

fn →
∗

∫
B

f and
∗∫
B

fn →
∗∫
B

f as n→∞ .

If each fn is integrable then f is integrable and
∫
B
fn →

∫
B
f .

Proof. Denote εn =
∗∫
B
|fn − f |; εn → 0. We have f − fn ≤ |fn − f |, thus

∗∫
B

(f − fn) ≤ εn. Similarly,
∗∫
B

(fn − f) ≤ εn, that is, ∗
∫
B

(f − fn) ≥ −εn.
We get

−εn ≤
∗

∫
B

(f − fn) ≤
∗∫
B

(f − fn) ≤ εn .

Similarly,

−εn ≤
∗

∫
B

(fn − f) ≤
∗∫
B

(fn − f) ≤ εn .

Taking into account that f = fn + (f − fn) we get

∗∫
B

f ≤
∗∫
B

fn +
∗∫
B

(f − fn) ≤
∗∫
B

fn + εn ,

1The indicator of the Cantor set is integrable, but not the uniform limit of continuous
functions, nor of step functions.

2Hint: try
∑

k 1l{xn} for a sequence (xn)n dense in B.
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and similarly
∗∫
B
fn ≤

∗∫
B
f + εn. Doing the same for the lower integral we

get ∣∣∣∣
∗

∫
B

fn −
∗

∫
B

f

∣∣∣∣ ≤ εn and

∣∣∣∣ ∗∫
B

fn −
∗∫
B

f

∣∣∣∣ ≤ εn .

6d16 Exercise. For bounded f, g : B → R prove that
(a)

∗∫
B
|fg| ≤ 1

2

(∗∫
B
f 2 +

∗∫
B
g2
)
;

(b)
∗∫
B
|fg| ≤ minc>0

1
2

(
c
∗∫
B
f 2 + 1

c

∗∫
B
g2
)

=
√
∗∫
B
f 2

√
∗∫
B
g2.

6d17 Exercise. (a) For f, g as in 6b2 prove that

∗

∫
I

(af + b)(cg + d) =
(
min(ad, bc) + bd

)
length(I) ,

∗

∫
I

(af + b)2 = min
(
(a+ b)2, b2

)
length(I) ,

∗

∫
I

(cg + d)2 = min
(
(c+ d)2, d2

)
length(I)

for all a, b, c, d ∈ R and all intervals I.
(b) Prove existence of bounded f, g : I → R such that ∗

∫
I
|fg| >√

∗
∫
I
f 2

√
∗
∫
I
g2.

6d18 Exercise. For given s1, . . . , sn > 0 define T : Rn → Rn by T (t1, . . . , tn) =
(s1t1, . . . , sntn). Prove that

s1 . . . sn
∗

∫
T−1(B)

f ◦ T =
∗

∫
B

f , s1 . . . sn
∗∫
T−1(B)

f ◦ T =
∗∫
B

f

for bounded f : B → R, and if f is integrable on B then f ◦ T is integrable
on T−1(B) and

s1 . . . sn

∫
T−1(B)

f ◦ T =

∫
B

f .

6e Escaping the box

First, dimension one. Let −∞ < r < s < t < u < ∞, and f : [r, u] → R a
bounded function that vanishes outside (s, t). Then

∗

∫
[r,u]

f =
∗

∫
[s,t]

f ,
∗∫
[r,u]

f =
∗∫
[s,t]

f .
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Proof. For every partition P1 = {t0, . . . , tk} of [s, t] there exists a parti-
tion P2 = {r, t0, . . . , tk, u} of [r, u] such that U(f, P2) = U(f, P1); therefore
∗∫

[r,u]
f ≤ ∗

∫
[s,t]

f .

On the other hand, let P2 be a partition of [r, u]. If s and t are partition
points of P2 then the “restriction” of P2 to [s, t] is a partition P1 of [s, t] such
that U(f, P1) = U(f, P2). Otherwise, adding s and t to P2 we get P2 ≺ P ′2
and then P1 such that U(f, P1) = U(f, P ′2) ≤ U(f, P2). In all cases we get
∗∫

[s,t]
f ≤ ∗

∫
[r,u]

f . Therefore the upper integrals are equal.

For the lower integrals we may use a similar argument; or alternatively,
take the upper integrals of (−f).

Dimension n. (By B◦ we denote the interior of B.) Let two boxes
B1, B2 ⊂ Rn satisfy B1 ⊂ B◦2 , and f : B2 → R be a bounded function
that vanishes outside B◦1 . Then

(6e1)
∗

∫
B2

f =
∗

∫
B1

f ,
∗∫
B2

f =
∗∫
B1

f .

Proof. We apply the one-dimensional argument to each coordinate, and con-
sider the product of one-dimensional partitions.

6e2 Exercise. Let f : B2 → R be a bounded function such that f(·) ≥ 0
outside Int(B1). Prove that

∗

∫
B2

f ≥
∗

∫
B1

f ,
∗∫
B2

f ≥
∗∫
B1

f .

6e3 Definition. A function f : Rn → R has bounded support, if the set
{x : f(x) 6= 0} is bounded.

6e4 Definition. Let f : Rn → R be a bounded function with bounded
support. Then

∗

∫
Rn

f =
∗

∫
B

f ,
∗∫
Rn

f =
∗∫
B

f

where B ⊂ Rn is an arbitrary box such that {x : f(x) 6= 0} ⊂ B◦.

By (6e1), these integrals do not depend on B. Indeed, for arbitrary B1, B2

there exists B such that B1 ⊂ B◦ and B2 ⊂ B◦.
Box-free counterparts of (6d3)–(6d11) follow readily. They hold for all

bounded functions with bounded support f, g : Rn → R (note that f +g also
is such function). All integrals are taken over Rn.
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Monotonicity:

if f(·) ≤ g(·) everywhere then
∗

∫
f ≤

∗

∫
g ,

∗∫
f ≤

∗∫
g ,(6e5)

and for integrable f, g,

∫
f ≤

∫
g .(6e6)

Homogeneity:

∗

∫
cf = c

∗

∫
f ,

∗∫
cf = c

∗∫
f for c ≥ 0 ;(6e7)

∗

∫
cf = c

∗∫
f ,

∗∫
cf = c

∗

∫
f for c ≤ 0 ;(6e8)

if f is integrable then cf is, and

∫
cf = c

∫
f for all c ∈ R .(6e9)

(Sub-, super-) additivity:

∗∫
(f + g) ≤

∗∫
f +

∗∫
g ;(6e10)

∗

∫
(f + g) ≥

∗

∫
f +

∗

∫
g ;(6e11)

if f, g are integrable then f + g is, and

∫
(f + g) =

∫
f +

∫
g .(6e12)

Linearity: for c1, . . . , ck ∈ R and integrable f1, . . . , fk,

(6e13)

∫
(c1f1 + · · ·+ ckfk) = c1

∫
f1 + · · ·+ ck

∫
fk .

Translation invariance:∫
f =

∫
g where g(u) = f(u− r) .

6e14 Exercise. For s1, . . . , sn, T as in 6d18 and integrable f : Rn → R
prove that f ◦ T is integrable and

s1 . . . sn

∫
f ◦ T =

∫
f .
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6f Volume as Jordan measure

[Sh:6.5]
The indicator function 1lE of a bounded set E ⊂ Rn evidently is a bounded

function with bounded support.

6f1 Definition. Let E ⊂ Rn be a bounded set. Its inner Jordan measure
v∗(E) and outer Jordan measure v∗(E) are

v∗(E) =
∗

∫
Rn

1lE , v∗(E) =
∗∫
Rn

1lE .

If they are equal (that is, if 1lE is integrable) then E is Jordan measurable,1

and its Jordan measure2 is

v(E) =

∫
Rn

1lE .

Monotonicity (follows from (6e5)):

(6f2) E1 ⊂ E2 implies v∗(E1) ≤ v∗(E2) , v
∗(E1) ≤ v∗(E2) .

(Sub-, super-) additivity (follows from (6e10), (6e11), (6e12) and (6e5)):

v∗(E1 ∪ E2) ≤ v∗(E1) + v∗(E2) ,(6f3)

v∗(E1 ] E2) ≥ v∗(E1) + v∗(E2) ;(6f4)

if E1, E2 are Jordan measurable then E1 ] E2 is, and

v(E1 ] E2) = v(E1) + v(E2) .
(6f5)

Here “]” stands for disjoint union; that is, A ] B is just A ∪ B but only if
A ∩ B = ∅ (otherwise undefined). Thus, disjointedness is assumed in (6f4),
(6f5), and implies 1lE1]E2 = 1lE1 + 1lE2 .

Later3 we’ll see that Jordan measurability of E and F implies Jordan
measurability of E ∩ F , E ∪ F and E \ F .

Translation invariance: for every r ∈ Rn,

(6f6) v∗(E + r) = v∗(E) , v∗(E + r) = v∗(E) .

6f7 Proposition. Every box B ⊂ Rn is Jordan measurable, and v(B) =
vol(B).

1Or just a Jordan set.
2Or the n-dimensional volume, or Jordan content, or Peano-Jordan measure, etc.
3See 6j4, 6k6.
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6f8 Lemma. For every box B ⊂ Rn and every ε > 0 there exist boxes B1, B2

such that B1 ⊂ B◦, B ⊂ B◦2 , and vol(B1) ≥ vol(B)−ε, vol(B2) ≤ vol(B)+ε.

Proof. Given B = [s1, t1]× · · · × [sn, tn] we introduce Bδ = [s1 − δ, t1 + δ]×
· · · × [sn− δ, tn + δ], then vol(Bδ) = (t1− s1 + 2δ) . . . (tn− sn + 2δ)→ vol(B)
as δ → 0. We take B2 = Bδ for δ > 0 small enough, and B1 = B−δ for δ > 0
small enough.

Proof of Prop. 6f7. 1 Due to 6e2, v∗(E) ≥ ∗
∫
B

1lE. Taking E = B and using
(6d1) we get

v∗(B) ≥ vol(B) .

It is sufficient to prove that v∗(B) ≤ vol(B). We cannot take f = 1lB in 6e4,
but we can take f = 1lB◦ , getting

∗∫
Rn 1lB◦ =

∗∫
B

1lB◦ ≤
∫
B

1l = vol(B), that
is,

v∗(B◦) ≤ vol(B) .

We apply it to B2 such that B ⊂ B◦2 and vol(B2) ≤ vol(B) + ε (such B2

exists by 6f8), getting

v∗(B) ≤ v∗(B◦2) ≤ vol(B2) ≤ vol(B) + ε

for arbitrary ε > 0; therefore v∗(B) ≤ vol(B).

6f9 Exercise. For every box B ⊂ Rn its interior B◦ is Jordan measurable,
and v(B◦) = vol(B).

Prove it.

6f10 Lemma. For every box B ⊂ Rn its boundary ∂B = B \ B◦ is Jordan
measurable, and v(∂B) = 0.

Proof. The linear combination 1lB − 1lB◦ = 1l∂B of integrable functions is
integrable, and v(∂B) =

∫
1l∂B =

∫
1lB −

∫
1lB◦ = vol(B)− vol(B) = 0.

We define a set of volume zero as a bounded set E ⊂ Rn such that
v∗(E) = 0. Equivalently: a Jordan measurable set such that v(E) = 0. Due
to (6f2), (6f3),

if E ⊂ F and F is of volume zero then E is ;(6f11)

if E1, . . . , Ek are of volume zero then E1 ∪ · · · ∪ Ek is .(6f12)

1The proof is a bit tricky because the subboxes of a partition may overlap on the
boundary. Some authors escape this trick by using only intervals of the form [s, t) (or
alternatively, only (s, t]) from the beginning. However, this proof is a moderate price for
the classical definition; and the boundary overlap will never bother us again.
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6f13 Exercise. Prove that
(a) the inner Jordan measure of a closed n-dimensional ball of radius r is

≥
(

2r√
n

)
n;

(b) every nonempty open set has a non-null inner Jordan measure;
(c) the inner Jordan measure of an open n-dimensional ball of radius r is

>
(

2r√
n

)
n;

(d) every set of volume zero has empty interior.

6f14 Exercise. For s1, . . . , sn and T as in 6d18, 6e14 prove that

v∗(T (E)) = s1 . . . snv∗(E) , v∗(T (E)) = s1 . . . snv
∗(E)

for every bounded E, and if E is Jordan measurable then T (E) is Jordan
measurable and v(T (E)) = s1 . . . snv(E). In particular, v(sE) = snv(E).

6g Sandwiching by step functions

“Sets of volume zero are small enough that they don’t interfere with integra-
tion” [Sh:p.272].

6g1 Lemma. If bounded functions f, g : Rn → R with bounded support
differ only on a set of volume zero then ∗

∫
f = ∗

∫
g and

∗∫
f =

∗∫
g.

Proof. We take M such that |f(·)| ≤ M and |g(·)| ≤ M , note that |f(·) −
g(·)| ≤ 2M1lE where E = {x : f(x) 6= g(x)} is a set of volume zero, and get
by (6e5), (6e7)

∗∫
|f − g| ≤ 2M

∗∫
1lE = 0 .

Taking into account that g ≤ f + (g − f) ≤ f + |f − g| we get by (6e10)
∗∫
g ≤ ∗

∫
f . Similarly,

∗∫
f ≤ ∗

∫
g; thus

∗∫
f =

∗∫
g. Applying it to (−f), (−g)

we get ∗
∫
f = ∗

∫
g.

Thus we may safely ignore values of integrands on sets of volume zero (as
far as they are bounded). Likewise we may ignore sets of volume zero when
dealing with Jordan measure.

Now we may add “outside a set of volume zero” to (6e5)–(6e13), like this:
Monotonicity: if f(·) ≤ g(·) outside a set of volume zero then

∗

∫
f ≤

∗

∫
g ,

∗∫
f ≤

∗∫
g ,(6g2)

and for integrable f, g,

∫
f ≤

∫
g .(6g3)
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Linearity: for c1, . . . , ck ∈ R and integrable f1, . . . , fk, if f = c1f1 + · · ·+
ckfk outside a set of volume zero then

(6g4)

∫
f = c1

∫
f1 + · · ·+ ck

∫
fk .

Given a partition P of a box B, we may ignore the values of a bounded
function f on the union ∪C∈P∂C of boundaries. Moreover, f need not be
defined on ∪C∈P∂C. The function f+

P defined on B \ ∪C∈P∂C by

f+
P (x) = sup

C◦
f for x ∈ C◦ , C ∈ P

is integrable, and

∗∫
B

f ≤
∫
B

f+
P =

∑
C∈P

(
sup
C◦

f
)

vol(C) .

We modify Darboux sums accordingly (recall (6c3)),

(6g5) L0(f, P ) =
∑
C∈P

vol(C) inf
C◦
f , U0(f, P ) =

∑
C∈P

vol(C) sup
C◦

f ,

and still (recall (6c4)),

(6g6)
∗

∫
B

f = sup
P
L0(f, P ) ;

∗∫
B

f = inf
P
U0(f, P )

for all bounded f .
Functions on B \ ∪C∈P∂C that are constant on each C◦ are called (n-di-

mensional) step functions. Note that f+
P is the least step function h such

that h ≥ f on the domain of h. We see that (for all bounded f)

(6g7)
∗∫
B

f = inf
h≥f

∫
B

h ,
∗

∫
B

f = sup
h≤f

∫
B

h

where h runs over all step functions, and the inequalities h ≥ f , h ≤ f are
required on the domain of h. Thus, f is integrable on B if and only if for
every ε > 0 there exist step functions h1, h2 on B such that h1 ≤ f ≤ h2 and∫
B
h2 −

∫
B
h1 ≤ ε (“sandwich”).

6g8 Exercise. Prove that every continuous function on a box is integrable.

6g9 Exercise. Find
∫ 1

0
x dx using only the theory of Sections 6b–6g. (That

is,
∫
[0,1]

f where f(t) = t.)
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6g10 Exercise. Let f : [0, 1)→ [0, 1) be defined via binary digits, by

f(x) =
∞∑
k=1

β2k(x)

2k
for x =

∞∑
k=1

βk(x)

2k
, βk(x) ∈ {0, 1} , lim inf

k
βk(x) = 0 .

Prove that f is integrable on [0, 1] and find
∫
[0,1]

f .1

6g11 Exercise. Let f : [0, 1)× [0, 1)→ [0, 1) be defined by

f(x, y) =
∞∑
k=1

βk(x)

22k−1 +
∞∑
k=1

βk(y)

22k

(where βk(·) are as in 6g10). Prove that f is integrable on [0, 1]× [0, 1] and
find

∫
[0,1]×[0,1] f .

6h The area under a graph

6h1 Proposition. Let f : B → [0,∞) be an integrable function on a box
B ⊂ Rn, and

E = {(x, t) : x ∈ B, 0 ≤ t ≤ f(x)} ⊂ Rn+1 .

Then E is Jordan measurable (in Rn+1), and

v(E) =

∫
B

f .

Proof. Let P be a partition of B. Consider sets

E− =
⋃
C∈P

C × [0, inf
C
f ] , E+ =

⋃
C∈P

C × [0, sup
C
f ] .

We have E− ⊂ E ⊂ E+. The set E+ is a finite union of boxes (in Rn+1),
disjoint up to sets of volume zero; by (6f5), E+ is Jordan measurable, and

1Hint: split [0, 1] into 22n equal intervals and calculate lower and upper Darboux sums.
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v(E+) is the sum of the volumes of these boxes; the same holds for E−;
namely,

v(E−) = L(f, P ) , v(E+) = U(f, P ) .

The relation E− ⊂ E ⊂ E+ implies v(E−) ≤ v∗(E) ≤ v∗(E) ≤ v(E+),
thus L(f, P ) ≤ v∗(E) ≤ v∗(E) ≤ U(f, P ), which implies ∗

∫
B
f ≤ v∗(E) ≤

v∗(E) ≤ ∗
∫
B
f . The rest is evident.

6h2 Exercise. For f and B as in 6h1, the graph

Γ = {(x, f(x)) : x ∈ B} ⊂ Rn+1

is of volume zero.
Prove it.1

6h3 Exercise. Prove that
(a) the disk {x : |x| ≤ 1} ⊂ R2 is Jordan measurable;
(b) the ball {x : |x| ≤ 1} ⊂ Rn is Jordan measurable;
(c) for every p > 0 the set Ep = {(x1, . . . , xn) : |x1|p+· · ·+|xn|p ≤ 1} ⊂ Rn

is Jordan measurable;
(d) v(Ep) is a strictly increasing function of p.

6h4 Exercise. For the balls Er = {x : |x| ≤ r} ⊂ Rn prove that
(a) v(Er) = rnv(E1);
(b) v(Er) < e−n(1−r)v(E1) for r < 1.

A wonder: in high dimension the volume of a ball concentrates near the
sphere!

6i Sandwiching by continuous functions

Here is the so-called Lipschitz condition (with constant L) on a function
f : Rn → R:

(6i1) |f(x)− f(y)| ≤ L|x− y| for all x, y .

One also says that f is Lipschitz continuous (with constant L), or L-Lipschitz,
etc. Also, f is Lipschitz continuous if it satisfies the Lipschitz condition with
some constant. Such functions are continuous (but the converse fails). The
same holds for functions on boxes and other subsets of Rn.

1Hint: maybe, Γ ⊂ E+ \ E−?
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6i2 Proposition. For every bounded function f on a box B,

∗

∫
B

f = sup
g≤f

∫
B

g ,
∗∫
B

f = inf
g≥f

∫
B

g ,

where g runs over all Lipschitz functions.

6i3 Exercise. Let f be a bounded function on a box B ⊂ Rn, and L ∈
(0,∞). Then the function f+

L defined by

f+
L (x) = sup

y∈B

(
f(y)− L|x− y|

)
for x ∈ B

is the least L-Lipschitz function satisfying f+
L ≥ f .

Similarly, the function f−L defined by

f−L (x) = inf
y∈B

(
f(y) + L|x− y|

)
for x ∈ B

is the greatest L-Lipschitz function satis-
fying f−L ≤ f .

f+
L

f−
L

f

6i4 Exercise.

(1lE)+L(x) = max
(
0, 1− L dist(x,E)

)
=

= 1−min
(
1, L dist(x,E)

)
,

(1lE)−L(x) = min
(
1, L dist(x,B \ E)

)
for all E ⊂ B and all x ∈ B. (Here dist(x,E) = infy∈E |x−y| and dist(x, ∅) =
+∞.)

Prove it.

6i5 Corollary. (1lE)−L = (1lE◦)
−
L and (1lE)+L = (1lE)+L for all bounded E ⊂ B.

Monotonicity (evident):

f ≤ g implies f−L ≤ g−L and f+
L ≤ g+L ,(6i6)

L1 ≤ L2 implies f−L1
≤ f−L2

and f+
L1
≥ f+

L2
.(6i7)

6i8 Exercise. If c ∈ R, boxes B,C ⊂ Rn satisfy C ⊂ B, and f = c1lC , then∫
B

f−L ↑ c vol(C) and

∫
B

f+
L ↓ c vol(C) as L→∞ .

Prove it.1

1Hint: use 6f8.
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6i9 Lemma. ∫
B

h−L ↑
∫
B

h and

∫
B

h+L ↓
∫
B

h as L→∞

for every step function h on B.

Proof. We have (on the domain of h) h =
∑

C∈P h(C)1lC for some parti-
tion P of B; here h(C) is the (constant) value of h on C◦. The function∑

C∈P (h(C)1lC)+L is NL-Lipschitz on B; here N =
∑

C∈P 1. This NL-
Lipschitz function exceeds h, therefore it exceeds h+NL. Using (6i8),∫

B

h ≤
∫
B

h+NL ≤
∫
B

∑
C∈P

(h(C)1lC)+L =

∑
C∈P

∫
B

(h(C)1lC)+L →
∑
C∈P

∫
B

h(C)1lC =

∫
B

h ,

therefore
∫
B
h+L ↓

∫
B
h. Similarly,

∫
B
h−L ↑

∫
B
h.

6i10 Lemma.∫
B

f−L ↑
∗

∫
B

f and

∫
B

f+
L ↓

∗∫
B

f as L→∞

for every bounded function f on B.

Proof. On one hand,
∫
B
f+
L =

∗∫
B
f+
L ≥

∗∫
B
f (by monotonicity).

On the other hand, if h ≥ f is a step function then limL

∫
B
f+
L ≤

limL

∫
B
h+L =

∫
B
h; using (6g7), limL

∫
B
f+
L ≤ infh≥f

∫
B
h =

∗∫
B
f .

Thus, limL

∫
B
f+
L =

∗∫
B
f . Similarly, limL

∫
B
f−L = ∗

∫
B
f .

Thus, f is integrable on B if and only if for every ε > 0 there exist
Lipschitz functions g1, g2 on B such that g1 ≤ f ≤ g2 and

∫
B
g2 −

∫
B
g1 ≤ ε

(“sandwich”).

6i11 Exercise. Prove Prop. 6i2.

6i12 Exercise. A function f is integrable on B if and only if there exist
Lipschitz functions fn on B such that

∗∫
B
|fn − f | → 0.

Prove it.
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6j Integral as additive set function

6j1 Lemma. Let ϕ : R → R be a Lipschitz function satisfying ϕ(0) = 0,
and f : Rn → R an integrable function. Then the function ϕ ◦ f : Rn → R is
integrable.

Proof. We take L such that ϕ is L-Lipschitz, and a box B such that f (as
well as ϕ ◦ f) vanishes outside B. Given ε > 0 we take a Lipschitz function
g on B such that

∗∫
B
|f − g| ≤ ε. Then ϕ ◦ g is a Lipschitz function, and

∗∫
B
|ϕ ◦ f − ϕ ◦ g| ≤ ∗

∫
B
L|f − g| ≤ Lε.

The same holds for a continuous (not just Lipschitz) ϕ, since every con-
tinuous function on a compact interval is the uniform limit of some Lipschitz
functions.1

6j2 Exercise. Generalize 6j1 for ϕ
(
f(·), g(·)

)
where ϕ : R2 → R is a Lips-

chitz (or just continuous) function satisfying ϕ(0, 0) = 0.

6j3 Exercise. If f, g : Rn → R are integrable then min(f, g), max(f, g) and
fg are integrable.

Prove it.

6j4 Exercise. If E,F are Jordan measurable then E ∩ F , E ∪ F and E \ F
are Jordan measurable.

Prove it.

6j5 Definition. Let f : Rn → R be a function integrable on every box,2 and
E ⊂ Rn a Jordan measurable set; then∫

E

f =

∫
Rn

f1lE .

Similarly to (6f5), but more generally, we have

(6j6)

∫
E1]E2

f =

∫
E1

f +

∫
E2

f

whenever E1, E2 are Jordan measurable and disjoint.

1Linear interpolation. . .
2In other words, “locally integrable”.
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6k Miscellany

Jordan measure

Taking 6i5 into account we get

(6k1) v∗(E) = v∗(E
◦) and v∗(E) = v∗(E)

for all bounded E ⊂ Rn. (Now it is easy to find examples of bounded sets
that are not Jordan measurable; their indicators are not integrable.)

6k2 Exercise. (1lE)−L + (1l∂E)+L = (1lE)+L for all E ⊂ B.
Prove it.1

6k3 Corollary. v∗(E) + v∗(∂E) = v∗(E) for all bounded E ⊂ Rn.

6k4 Corollary. A bounded set is Jordan measurable if and only if its bound-
ary is of volume zero.

Now you may compare 6h1 and 6h2 in the light of 6k4.

6k5 Exercise. ∂(E ∩ F ) ⊂ ∂E ∪ ∂F , ∂(E ∪ F ) ⊂ ∂E ∪ ∂F and ∂(E \ F ) ⊂
∂E ∪ ∂F for all E,F ⊂ Rn.

Prove it. And what about ∂(E ∩ F ) ⊂ ∂E ∩ ∂F ?

6k6 Exercise. Prove 6j4 once again, via 6k4, 6k5.

Now we can generalize (6f5):

(6k7) v(E1 ∪ E2) + v(E1 ∩ E2) = v(E1) + v(E2)

for all Jordan measurable E1, E2 ⊂ Rn. This follows from 6j4 and an evident
equality

1lE1∪E2 + 1lE1∩E2 = 1lE1 + 1lE2 .

Similarly to (6j6), the same holds for integrals.
It is less evident how to generalize (6k7) to v(E1∪E2∪E3). Denoting the

complement Rn \ E by E c and the indicator of the whole Rn by 1l we have

1lE1∪E2∪E3 = 1l− 1l(E1∪E2∪E3) c = 1l− 1lE c
1 ∩E c

2 ∩E c
3

= 1l− 1lE c
1
1lE c

2
1lE c

3
=

= 1l− (1l− 1lE1)(1l− 1lE2)(1l− 1lE3) =

= 1lE1 + 1lE2 + 1lE3 − 1lE11lE2 − 1lE11lE3 − 1lE21lE3 + 1lE11lE21lE3 =

= 1lE1 + 1lE2 + 1lE3 − 1lE1∩E2 − 1lE1∩E3 − 1lE2∩E3 + 1lE1∩E2∩E3 ;

1Hint: use 6i4 and convexity of B.
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thus, v(E1 ∪ E2 ∪ E3) equals

v(E1)+v(E2)+v(E3)−v(E1∩E2)−v(E1∩E3)−v(E2∩E3)+v(E1∩E2∩E3) ,

a special case of the inclusion-exclusion formula.

By 6h2, the graph of a Lipschitz function on a box (or a part of it) is of
volume zero. Now consider a set of the form

Zg = {x : g(x) = 0}

where g : Rn → R is a continuously differentiable function such that ∇g 6= 0
on Zg. By the implicit function theorem, Zg is locally the graph of some
continuously differentiable function of n − 1 variables. It follows that every
compact subset of Zg is of volume zero (choose a finite subcovering of the
open covering, and use (6f12)).

For example, the sphere {x ∈ Rn : |x| = 1} is of volume zero; and
therefore the ball {x ∈ Rn : |x| ≤ 1} is Jordan measurable (as we know
already, see 6h3).

Partitions of small mesh

We define the mesh of a partition P of a box B:

mesh(P ) = max
C∈P

diam(C) ,

where diam(C) = maxx,y∈C |x − y| =
√
l21 + · · ·+ l2n for C = [t1, t1 + l1] ×

· · · × [tn, tn + ln].

6k8 Proposition. If f is integrable on B then

L(f, P )→
∫
B

f and U(f, P )→
∫
B

f as mesh(P )→ 0 .

That is,

∀ε > 0 ∃δ > 0 ∀P
(

mesh(P ) ≤ δ =⇒∣∣∣L(f, P )−
∫
B

f
∣∣∣ ≤ ε ∧

∣∣∣U(f, P )−
∫
B

f
∣∣∣ ≤ ε

)
(or equivalently, U(f, P )− L(f, P ) ≤ ε).
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6k9 Exercise. (a) If f is an L-Lipschitz function on a box B then

U(f, P )− L(f, P ) ≤ L vol(B) mesh(P )

for every partition P of B; prove it.
(b) Prove Prop. 6k8.

6k10 Exercise. For every integrable f : Rn → R,

εn
∑

k1,...,kn∈Z
f(εk1, . . . , εkn)→

∫
f as ε→ 0 .

Prove it.

Pixelated sandwich

Let us define1 a closed δ-pixel as a box (cube) of the form [δk1, δk1 +
δ] × · · · × [δkn, δkn + δ] for k1, . . . , kn ∈ Z, and a closed δ-pixelated set as a
finite (maybe empty) union of δ-pixels. In addition, a non-closed δ-pixel is
[δk1, δk1 + δ)× · · · × [δkn, δkn + δ), and a non-closed δ-pixelated set is their
finite union (necessarily disjoint).

6k11 Exercise. (a) For every ε > 0 and Jordan measurable E ⊂ Rn, for
all δ > 0 small enough2 there exist closed δ-pixelated sets E−, E+ such that
E− ⊂ E ⊂ E+ and v(E+)− v(E−) ≤ ε.

(b) The same holds for non-closed δ-pixelated sets.
Prove it.

6l Uniqueness

We know that the set J (Rn) of all Jordan measurable sets in Rn is translation
invariant (as follows from (6f6)), and the Jordan measure v is a map J (Rn)→
[0,∞) satisfying additivity (6f5)

v(E1 ] E2) = v(E1) + v(E2)

and translation invariance (also follows from (6f6))

v(E + r) = v(E) .

Surprisingly, these properties determine v uniquely up to a coefficient.

1Following Terence Tao.
2That is, δ ≤ δε,E .

http://terrytao.wordpress.com/books/an-introduction-to-measure-theory/
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6l1 Proposition. If a map w : J (Rn) → [0,∞) satisfies additivity and
translation invariance then

∃c ≥ 0 ∀E ∈ J (Rn) w(E) = cv(E) .

Proof. By translation invariance, w takes on the same value on all δ-pixels
(for a given δ); here we use non-closed pixels. By additivity,

w
(
[0, 2δ)n

)
= 2nw

(
[0, δ)n

)
,

since a 2δ-pixel is the disjoint union of 2n δ-pixels. Introducing

c = w
(
[0, 1)n

)
we get

w
(
[0, 2−k)n

)
= 2−knc for k = 0, 1, 2, . . .

Taking into account that v
(
[0, 2−k)n

)
= 2−kn we conclude that w(E) = cv(E)

whenever E is a 2−k-pixel and therefore, by additivity, whenever E is a
2−k-pixelated set.

Additivity of w implies its monotonicity: E ⊂ F implies w(E) ≤ w(F )
(since w(F \ E) ≥ 0).

Given ε > 0 and a Jordan measurable E, 6k11 for k large enough gives
2−k-pixelated sets E−, E+ such that E− ⊂ E ⊂ E+ and v(E+)− v(E−) ≤ ε.
The interval [w(E−), w(E+)] = [cv(E−), cv(E+)] contains both w(E) and
cv(E). We see that |w(E)− cv(E)| ≤ ε for all ε > 0.

6m Rotation invariance

6m1 Proposition. Let T : Rn → Rn be a linear isometry (that is, a linear
operator satisfying ∀x |T (x)| = |x|). Then the image T (E) of an arbitrary
E ⊂ Rn is Jordan measurable if and only if E is Jordan measurable, and in
this case

v
(
T (E)

)
= v(E) .

6m2 Lemma. v∗(T (Q)) ≤ nn/2v(Q) for every δ-pixel Q ⊂ Rn.

Proof. Denoting by x the center of Q we have |x − y| ≤ 1
2
δ
√
n, therefore

|T (x) − T (y)| ≤ 1
2
δ
√
n for all y ∈ Q. In coordinates, T (x) = (a1, . . . , an),

T (y) = (b1, . . . , bn), we have |ak − bk| ≤ 1
2
δ
√
n, therefore

T (Q) ⊂ [b1 − 1
2
δ
√
n, b1 + 1

2
δ
√
n]× · · · × [bn − 1

2
δ
√
n, bn + 1

2
δ
√
n] .

We see that T (Q) is contained in a cube of volume (δ
√
n)n = nn/2v(Q).
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By additivity, v∗(T (E)) ≤ nn/2v(E) for every δ-pixelated set E. By 6k11
the same holds for every Jordan measurable E. In particular,

if E is of volume zero then T (E) is.

By 6k4, if E is Jordan measurable then T (E) is; indeed, ∂(T (E)) = T (∂E)
since T is a homeomorphism (recall 1d1). The same applies to T−1, thus,

(6m3) E ∈ J (R) ⇐⇒ T (E) ∈ J (R) .

Proof of Prop. 6m1. We consider a map w : J (Rn)→ [0,∞) defined by

w(E) = v(T (E)) ;

it is well-defined due to (6m3), additive (indeed, v is additive, and T (E1 ]
E2) = T (E1)]T (E2) since T is a bijection) and translation invariant (indeed,
v is translation invariant, and T (E+x) = T (E)+T (x) by linearity). Prop. 6l1
gives c such that w(·) = cv(·). It remains to prove that c = 1. To this end
we take the ball

E = {x : |x| ≤ 1} ;

it is Jordan measurable by 6h3, T (E) = E (since T is isometric), thus

cv(E) = w(E) = v(T (E)) = v(E) ,

which implies c = 1 (indeed, v(E) 6= 0 by 6f13).

Given an n-dimensional Euclidean vector space E, we choose a linear
isometry T : E → Rn and transfer the Jordan measure from Rn to E via
T . That is, a set A ⊂ E is Jordan measurable if T (A) ⊂ Rn is, and then
v(A) = v(T (A)). This definition is correct by the argument used in Sect. 1d.1

By translation invariance, the same holds for Euclidean affine spaces.

Jordan measure is well-defined on every Euclidean fd space, and preserved
by affine isometries between these spaces.

6m4 Proposition. Let T : Rn → Rn be a linear isometry, and f : Rn → R
a bounded function with bounded support. Then

∗

∫
f ◦ T =

∗

∫
f and

∗∫
f ◦ T =

∗∫
f .

Thus, f ◦ T is integrable if and only if f is integrable, and in this case∫
f ◦ T =

∫
f .

1Between 1d1 and 1d2.
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Proof. First, if h = 1lB is the indicator of a box B then h ◦ T = 1lT−1(B) is
integrable (since T−1(B) is Jordan measurable), and

∫
h ◦ T = v(T−1(B)) =

v(B) =
∫
h.

Second,
∫
h ◦ T =

∫
h for all step functions (by linearity).

Third, by (6g7), for every ε > 0 there exists a step function h such that
h ≥ f and

∫
h ≤ ∗

∫
f + ε. We have h ◦ T ≥ f ◦ T , thus,

∗∫
f ◦ T ≤

∫
h ◦ T =∫

h ≤ ∗∫
f + ε; it means that

∗∫
f ◦ T ≤ ∗∫

f . The same holds for T−1, thus
∗∫
f ◦ T =

∗∫
f . Similarly, ∗

∫
f ◦ T = ∗

∫
f .

Riemann integral is well-defined on every Euclidean fd space, and pre-
served by affine isometries between these spaces.

6n Linear transformation

6n1 Theorem. Let T : Rn → Rn be an invertible linear operator. Then the
image T (E) of an arbitrary E ⊂ Rn is Jordan measurable if and only if E is
Jordan measurable, and in this case

v
(
T (E)

)
= | detT |v(E) .

Also, for every bounded function f : Rn → R with bounded support,

| detT |
∗

∫
f ◦ T =

∗

∫
f and | detT |

∗∫
f ◦ T =

∗∫
f .

Thus, f ◦ T is integrable if and only if f is integrable, and in this case

| detT |
∫
f ◦ T =

∫
f .

Proof. The Singular Value Decomposition (1a2, 1c9) gives an orthonormal
basis (a1, . . . , an) in Rn such that vectors T (a1), . . . , T (an) are orthogonal.
Invertibility of T ensures that the numbers sk = |T (ak)| do not vanish. Tak-
ing bk = (1/sk)T (ak) we get an orthonormal basis (b1, . . . , bn) such that
T (a1) = s1b1, . . . , T (an) = snbn.

We have s1 . . . sn = | detT |, since the singular values sk are well-known
to be square roots of the eigenvalues of T ∗T (thus, s1 . . . sn =

√
det(T ∗T ) =√

(detT )2 = | detT |).
By the rotation invariance (Prop. 6m1) we may replace the usual basis

in Rn with (a1, . . . , an) or (b1, . . . , bn) leaving intact Jordan measure.1 The
(matrix of the) operator becomes diagonal: T (x1, . . . , xn) = (s1x1, . . . , snxn).
It remains to apply 6e14 and 6f14.

1That is, we downgrade the two copies of Rn into a pair of Euclidean vector spaces,
choose new bases and upgrade back to two copies of Rn.
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