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Iterated integral is an indispensable tool for calculating multidimensional
integrals (in particular, volumes). It also leads to a result about integrals
(including one-dimensional) that depend on a parameter.

7a What is the problem

According to 6k10,

ε2
∑
k,l∈Z

f(εk, εl)→
∫
R2

f as ε→ 0

for every integrable f : R2 → R. The double summation is evidently equiva-
lent to iterated summation,

ε2
∑
k,l∈Z

f(εk, εl) = ε
∑
k∈Z

(
ε
∑
l∈Z

f(εk, εl)

)
,

which suggests that ∫
R2

f =

∫
R

(∫
R
f(x, y) dy

)
dx ,

(alternative notation:
∫∫

f(x, y) dxdy =
∫

dx
∫

dy f(x, y), and the like), that
is,

(7a1)

∫
R2

f =

∫
R

(
x 7→

∫
R
fx

)
,

where fx : R→ R (denoted also f(x, ·)) is defined by

fx(y) = f(x, y) .

It should be very useful, to integrate with respect to one variable at a time.
Related problems:
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∗ does integrability of f imply integrability of fx for every x?

∗ is the function x 7→
∫
R fx integrable?

∗ is the two-dimensional integral equal to the iterated integral?

∗ if the iterated integral is well-defined, does it follow that f is integrable?

And, of course, we need a multidimensional theory; R2 is only the simplest
case.

7b Lipschitz functions

Recall 6g8: a continuous function on a box is integrable.

7b1 Proposition. Let f : B → R be a Lipschitz function on a box B =
I1 × I2 ⊂ R2. Then
(a) for every x ∈ I1 the function fx is Lipschitz continuous on I2;
(b) the function x 7→

∫
I2
fx is Lipschitz continuous on I1;

(c)

∫
B

f =

∫
I1

(
x 7→

∫
I2

fx

)
.

It is given that f is L-Lipschitz for some L ∈ (0,∞). We reduce the
general case to the case L = 1 by turning to the function 1

L
f .

We reduce the general box B of the form [s1, t1]× [s2, t2] to a box of the
form [0, t1]× [0, t2] by translation, according to 6c7. Further, we reduce it to
the square [0, 1]× [0, 1] by rescaling, according to 6d18. That is, we introduce
a Lipschitz function g : [0, 1]× [0, 1]→ R by g(x, y) = f(t1x, t2y); by 6d18,

t1t2

∫
[0,1]×[0,1]

g =

∫
B

f .

We note that gx(y) = ft1x(t2y); Lipschitz continuity of gx implies Lipschitz
continuity of ft1x, and t2

∫
[0,1]

gx =
∫
[0,t2]

ft1x (by 6d18 again). Further, Lips-

chitz continuity of x 7→
∫
[0,1]

gx implies Lipschitz continuity of x 7→
∫
[0,t2]

fx,

and

t1

∫
[0,1]

(
x 7→

∫
[0,t2]

ft1x

)
=

∫
[0,t1]

(
x 7→

∫
[0,t2]

fx

)
(by 6d18 once again), that is,

t1t2

∫
[0,1]

(
x 7→

∫
[0,1]

gx

)
=

∫
[0,t1]

(
x 7→

∫
[0,t2]

fx

)
.

Now the equality (7b1)(c) for g implies the same for f .
We need a quantitative version of 6k10.
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7b2 Lemma. For every 1-Lipschitz function f : [0, 1]n → R and every
K = 1, 2, . . .∣∣∣∣ 1

Kn

∑
1≤k1,...,kn≤K

f
(k1 − 0.5

K
, . . . ,

kn − 0.5

K

)
−
∫
[0,1]n

f

∣∣∣∣ ≤ √n2K
.

Proof. Consider a partition P of [0, 1]n into Kn δ-pixels (as defined before
6k11) with δ = 1/K. Every point of a pixel C is 1

2
δ
√
n-close to the center

(k1−0.5
K

, . . . , kn−0.5
K

) of the pixel (as noted in the proof of 6m2); the Lipschitz
continuity gives

f
(
k1−0.5
K

, . . . , kn−0.5
K

)
−1

2
δ
√
n ≤ inf

C
f ≤ sup

C
f ≤ f

(
k1−0.5
K

, . . . , kn−0.5
K

)
+

1

2
δ
√
n ;

∑
1≤k1,...,kn≤K

δn
(
f
(
k1−0.5
K

, . . . , kn−0.5
K

)
− 1

2
δ
√
n
)
≤ L(f, P ) ≤

∫
[0,1]n

f ≤

≤ U(f, P ) ≤
∑

1≤k1,...,kn≤K

δn
(
f
(
k1−0.5
K

, . . . , kn−0.5
K

)
+

1

2
δ
√
n
)
.

Proof of Prop. 7b1 for a 1-Lipschitz function f on B = [0, 1]× [0, 1].
(a) |fx(y1)−fx(y2)| = |f(x, y1)−f(x, y2)| ≤ |(0, y1−y2)| = |y1−y2|, thus

fx is 1-Lipschitz.
(b) |(fx1 − fx2)(y)| = |f(x1, y) − f(x2, y)| ≤ |(x1 − x2, 0)| = |x1 − x2|,

therefore |
∫
[0,1]

fx1 −
∫
[0,1]

fx2| ≤ |x1 − x2|, which shows that the function

x 7→
∫
[0,1]

fx is 1-Lipschitz.

(c) Lemma 7b2 applied to f (and n = 2) gives for arbitrary M = 1, 2, . . .∣∣∣∣ 1

M2

M∑
k,l=1

f
(
k−0.5
M

, l−0.5
M

)
−
∫
B

f

∣∣∣∣ ≤ √2

2M
.

The same lemma applied to fx (and n = 1) gives for every x∣∣∣∣ 1

M

M∑
l=1

fx
(
l−0.5
M

)
−
∫
[0,1]

fx

∣∣∣∣ ≤ 1

2M
.

The same lemma (again!) applied to the function x 7→
∫
[0,1]

fx (and n = 1)
gives ∣∣∣∣ 1

M

M∑
k=1

∫
[0,1]

f k−0.5
M
−
∫
[0,1]

(
x 7→

∫
[0,1]

fx

)∣∣∣∣ ≤ 1

2M
.



Tel Aviv University, 2013/14 Analysis-III,IV 101

Thus,∣∣∣∣ ∫
B

f −
∫
[0,1]

(
x 7→

∫
[0,1]

fx

)∣∣∣∣ ≤
≤
∣∣∣∣ 1

M2

M∑
k,l=1

f
(
k−0.5
M

, l−0.5
M

)
− 1

M

M∑
k=1

∫
[0,1]

f k−0.5
M

∣∣∣∣+

√
2

2M
+

1

2M

and∣∣∣∣ 1

M2

M∑
k,l=1

f
(
k−0.5
M

, l−0.5
M

)
− 1

M

M∑
k=1

∫
[0,1]

f k−0.5
M

∣∣∣∣ =

=

∣∣∣∣ 1

M

M∑
k=1

(
1

M

M∑
l=1

f
(
k−0.5
M

, l−0.5
M

)
−
∫
[0,1]

f k−0.5
M

∣∣∣∣ ≤
≤ 1

M

M∑
k=1

1

2M
=

1

2M
.

Finally, ∣∣∣∣ ∫
B

f −
∫
[0,1]

(
x 7→

∫
[0,1]

fx

)∣∣∣∣ ≤ √2 + 2

2M

for all M .

Here is a straightforward generalization of Prop. 7b1.

7b3 Proposition. Let two boxes B1 ⊂ Rm, B2 ⊂ Rn be given, and a
Lipschitz function f on a box B = B1 ×B2 ⊂ Rm+n. Then
(a) for every x ∈ B1 the function fx is Lipschitz continuous on B2;
(b) the function x 7→

∫
B2
fx is Lipschitz continuous on B1;

(c)

∫
B

f =

∫
B1

(
x 7→

∫
B2

fx

)
.

7b4 Exercise. Prove Prop. 7b3.

Similarly, for a Lipschitz function f : B1 ×B2 → R,∫
B

f =

∫
B2

(
y 7→

∫
B1

f y
)

where f y(x) = f(x, y). This claim reduces to Prop. 7b3 taking f̃(y, x) =
f(x, y). Ultimately,∫

dx

∫
dy f(x, y) =

∫∫
f(x, y) dxdy =

∫
dy

∫
dx f(x, y) .
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That is, the two iterated integrals are equal to the “non-iterated” (“double”?
“single”?) integral (and therefore equal to each other).

7b5 Exercise. Prove that∫
B1×B2

f(x1, . . . , xm)g(y1, . . . , yn) dx1 . . . dxm dy1 . . . dyn =

=

(∫
B1

f(x1, . . . , xm) dx1 . . . dxm

)(∫
B2

g(y1, . . . , yn) dy1 . . . dyn

)
for Lipschitz functions f : B1 → R, g : B2 → R.

7b6 Exercise. Calculate each integral in two ways:
(a)
∫ 1

0
dx
∫ 1

0
dy ex+y;

(b)
∫ 1

0
dy
∫ π/2
0

dx xy cos(x+ y).

7b7 Exercise. Calculate integrals
(a)
∫
[0,1]n

(x21 + · · ·+ x2n) dx1 . . . dxn;

(b)
∫
[0,1]n

(x1 + · · ·+ xn)2 dx1 . . . dxn.

7c Some counterexamples

7c1 Example. Integrability of f does not imply integrability of fx for every
x.

Define f : [0, 1]× [0, 1]→ R by

f(x, y) =

{
1 if x = 1/2 and y is rational,

0 otherwise.

Then f(·, ·) = 0 outside a set {1/2}× [0, 1] of area 0, therefore f is integrable
(recall 6g). However, f1/2 is not integrable (recall 6b2).

7c2 Example. Existence of the iterated integral1 does not imply bound-
edness (the more so, integrability) of f , even if f is positive and symmet-
ric in the sense that f(x, y) = f(y, x) (and therefore the iterated integrals∫

dx
∫

dy f(x, y),
∫

dy
∫

dx f(x, y) are both well-defined, and equal).
Define f : [0, 1]× [0, 1]→ R by

f(x, y) =

{
1√
x+y

if x/2 < y < 2x,

0 otherwise

1That is, integrability of fx for all x and integrability of the function x 7→
∫
fx.
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and observe that∫
[0,1]

fx =

∫ 2x

x/2

dy√
x+ y

= 2
√
x+ y

∣∣y=2x

y=x/2
= 2
√

3x− 2
√

3x/2 = const ·
√
x

for x ≤ 1/2, and
∫ 1

x/2
dy√
x+y

= 2
√
x+ 1− 2

√
3x/2 for x ≥ 1/2.

7c3 Example. Existence of both iterated integrals does not imply their
equality, even if f is antisymmetric in the sense that f(x, y) = −f(y, x).

Define f : [0, 1]× [0, 1]→ R by

f(x, y) =

{
x−y

(x+y)3
if x > 0 and y > 0,

0 otherwise;

observe that each fx is continuously differentiable (therefore Lipschitz), and∫
[0,1]

fx =

∫ 1

0

x− y
(x+ y)3

dy =

∫ 1

0

2x− (x+ y)

(x+ y)3
dy =

= 2x

∫ 1

0

dy

(x+ y)3
−
∫ 1

0

dy

(x+ y)2
= 2x·

(
−1

2

) 1

(x+ y)2

∣∣∣∣y=1

y=0

−(−1)· 1

x+ y

∣∣∣∣y=1

y=0

=

= −x
( 1

(x+ 1)2
− 1

x2

)
+
( 1

x+ 1
− 1

x

)
=
−x+ (x+ 1)

(x+ 1)2
=

1

(x+ 1)2
,

a positive, continuously differentiable function on [0, 1]. Its integral is positive
(in fact, 1/2). By the antisymmetry, the other iterated integral is negative
(in fact, −1/2).

7c4 Example. Existence of the iterated integral does not imply integrability
of f even if f is bounded and symmetric.

Define f : [0, 1]× [0, 1]→ R by1

f(x, y) =

{
1 if x

√
2 + y and x+ y

√
2 are (both) rational,

0 otherwise.

If f(x, y1) = f(x, y2) = 1 then y1 − y2 = (x
√

2 + y1)− (x
√

2 + y2) is rational
and (y1 − y2)

√
2 = (x + y1

√
2) − (x + y2

√
2) is rational, therefore y1 = y2.

It means that each fx(·) = 0 outside at most one point. Similarly, each f y

vanishes outside at most one point. Thus,
∫
fx = 0 for all x, and

∫
f y = 0 for

all y. Nevertheless f is not integrable, since it equals 1 on a dense countable
set of points of the form (q

√
2− r, r

√
2− q) with rational q, r; and f vanishes

on the (dense) complement of this countable set.

1Alternatively, f(x, y) = 1 whenever (x, y) =
(
(2k − 1)/2n, (2l − 1)/2n

)
.
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7c5 Remark. One may wonder, does existence of both iterated integrals
imply their equality if f is just bounded (but not Lipschitz, nor integrable)?
The answer is affirmative.1 Try to prove it yourself if you are ambitious
enough, but be warned that you’ll probably need something not learned yet
in this course.

7d Integrable functions

7d1 Theorem. Let two boxes B1 ⊂ Rm, B2 ⊂ Rn be given, and an in-
tegrable function f on a box B = B1 × B2 ⊂ Rm+n. Then the iterated
integrals ∫

B1

dx
∗

∫
B2

dy f(x, y) ,

∫
B1

dx
∗∫
B2

dy f(x, y) ,∫
B2

dy
∗

∫
B1

dx f(x, y) ,

∫
B2

dy
∗∫
B1

dx f(x, y)

are well-defined and equal to∫∫
B

f(x, y) dxdy .

Clarification. The claim that
∫

dx ∗
∫

dy f(x, y) is well-defined means that
the function x 7→ ∗

∫
dy f(x, y) is integrable.

The equality ∫ (
x 7→

∗

∫
fx

)
=

∫ (
x 7→

∗∫
fx

)
implies integrability (with the same integral) of every function sandwiched
between the lower and upper integrals. It is convenient to interpret x 7→

∫
fx

as any such function and write, as before,∫
B

f =

∫
B1

(
x 7→

∫
B2

fx

)
and ∫

dx

∫
dy f(x, y) =

∫∫
f(x, y) dxdy =

∫
dy

∫
dx f(x, y)

even though fx may be non-integrable for some x.
Theorem 7d1 is proved via sandwiching, — either by step functions (recall

Sect. 6g) or Lipschitz functions (recall Sect. 6i). Let us use the latter.

1In Riemann integration, of course. In Lebesgue integration the corresponding problem
is much harder.
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Proof. By Prop. 6i2,
∗∫
B
f = infg≥f

∫
B
g where g runs over all Lipschitz

functions. For every such g,
∫
B
g =

∫
B1

(x 7→
∫
B2
gx) by Prop. 7b1. We have∫

B2
gx =

∗∫
B2
gx ≥

∗∫
B2
fx (since gx ≥ fx), thus,

∫
B
g ≥ ∗∫

B1
(x 7→ ∗∫

B2
fx) for

all these g. Therefore

∗∫
B

f ≥
∗∫
B1

(
x 7→

∗∫
B2

fx

)
.

Similarly (or via (−f)),

∗

∫
B

f ≤
∗

∫
B1

(
x 7→

∗

∫
B2

fx

)
.

Using integrability of f ,∫
B

f ≤
∗

∫
B1

(
x 7→

∗

∫
B2

fx

)
≤

∗∫
B1

(
x 7→

∗∫
B2

fx

)
≤
∫
B

f ,

therefore ∫
B

f =
∗

∫
B1

(
x 7→

∗

∫
B2

fx

)
=

∗∫
B1

(
x 7→

∗∫
B2

fx

)
.

Integrability of the function x 7→ ∗

∫
B2
fx follows, since∫

B

f =
∗

∫
B1

(
x 7→

∗

∫
B2

fx

)
≤

∗∫
B1

(
x 7→

∗

∫
B2

fx

)
≤

∗∫
B1

(
x 7→

∗∫
B2

fx

)
=

∫
B

f .

Similarly, the function x 7→ ∗∫
B2
fx is also integrable. Thus,∫

B

f =

∫
B1

(
x 7→

∗

∫
B2

fx

)
=

∫
B1

(
x 7→

∗∫
B2

fx

)
.

The other two iterated integrals are treated similarly (or via f̃(y, x) =
f(x, y)).

7d2 Exercise. Give another proof of 7d1, via sandwiching by step func-
tions.1

7d3 Exercise. Generalize 7b5 to integrable functions
(a) assuming integrability of the function (x, y) 7→ f(x)g(y),
(b) deducing integrability of the function (x, y) 7→ f(x)g(y) from integra-

bility of f and g (via sandwich).

1Hint: first, consider f = 1lC for a box C ⊂ B.
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7d4 Exercise. If E1 ⊂ Rm and E2 ⊂ Rn are Jordan measurable sets then
the set E = E1 × E2 ⊂ Rm+n is Jordan measurable.

Prove it.

7d5 Exercise. If E1 ⊂ Rm and E2 ⊂ Rm+n are Jordan measurable sets then
the set E = {(x, y) ∈ E2 : x ∈ E1} = (E1 × Rn) ∩ E2 ⊂ Rm+n is Jordan
measurable.

Prove it.

Applying Theorem 7d1 to a function f1lE and taking 6j5 into account we
get the following.

7d6 Corollary. Let f : Rm+n → R be integrable on every box, and E ⊂
Rm+n a Jordan measurable set; then∫

E

f =

∫
Rm

(
x 7→

∫
Ex

fx

)
where Ex = {y : (x, y) ∈ E} ⊂ Rn for x ∈ Rm.

Clarification. First, note that {x : Ex 6= ∅} is bounded, and
∫
∅ fx =

0. Second: it may happen that
∫
Ex
fx is ill-defined for some x; then it is

interpreted as anything between ∗

∫
fx1lEx and

∗∫
fx1lEx .

In particular, taking f(·) = 1 we get

vm+n(E) =

∫
Rm

vn(Ex) dx

where vk is the Jordan measure in Rk. For instance, the volume of a 3-di-
mensional geometric body is the 1-dimensional integral of the area of the
2-dimensional section of the body.

7d7 Corollary. If Jordan measurable sets E,F ⊂ R3 satisfy v2(Ex) = v2(Fx)
for all x then v3(E) = v3(F ).1

This is a modern formulation of the Cavalieri’s principle:2 3

Suppose two regions in three-space (solids) are
included between two parallel planes. If ev-
ery plane parallel to these two planes intersects
both regions in cross-sections of equal area, then
the two regions have equal volumes.

1It is sufficient to check the equality for all x of a dense subset of R (since two Riemann
integrable functions equal on a dense set must have equal integrals).

2Bonaventura Francesco Cavalieri (in Latin, Cavalerius) (1598–1647), Italian mathe-
matician.

3Images (and some text) from Wikipedia, “Cavalieri’s principle”.

http://en.wikipedia.org/wiki/Cavalieri's_principle
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Before emergence of the integral calculus, Cavalieri was able to calculate
some volumes by ingenious use of this principle. Here are two examples.
First, the volume of the upper half of a sphere is equal to the volume of a
cylinder minus volume of a cone:

Second, when a hole of length h is drilled straight through the center of a
sphere, the volume of the remaining material surprisingly does not depend
on the size of the sphere:

7d8 Exercise. Check the two results of Cavalieri noted above.

7d9 Exercise. Check a famous result of Archimedes:1 2 a sphere inscribed

1Archimedes (≈ 287–212 BC), a Greek mathematician, generally considered to be the
greatest mathematician of antiquity and one of the greatest of all time.
Cicero describes visiting the tomb of Archimedes, which was surmounted by a sphere in-
scribed within a cylinder. Archimedes . . . regarded this as the greatest of his mathematical
achievements.

2Images (and some text) from Wikipedia, “Volume” (section “Volume ratios for a cone,
sphere and cylinder of the same radius and height”).

http://en.wikipedia.org/wiki/Volume
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within a cylinder has two thirds of the volume of the cylinder.

Moreover, show that the volumes of a cone, sphere and cylinder of the same
radius and height are in the ratio 1 : 2 : 3.

Another important special case of 7d6:

E = {(x, t) : x ∈ B, g(x) ≤ t ≤ h(x)} ⊂ Rn+1

where B ⊂ Rn is a box and g.h : B → R integrable functions satisfying g ≤ h
(recall Sect. 6h). In this case Ex = [g(x), h(x)], and we get∫

E

f =

∫
B

(
x 7→

∫
[g(x),h(x)]

fx

)
=

∫
B

dx

∫ h(x)

g(x)

dt f(x, t) .

Applying this to f(x, t)1lF (x) (in place of f(x, t)) for a Jordan measurable
set F ⊂ Rn we get ∫

E

f =

∫
F

dx

∫ h(x)

g(x)

dt f(x, t)

where F = {x ∈ B : g(x) ≤ t ≤ h(x)} (assuming that this set is Jordan
measurable).

7d10 Exercise. Calculate the integral∫∫∫
E

(x21 + x22 + x23) dx1dx2dx3 ,

where E is the simplex in R3 bounded by the planes {x1 + x2 + x3 = a},
{xi = 0}, 1 ≤ i ≤ 3.

Answer: a5/20.

7d11 Exercise. Find the volume of the intersection of two solid cylinders
in R3: {x21 + x22 ≤ 1} and {x21 + x23 ≤ 1}.

Answer: 16/3.
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7d12 Exercise. Find the volume of the solid in R3 under the paraboloid
{x21 + x22 − x3 = 0} and above the square [0, 1]2 × {0}.

Answer: 2/3.

7d13 Exercise. Let f : R→ R be a continuous function. Prove that∫ x

0

dx1

∫ x1

0

dx2 ...

∫ xn−1

0

dxn f(xn) =

∫ x

0

f(t)
(x− t)n−1

(n− 1)!
dt .

7d14 Example. Let us calculate the integral∫
[0,1]n

max(x1, . . . , xn) dx1 . . . dxn .

First of all, by symmetry, we assume that 1 ≥ x1 ≥ x2 ≥ ... ≥ xn ≥ 0, and
multiply the answer by n!. Then max(x1, ..., xn) = x1, and we get

n!

∫ 1

0

x1 dx1

∫ x1

0

dx2 ...

∫ xn−1

0

dxn = n!

∫ 1

0

xn1 dx1
(n− 1)!

=
n

n+ 1
.

7d15 Exercise. Compute the integral
∫
[0,1]n

min(x1, . . . , xn) dx1 . . . dxn.

Answer: 1
n+1

.

7d16 Exercise. Find the volume of the n-dimensional simplex

{x : x1, ..., xn ≥ 0, x1 + ...+ xn ≤ 1} .

Answer: 1
n!

.

7d17 Exercise. Suppose the function f depends only on the first coordinate.
Then ∫

B
f(x1) dx = vn−1

∫ 1

−1
f(x1)(1− x21)(n−1)/2 dx1 ,

where B is the unit ball in Rn, and vn−1 is the volume of the unit ball in
Rn−1.

The next exercises examine further a very interesting phenomenon of
“concentration of high-dimensional volume” touched before, in 6h4(b); it
was seen there that in high dimension the volume of a ball concentrates near
the sphere, and now we’ll see that it also concentrates near a hyperplane!1

7d18 Exercise. Let B be the unit ball in Rn, and P = {x ∈ B : |x1| < 0.01}.
What is larger, vn(P ) or vn(B \ P ), if n is sufficiently large?

1Do you see a contradiction in these claims?
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7d19 Exercise. Given ε > 0, show that the quotient

vn({x ∈ B : |x1| > ε})
vn(B)

tends to zero as n→∞.1

7d20 Exercise. * Find the asymptotic behavior of the quotient above as
n→∞.

7e Differentiation under the integral sign

Integration of the function x 7→
∫
fx is useful, but differentiation of this

function is also widely used. Imagine for instance that a function depends
on time: ft(x) = f(t, x). Then its integral depends on time, too: t 7→∫
f(t, x) dx. According to the so-called Leibniz integral rule,

d

dt

∫
f(t, x) dx =

∫ (
∂

∂t
f(t, x)

)
dx

under appropriate conditions.2

Instead of differentiating
∫
f(t, x) dx we’ll integrate

∫ (
∂
∂t
f(t, x)

)
dx; this

little trick shifts the work onto the iterated integral theorem!

7e1 Theorem. Let B ⊂ Rn be a box, and f, g : B × [0, 1] → R Lipschitz
functions such that f ′x(t) = gx(t) for all x ∈ B, t ∈ (0, 1). Then F ′(t) = G(t)
for all t ∈ (0, 1), where F (t) =

∫
B
f(x, t) dx and G(t) =

∫
B
g(x, t) dx.

Clarification. By “F ′(t) = G(t)” we mean that the derivative exists and
equals G(t); and “f ′x(t) = gx(t)” is interpreted similarly.

Proof. We know (recall Sect. 7b) that F and G are Lipschitz continuous. It
is sufficient to prove that

∫ t
0
G(s) ds = F (t)−F (0) for all t ∈ (0, 1). We have

fx(t)− fx(0) =
∫ t
0
gx(s) ds, therefore

F (t)− F (0) =

∫
B

(
f(x, t)− f(x, 0)

)
dx =

∫
B

dx

∫ t

0

ds g(x, s) =

=

∫ t

0

ds

∫
B

dx g(x, s) =

∫ t

0

dsG(s) .

1Hint: the quotient equals
∫ 1
ε
(1−t2)(n−1)/2 dt∫ 1

0
(1−t2)(n−1)/2 dt

.
2The conditions of Th. 7e1 can be relaxed in several aspects; but I prefer to keep the

proof short.


	Iterated integral
	What is the problem
	Lipschitz functions
	Some counterexamples
	Integrable functions
	Differentiation under the integral sign


